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Ground-state correlations within a nonperturbative approach
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The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated
nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-
nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the
harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order
perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and
yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their
strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap
between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task
are discussed.

DOI: 10.1103/PhysRevC.95.024306

I. INTRODUCTION

A major objective in theoretical nuclear physics is to
formulate methods able to determine the properties of finite
nuclei starting from fundamental interactions among nucleons
without relying on approximations or free parameters. They are
expected to probe nuclear interactions and to predict properties
not sufficiently explored experimentally.

Several ab initio approaches, often complementing one
another, are available (see Ref. [1] for a review). Most of
them, like the no-core shell model (NCSM) [2–4], coupled-
cluster (CC) theory [5–10], and the in-medium similarity
renormalization group (IM-SRG) [11–15], are focused on bulk
and low-energy spectroscopic properties.

In the past, these and other first-principles methods adopted
meson-exchange nucleon-nucleon potentials tuned on scatter-
ing phase-shift analysis and deuteron properties. An exhaustive
list can be found in Refs. [1,4]. In recent years, they have
been using potentials derived from chiral effective theory. This
theory introduces naturally the three-body (3N ) force through
a power counting in the ratio Q/� of the momentum transfer Q

over a cut-off �, which establishes a hierarchy of NN, 3N , and
many-body forces. A detailed discussion with the appropriate
references can be found in Refs. [1,16].

As pointed out in Ref. [1], the 3N forces are crucial in
determining the saturation properties of nuclear matter [17,18],
affect the binding energies, radii, and low-lying spectroscopic
properties of light nuclei [2,19], and describe the structure and
the correct evolution of neutron-rich oxygen isotopes up to the
drip line [7,20–23].

However, the main contribution comes from the density-
dependent NN components the 3N forces induce [1]. More-
over, an optimized NN chiral potential NNLOopt was derived
[24] that reproduces the experimental binding energies and the
drip line in neutron-rich oxygen isotopes. In calcium isotopes,
it overestimates the binding energy but reproduces energy
differences and shell closures.

Owing to the complex structure of the equations to be solved
and the dimensions of the configuration space, most of these
first-principles calculations are involved and confined to light
and, in a few cases, medium-light nuclei.

To avoid these complications, a many-body perturbation
theory (MBPT), using a NN + 3N chiral potential, was pro-
posed recently as a much simpler and flexible alternative [25].
A calculation of the perturbation series up to 30th order,
achieved by a resummation technique exploiting the Padé
approximants [26], shows that a good convergence is obtained
for 16O already at the third order as long as a Hartree-Fock
(HF), rather than a harmonic oscillator (HO), basis is adopted.
Thus, calculations up to third order could be extended to a
long chain of nuclei up to 132Sn, yielding binding energies
in good agreement with experiments. Analogous convergence
properties were obtained in other third-order perturbation the-
ory calculations using Vlowk [27], unitary correlation operator
method [28], and, very recently, the two-body part of the chiral
N3LO as well as the J-matrix inverse scattering potential [29].

The suggestion that the perturbation series is rapidly con-
vergent is very appealing. It needs, however, to be confirmed by
nonperturbative calculations. These can be performed within
an alternative approach where the Hamiltonian matrix is ex-
panded in terms of the number of particle-hole configurations
(np-nh) (n = 0,1,2, . . .). This expansion underlies approaches
like CC theory [1,5] and IM-SRG [13,15].

The random-phase approximation (RPA) provides also
a correlated ground state [30–32] incorporating many p-h
configurations [33]. Only in a few cases, however, was it
adopted to estimate the correlation energy [33–35]. Analogous
investigations can be carried out in second RPA (SRPA) [36–
40] or other extensions. To our knowledge, however, no
calculations based on these approaches have been performed.

An explicit and systematic expansion in terms of correlated
np-nh states is accomplished in an equation-of-motion phonon
method (EMPM) proposed a few years ago [41,42]. In its
upgraded version [43], the method constructs a set of equations
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of motion which are solved iteratively to yield an orthonormal
basis of n-phonon states |αn〉 (n = 0,1,2, . . . ,n, . . . ) built of
phonons obtained in Tamm-Dancoff approximation (TDA).
The basis is then adopted to solve the eigenvalue problem
in the full multiphonon space. The formalism does not rely
on approximations. The correlated nature of the constituent
phonons, however, may allow for simplifying assumptions.
It might be possible, for instance, to use a restricted number
of basis states because the high-energy p-h configurations are
incorporated practically in all TDA phonons.

