
PHYSICAL REVIEW C 95, 024305 (2017)

Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations
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Background:The discovery of neutrinoless double-β (0νββ) decay would demonstrate the nature of neutrinos,
have profound implications for our understanding of matter-antimatter mystery, and solve the mass hierarchy
problem of neutrinos. The calculations for the nuclear matrix elements M0ν of 0νββ decay are crucial for the
interpretation of this process.
Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix
elements M0ν by assuming the mechanism of exchanging light or heavy neutrinos for the 0νββ decay.
Methods:The nuclear matrix elements M0ν are calculated within the framework of covariant density functional
theory, where the beyond-mean-field correlations are included in the nuclear wave functions by configuration
mixing of both angular-momentum and particle-number projected quadrupole deformed mean-field states.
Results: The nuclear matrix elements M0ν are obtained for ten 0νββ-decay candidate nuclei. The impact of
relativity is illustrated by adopting relativistic or nonrelativistic decay operators. The effects of short-range
correlations are evaluated.
Conclusions: The effects of relativity and short-range correlations play an important role in the mechanism of
exchanging heavy neutrinos though the influences are marginal for light neutrinos. Combining the nuclear matrix
elements M0ν with the observed lower limits on the 0νββ-decay half-lives, the predicted strongest limits on the
effective masses are |〈mν〉| < 0.06 eV for light neutrinos and |〈m−1

νh
〉|−1 > 3.065 × 108 GeV for heavy neutrinos.

DOI: 10.1103/PhysRevC.95.024305

I. INTRODUCTION

The neutrinoless double-β (0νββ) decay is a process where
an even-even nucleus (N,Z) transforms into its even-even
neighbor (N − 2,Z + 2) with only two electrons emitted.
The fact that the 0νββ decay violates the total lepton
number by two units makes it a probe sensitive to revealing
the mysterious nature of massive neutrinos: This process
occurs only if the neutrinos are Majorana particles and the
violation of total lepton number is possible. Several other
fundamental questions on neutrinos, including their absolute
mass scale, mass spectrum hierarchy (normal, inverted, or
quasidegenerate), and the mechanism of masses generation,
are expected to be clarified if one can possibly combine the
results from this process and other neutrino experiments [1]. To
date, no actual signal for the 0νββ decay has been confirmed
despite numerous experimental data released. Recently, the
most stringent lower limits on the half-lives have been reported
by the KamLAND-Zen Collaboration [2] for 136Xe, T 0ν

1/2 >

1.07 × 1026 yr (90% C.L.), and by the NEMO-3 Collaboration
[3] for 150Nd, T 0ν

1/2 > 2.0 × 1022 yr (90% C.L.).
In the 0νββ-decay mechanism of exchanging virtual Ma-

jorana neutrinos, the half-life T 0ν
1/2 is inversely proportional to

an effective parameter f (mi,Uei) related to neutrino masses,
a kinematic phase-space factor G0ν , and the nuclear matrix
element (NME) M0ν squared:

[
T 0ν

1/2

]−1 = G0ν g4
A |M0ν |2 f (mi,Uei). (1)

Considering the two limiting cases of neutrino propagator,

mi

qμqμ − m2
i

→
{

mi/qμqμ, m2
i � qμqμ,

−1/mi, m2
i � qμqμ,

(2)

the amplitude is proportional to the mass for a light neutrino,

f (mi,Uei) = |〈mν〉|2m−2
e ,

(3)
〈mν〉 =

∑
k

(Uek)2mk,

but inversely proportional to the mass for a heavy neutrino,

f (mi,Uei) = ∣∣〈m−1
νh

〉∣∣2
m2

p,
(4)〈

m−1
νh

〉 =
∑
kh

(
Uekh

)2
m−1

kh
.

Note that qμ is the momentum transferred by the neutrino and
Uek and Uekh

are elements in the neutrino mixing matrix that
mix light and heavy neutrinos, respectively. me and mp are
electron and nucleon masses, and the bare value gA = 1.254
is used for the axial-vector coupling constant. Given that the
phase-space factor G0ν has been precisely determined [4], an
accurate knowledge of the NME M0ν is the key to connecting
the experimental measurement with fundamental physics.

The calculation of the NME requires the wave functions of
initial and final nuclear states as well as the decay operator.
Previously, the NMEs M0ν have been calculated within the
framework of covariant density functional theory (CDFT)

2469-9985/2017/95(2)/024305(10) 024305-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.024305


L. S. SONG, J. M. YAO, P. RING, AND J. MENG PHYSICAL REVIEW C 95, 024305 (2017)

[5–9], where the relativistic wave functions and the relativistic
0νββ-decay operator derived from weak interaction Hamilto-
nian are used in the calculations. Various nonrelativistic nu-
clear structure models have been applied as well. They include
the configuration-interacting shell model (CISM) [10–25], the
quasiparticle random phase approximation (QRPA) [26–45],
the projected Hartree-Fock-Bogoliubov (PHFB) model
[46–51], the interacting boson model (IBM) [52–55], and
the nonrelativistic energy density functional (EDF) theory
[56–58]. In contrast with the CDFT application, the 0νββ-
decay operator has to be reduced to its nonrelativistic form in
these calculations to be adapted to the nonrelativistic nuclear
wave functions. Therefore, the fully relativistic framework of
CDFT allows one to examine the validity of the nonrelativistic
approximation and to reveal the relativistic effects in the NME
by conducting comparative studies with the relativistic or
nonrelativistic-reduced decay operators, respectively.

Previous studies based on beyond-mean-field CDFT [5,6]
have shown that the nonrelativistic decay operator is a good
approximation to the full relativistic operator within the
assumption of light-neutrino exchange. The goal of this paper
is to generalize the calculations to the case with heavy-neutrino
exchange and to present a comprehensive study on the effects
of relativity and nucleon-nucleon short-range correlations
(SRCs) on the NME of 0νββ decay. The calculations are
based on nuclear wave