The EMPM was adopted mainly to investigate the detailed
properties of the dipole response in heavy neutron-rich doubly
magic nuclei using a Nilsson [44] and a HF basis [45,46]. More
recently, it was formulated in a Hartree-Fock-Bogoliubov
(HFB) quasiparticle scheme and employed to study the
low-lying spectrum as well as the dipole response of the
neutron-rich 20O [47].

Here, we exploit the method to study the ground-state
properties. We evaluate the net contribution of two-phonon
configurations to assess quantitatively the importance of the
higher-order 2p-2h terms, fully accounted for by the EMPM,
with respect to second-order perturbation theory. Moreover,
by comparing the results with experiments, it is possible to
assess the importance of more complex configurations, chiefly
4p-4h.

The calculation is performed in a HF basis using the two-
body optimized chiral potential NNLOopt. We first study the
convergence properties of the HF ground-state energies and
radii in 4He, 16O, and 40Ca versus the frequency ω and the
dimensions of the HO space used to generate the HF basis. We
then present a systematic of HF energies and radii covering a
large part of the periodic table.

A thorough EMPM investigation of the convergence prop-
erties is carried out for 4He and 16O. An analogous study in
heavier nuclei would require unbearably lengthy calculations
or, alternatively, drastic truncations of the multiphonon space.
How these truncations may be made reliably will be discussed.

II. BRIEF OUTLINE OF THE METHOD

The Hamiltonian considered here is composed of an
intrinsic kinetic term Tint and a nucleon-nucleon (NN) potential
VNN. It has therefore the structure

H = Tint + VNN = T + VNN + T2, (1)

where

T =
(

1 − 1

A

)
1

2m

∑
i

p2
i (2)

is a modified one-body kinetic term and

T2 = − 1

2mA

∑
i �=j

�pi · �pj (3)

is a two-body kinetic piece. Once the HF basis is generated,
H assumes the form

H = H0 + V. (4)

In second quantization, the one-body term takes the form

H0 =
∑

r

[r]1/2εr (a†
r × br )0, (5)

where εr are the HF energies and a
†
r = a

†
xr jrmr

and br =
(−)jr+mr axr jr−mr

are particle creation and annihilation oper-
ators, respectively. We have put [r] = 2jr + 1 and use this
notation throughout the paper. The symbol × denotes coupling
of two tensor operators to angular momentum �.

The two-body part becomes

V = −1

4

∑
rstq�

[�]1/2V �
rstq [(a†

r × a†
s )� × (bt × bq)�]0, (6)

where V �
rstq is unnormalized and antisymmetrized.

It is useful to write the latter potential in the recoupled form

V = 1

4

∑
rsqtσ

[σ ]1/2Fσ
rsqt [(a

†
r × bs)

σ × (a†
q × bt )

σ ]0, (7)

where

Fσ
rsqt =

∑
�

[�](−)r+t−σ−�W (rsqt ; σ�)V �
rqst (8)

and W (rsqt ; σ�) are Racah coefficients.

A. p-h Tamm-Dancoff

The preliminary step is the solution of the TDA eigenvalue
equations

〈0|[(a†
p × ah)λph,H

]λ|λ〉 = (Eλ − E0)cλ
ph, (9)

where

cλ
ph = 〈(p × h)λ|λ〉 = 〈0|(a†

p × ah)λph|λ〉 (10)

and the overline symbol denotes the adjoint of a tensor
operator.

After expanding the commutator, we obtain∑
p′h′

Aλ
php′h′c

λ
p′h′ = (Eλ − E0)cλ

ph, (11)

where

Aλ
php′h′ = (εp − εh)δpp′δhh′ + Fλ

phh′p′ . (12)

The solution of the eigenvalue equation yields the TDA
eigenvalues and eigenvectors of the form

|λ〉 = O
†
λ|0〉, (13)

where

O
†
λ =

∑
ph

cλ
ph(a†

p × ah)λ (14)

is the TDA phonon operator.
The TDA wave functions can be used to compute the density

matrix

ρλλ′([r × s]σ ) = 〈λ′‖(a†
r × bs)

σ‖λ〉
= [λλ′σ ]1/2

∑
t

cλ
tsc

λ′
trW (λ′tσ s; rλ). (15)
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Here t runs over particle (t = p) or hole (t = h) states,
according that (rs) = (hh′) or (rs) = (pp′), respectively.

For Jπ = 1−, we need to remove the spurious components
induced by the center-of-mass (c.m.) motion. As discussed in
Ref. [48], we eliminate these admixtures by Gramm-Schmidt
orthogonalization of the p-h basis states to the c.m. state
defined as

|λ1〉 = 1

N1
Rμ|0〉 = 1

N1

∑
ph

c
λ1
ph|(p × h−1)1−〉, (16)

where Rμ is the c.m. coordinate, c
λ1
ph are the unnormalized

coefficients

c
λ1
ph =

√
4π

9

1

A
〈p‖rY1‖h〉, (17)

and N1 is the normalization constant

N2
1 =

∑
ph

∣∣cλ1
ph

∣∣2
. (18)

The basis states |�i〉 obtained by such an orthogonalization
procedure are linear combinations of the p-h states |(p ×
h−1)1−〉. They must be used to construct and diagonalize the
Hamiltonian matrix yielding eigenstates rigorously free of
spurious admixtures. These eigenstates recover the standard
TDA structure given by Eq. (14) once the states |�i〉 are
expressed in terms of the original configurations |(p × h−1)1−〉.

B. Derivation of the n-phonon basis

The primary objective of the method is to generate an
orthonormal basis of n-phonon states (n = 1,2, . . .) of the
form

|βn〉 =
∑
λαn−1

C
β
λαn−1

|(λ × αn−1)βn〉

=
∑
λαn−1

C
βn

λαn−1
{O†

λ × |αn−1〉}βn , (19)

where the TDA phonon operator O
†
λ (14), of energy Eλ, acts

on a (n − 1)-phonon state |αn−1〉, of energy Eαn−1 , assumed to
be known.

The key for generating such a basis is provided by the
equations of motion

〈β|([H,O
†
λ] × |α〉)β = (Eβ − Eα)〈β|(λ × α)β〉, (20)

where the subscript n has been omitted for simplicity. Upon
applying the Wigner-Eckart theorem, we obtain the equivalent
equations

〈β‖[H,O
†
λ]‖α〉 = (Eβ − Eα)〈β‖O†

λ‖α〉. (21)

We, then, expand the commutator and invert Eq. (14) to express
the p-h operators, appearing in the expanded commutator, in
terms of the phonon operators O

†
λ. The outcome of this action

is [43] ∑
λ′α′

Aβ
λαλ′α′X

β
λ′α′ = EβX

β
λα, (22)

where X defines the amplitude

X
β
λα = 〈β‖O†

λ‖α〉, (23)

and A is a matrix of the simple structure

Aβ
λαλ′α′ = (Eλ + Eα)δλλ′δαα′ +

∑
σ

W (βλ′ασ ; α′λ)Vσ
λαλ′α′ .

(24)

Here, the phonon-phonon potential is given by

Vσ
λαλ′α′ =

∑
rs

Vσ
λλ′(rs)ρ(n)

αα′([r × s]σ ), (25)

where the labels (rs) run over particle (rs = pp′) and hole
(rs = hh′) states. In the above equation, we have introduced
the n-phonon density matrix

ρ
(n)
αα′ ([r × s]σ ) = 〈α′

n‖[a†
r × bs]

σ‖αn〉 (26)

and the potential

Vσ
λλ′ (rs) =

∑
tq

ρλλ′([q × t]σ )Fσ
qtrs , (27)

where ρλλ′ is the TDA density matrix (15).
The phonon matrix Aβ

λαλ′α′ is formally equivalent to the
TDA matrix Aλ

php′h′ [43]. The first is deduced from the second
by replacing the p-h energies with the sum of phonon energies
and the p-h interaction with the phonon-phonon potential (25).

Equation (22) is not an eigenvalue equation yet. We have
first to expand the amplitudes X (23) in terms of the expansion
coefficients C

β
λα of the states |β〉 (19) obtaining

X
β
λα =

∑
λ′α′

Dβ
λαλ′α′C

β
λ′α′ , (28)

where D is the metric or overlap matrix given by

Dβ
λαλ′α′ = 〈(λ × α)β |(λ′ × α′)β〉

= δλλ′δαα′ +
∑

γ

W (α′λλ′α; γβ)Xα
λ′γ Xα′

λγ − (−)α+β+λ

×
∑
rsσ

W (λ′λα′α; σβ)ρλλ′ ([r × s]σ )ρα′α([r × s]σ ),

(29)

and Xα
λγ = 〈αn−1‖O†

λ‖γn−2〉. The overlap matrix D reestab-
lishes the Pauli principle by reintroducing the exchange terms
among different phonons, in addition to the Kronecker product.

By inserting the expansion (28) into Eq. (22), we get∑
λ′α′

Hβ
λαλ′α′C

β
λ′α′ =

∑
λ′α′

(AD)βλαλ′α′C
β
λ′α′

= Eβ

∑
λ′α′

Dβ
λαλ′α′C

β
λ′α′ . (30)

These are a set of generalized eigenvalue equations in the
overcomplete basis states |(λ × α)β〉.

Following a procedure [41,42] based on the Cholesky
decomposition method, we select a basis of linear independent
states |(λ × α)β〉 spanning the physical subspace of the correct
dimensions Nn < Nr and construct a Nn × Nn nonsingular
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matrix Dn. By left multiplication in the Nn-dimensional
subspace we get from Eq. (30)[D−1

n H]
C = [D−1

n (AD)
]
C = EC. (31)

This equation determines only the coefficients C
β
λα of the

Nn-dimensional physical subspace. The remaining redundant
Nr − Nn coefficients are undetermined and, therefore, can be
safely put equal to zero.

The eigenvalue problem within the n-phonon subspace
is thereby solved exactly and yields a basis of orthonormal
correlated n-phonon states of the form (19).

Because recursive formulas hold for all quantities entering
A and D, it is possible to solve the eigenvalue equations
iteratively starting from the TDA phonons |α1〉 = |λ〉 and,
thereby, generate a set of orthonormal multiphonon states
{|0〉,|α1〉,|α2〉, . . . ,|αn〉, . . .} of the form (19).

C. Eigenvalue problem in the multiphonon basis

The multiphonon basis {|αn〉} is finally used to solve the
eigenvalue equations in the multiphonon space∑

n′βn′

[(
Eαn

− Eν

)
δnn′δαnβn′ + Vαnβn′

]C(ν)
βn′ = 0, (32)

where the potential has the structure

Vαnβn′ = δn′(n+1)Vαnβn′ + δn′(n+2)Vαnβn′ . (33)

For n′ = n + 1, the matrix elements are

Vαnβn+1 = 〈βn+1|V |αn〉 =
∑
σγn

Vσ
αnγn

X(βn+1)
σγn

, (34)

where

Vσ
αnγn

= [αn]−1(−)αn+γn+σ
∑
rs

Fσ
rsρ

(n)
αγ ([r × s]σ ) (35)

and

Fσ
rs =

∑
ph

cσ
phF

σ
phrs . (36)

For n′ = n + 2 we have

Vαnβn+2 = 〈βn+2|V |αn〉
= [αn]−1

∑
σσ ′γn+1

(−)αn+γn+1+σXβn+2
σγn+1

X
γn+1
σ ′αn

Vσσ ′ , (37)

where

Vσσ ′ = δJσ Jσ ′
1

4

∑
php′h′

F
Jσ

php′h′c
σ
phc

σ ′
p′h′ . (38)

The solution of Eqs. (32) yields the final eigenvalues Eν and
the corresponding eigenfunctions

|�ν〉 =
∑
nαn

C(ν)
αn

|αn〉. (39)

The entire procedure leading to these eigenstates does not rely
on any approximation. For practical applications, however,
it might be necessary to truncate the p-h and/or the phonon
spaces. The phonon structure, however, allows us to keep both
truncations under control.

|�ν〉 can be written as a linear combination of products of
n TDA phonons (n = 0,1,2,3, . . . ). If the sum is truncated at
n = 2, it assumes the form of a SRPA wave function [36–39]
in its phonon version [40].

Thus, in a space encompassing up to two phonons, our
formalism can be considered as the TDA counterpart of SRPA.
With respect to our approach, SRPA incorporates effectively
the ground-state correlations. The underlying quasiboson ap-
proximation, however, produces uncontrollable uncertainties
which induce instabilities [38,39].

A connection with the RPA correlated ground state [32,33]
can be also established. To this purpose we observe that, if the
almost vanishing one-phonon components are neglected, our
state assumes the form

|�0〉 � C(0)
0 |0〉 +

∑
α2

C(0)
α2

|α2〉,

= C(0)
0 |0〉 +

∑
λλ′

C(0)
λλ′ |(λ × λ′)0〉, (40)

where C(0)
λλ′ = ∑

α2 C(0)
α2

C
α2
λλ′ follows from Eq. (19).

We can now imagine of turning our eigenvalue problem
into an equivalent one within the one-dimensional HF space.
In such a perturbative context, |�0〉 is connected to the HF state
by a wave operator of the same exponential form derived for
the RPA correlated ground state [32,33] and its energy is given
by a series of terms describing the propagation of interacting
2p-2h [43].

This series does not include the RPA ring diagrams
describing the propagation of np-nh (n > 2), which add more
attraction to the ground state. However, it contains infinite
sets of diagrams, ignored in RPA, describing the p-p and
h-h interactions among the Fermionic constituents of the two
phonons and producing an overall repulsive contribution. It
might be worth pointing out that the RPA formalism relies on
the quasiboson approximation, which tends to overestimate
the correlation energy to an extent that cannot be quantified
easily.

III. NUMERICAL CALCULATIONS

As anticipated in the Introduction, we make use of the NN
optimized chiral potential NNLOopt determined by fixing the
coupling constants at next-to-next-leading order through a new
optimization method in the analysis of the phase shifts, which
minimizes the effects of the 3N forces [24].

A. Ground-state energy and convergence properties

We generate a HF basis in a HO space which includes a
variable number of major shells, up to the principal quantum
number Nmax = 14. This allows us to study the stability of the
ground-state energy against the variation of the HO frequencies
and space dimensions.

An example is given in Fig. 1. In 4He, for Nmax sufficiently
large, the HF ground-state energy is almost insensitive to the
space dimensions, especially at fairly high frequencies (h̄ω �
16 MeV). A completely flat stable minimum is reached for
Nmax � 10 and h̄ω � 16 MeV and over the whole frequency
range for Nmax = 14.
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FIG. 1. HF ground-state energy of 4He (a), 16O (b), and 40Ca (c)
versus the HO frequencies ω for different HO space dimensions Nmax.

In 16O and 40Ca, the convergence range is rather restricted
for Nmax ∼ 10 and is more substantial for Nmax = 14, 16 �
h̄ω � 25 MeV, and 10 � h̄ω � 25 MeV in 16O and 40Ca,
respectively. The HF energy remains close to the minimum
with decreasing Nmax at low frequencies, just like in 4He,
and departs from it more appreciably and faster in the high-
frequency sector.

The second-order contribution has a strong impact and
spoils the convergence at low frequencies in all three nuclei.
In all of them, the total energy converges to the minimum
value starting from h̄ω ∼ 16 MeV for Nmax � 12 and from
h̄ω ∼ 21 MeV for Nmax = 10 (Fig. 2). The extremal value
tends to stabilize in the region of high frequencies indepen-
dently of the mass number.

The strong influence of the perturbative term on the
convergence properties can be understood by observing that (a)
the particle states come into play directly into the perturbative
term and increase in number enormously with Nmax, (b) the
second-order corrections are, in general, comparable with or
larger than the HF energies. They account for ∼44%, ∼61%,
and ∼59% of the theoretical binding energy in 4He, 16O, and
40Ca, respectively. These large contributions determine slight
overbindings with the exception of 4He (Table I).

Perturbation theory has a (too) strong impact on the energies
of all nuclei throughout the periodic table. We have evaluated
the binding energies of a selected set of doubly magic and
semimagic nuclei for Nmax = 14 and different frequencies.
The systematic presented in Fig. 3 shows that the perturbative
corrections are dominant and cause increasing overbinding

FIG. 2. Ground-state energy of 4He (a), 16O (b), and 40Ca (c)
versus the HO frequency ω for different Nmax computed in HF plus
second-order perturbation theory.

with increasing mass number. These corrections induce also
a dependence on the HO frequency, even for Nmax = 14,
especially in the heavy nuclei.

An analogous trend of the perturbative energy corrections,
all along the chain of nuclei investigated, was obtained in
Ref. [25], when a NN + 3N full chiral interaction is used.

This analogy confirms that the NNLOopt [24] absorbs
effectively a substantial fraction of the contribution of the
chiral 3N forces [16] to the ground-state energy.

In the non-perturbative treatment, we use all TDA phonons
allowed by the dimensions of the p-h space for each Nmax to
generate the correlated two-phonon basis states |α2〉 [Eq. (19)]
through Eqs. (31). We then adopt the full basis {|0〉,|λ〉,|α2〉}
to solve the eigenvalue equations (32) obtaining thereby all
eigenstates allowed by the multiphonon space. Only the lowest
eigenstate �0 [Eq. (40)] is the object of our interest here.

A systematic study of the convergence properties of the
EMPM ground-state energy would be too time consuming.
They are investigated thoroughly only in 4He and 16O.

TABLE I. Binding energies per nucleon. The EMPM value for
40Ca was obtained for Nmax = 8, which is not an extremal point.

BE/A (MeV)
AX HF PT EMPM Exp.

4He 3.96 7.07 6.67 7.07
16O 3.22 8.29 6.77 7.98
40Ca 4.00 9.77 7.02 8.55
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FIG. 3. Systematic of ground-state energy computed in HF and
second-order perturbation theory. The calculations are performed for
Nmax = 14 and different HO frequencies ω.

As shown in Figs. 4, the minimum is reached over a
wide frequency range for Nmax � 10. The most striking
differences between second-order perturbation theory and
EMPM emerging from Figs. 3 and 4 is that the absolute
energies obtained in the EMPM are ∼1.6 and ∼24 MeV
smaller in 4He and 16O, respectively, indicating that the
higher-order terms have an appreciable repulsive effect. In
the nonperturbative approach, the two-phonon contribution
represents the ∼40% and ∼53% of the total energy in 4He
and 16O, respectively, and induces an underestimation of their
binding energy per nucleon (Table I).

According to a calculation based on the RPA correlated
ground state, the corrections to the second-order energy
coming from the higher-order ring diagrams are attractive [35].

FIG. 4. The EMPM ground-state energy of 4He (a) and 16O (b)
versus the HO frequency ω for different Nmax.

We may therefore infer from this result that the repulsive
contribution comes entirely from the p-p and h-h interactions
among phonons, which are missing in the RPA calculation.

B. Ground-state radius and convergence properties

To evaluate the point proton root-mean-square (r.m.s.)
radius we use the intrinsic operator [50]

r2
p = 1

Z

∑
i=1,Z

(ri − Rc.m.)
2. (41)

For N = Z, it becomes

r2
p =

(
1 − 1

A

)
1

Z

∑
i=1,Z

r2
i − 2

A2

∑
i<j

ri · rj . (42)

Disregarding the terms in ri · rj , in line with Ref. [29], we get

r2
p =

(
1 − 1

A

)
1

Z

∑
i=1,Z

r2
i . (43)

The charge radius is deduced from the standard expression [8]

〈
r2
ch

〉 = 〈
r2
p

〉 + R2
p + N

Z
R2

n + 3h̄2

4m2
pc2

, (44)

where Rp = 0.8775(51) fm, R2
n = 0.1149(27) fm2, and

3h̄2

4m2
pc2 ∼ 0.033 fm2.

In the EMPM, we use the wave function �0 (40) to obtain〈
r2
p

〉 = 〈�0|r2
p|�0〉 = 〈

r2
p

〉
HF + 〈

r2
p

〉
corr, (45)

where 〈r2
p〉HF is the HF value and 〈r2

p〉corr is the contribution
coming from the two-phonon correlations. This is given by〈

r2
p

〉
corr =

∑
αβ

δJαJβ
δJα0C(0)

α C(0)
β M(0)

αβ, (46)

where

M(0)
αβ =

∑
rs

〈r‖r2
p‖s〉〈β‖(a†

r × bs)
0‖α〉. (47)

In analogy with the energy, the HF point proton radius reaches
the convergence over a wide frequency interval for Nmax � 10
in 4He and 16O (Fig. 5). The HF radii are systematically smaller
than the empirical ones throughout the whole periodic table
(Fig. 6).

The convergence of the radius computed in the EMPM
is as fast as in the HF case (Fig. 7). The contribution of the
two-phonon correlations is much more modest than in the case
of the energy and is far from filling the gap with the empirical
values (Table II).

The underestimation of the binding energies and radii
indicates that the two-phonon correlations are not strong
enough. They account for ∼22% of the total wave function,
which is dominated by the HF component (∼78%).

Apparently, HF and two-phonon states are not admixed
sufficiently by the phonon coupling. The weakness of such a
coupling may be attributable to the HF spectrum. The levels
above the Fermi surface generated by NNLOopt, or other
potentials as well [28,48,51], are too far apart, especially at
high energies. A smoother HF level scheme would yield a more
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FIG. 5. HF point proton radius versus the HO frequency ω for
different Nmax in 4He (a) and 16O (b).

compact TDA spectrum and, therefore, should strengthen the
phonon coupling.

Acting at the HF level only is not sufficient. More complex
multiphonon configurations, capable of shifting down the two-
phonon levels and rendering more effective their coupling to
the HF state, are to be considered. The positive-parity three-
phonon states are expected to produce, through their coupling,
a fragmentation of the two-phonon spectrum. It is necessary
to check if it produces a downward shift of its levels.

We expect a strong effect from the four-phonon states. An
indirect confirm of their importance comes from the CC [1,5]

FIG. 6. Systematic of root-mean-square point proton radii com-
puted in HF. The calculations are performed for Nmax = 14 and
different HO frequencies ω. The experimental data are from Ref. [49].

FIG. 7. HF and EMPM point proton radii of 4He (a) and 16O (b)
versus Nmax for fixed frequency (h̄ω = 26 MeV).

and IM-SRG [14,15] theories, where (4p-4h) contributions are
effectively accounted for to some extent.

That the coupling to four-phonon states is expected to be
strong can be inferred from the formula

〈α4|V |α2〉 =
∑
γ2

〈α4|(α2 × γ2)0〉〈γ2|V |0〉, (48)

which correlates closely the four-phonon to two-phonon
coupling with the strong coupling between two phonons and
the HF vacuum.

Generating a basis of correlated four-phonon states in a
large space is prohibitive. It would require the calculation of
a huge number of density matrices (26). Thus, a preliminary
condition for achieving our task consists in the possibility of
truncating the multiphonon space at a negligible detriment of
the accuracy of the calculation.

As shown in Fig. 8, the convergence with the number of
two-phonon states is slow. Although the components with the
largest amplitudes are below ∼100 MeV, the tiny components
are in a huge number and give a large contribution to the wave
function. Thus, a mere truncation of the basis according to the
energy is not efficient.

We need to resort to a more sophisticated importance
sampling [52], shown to be effective in large-scale shell-
model calculations [53,54], and check if the sampled basis
is sufficiently restricted to allow the access to subspaces
with a larger number of phonons. Preliminary calculations

TABLE II. Point proton radii. The experimental data are from
Ref. [49]. The EMPM value in 16O was obtained for the nonextremal
point Nmax = 10.

rp (fm)
AX HF EMPM Exp.

4He 1.38 1.40 1.46
16O 2.25 2.26 2.57
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FIG. 8. Squared amplitudes (multiplied by 100) of the two-
phonon components (a) of the ground state in 16O and their running
sum (b).

are encouraging. They indicate that the ground-state energy
can be well approximated by using ∼30% of the basis
states.

A further simplification may consist in neglecting the
interaction among phonons [Eq. (25)] when we solve Eq. (30)
to generate the four-phonon states |α4〉. This interaction
induces only a reshuffling of levels falling at energy too high to
have appreciable consequences on the coupling. A quantitative
test of this approximation, however, requires rather elaborate
calculations.

IV. CONCLUSIONS

The main conclusion to be drawn from our calculation is
that (a) a stable HF and, especially, EMPM energy minimum
is obtained only if the HF basis is determined using a large
number of HO major shells at specific frequencies, (b) a large
fraction of the ground-state correlation energy comes from
the two-phonon (2p-2h) configurations, (c) the terms beyond
second order are appreciable and have a repulsive effect,
(d) the attractive two-phonon contribution is not sufficient to
reproduce the experimental binding energies and radii, and
(e) at least four-phonon (4p-4h) configurations are needed to
produce the missing attractive contribution.

Though the formalism is valid for any number of phonons,
its numerical implementation in a multiphonon space encom-
passing also the four-phonon basis is unfeasible if we pretend
to use all phonons generated by the full p-h basis. We have to
rely on their correlated nature and investigate if, though starting
from a p-h space of large dimensions, the set of relevant
phonons is sufficiently restricted to allow us to generate the
four-phonon states in a drastically truncated space.
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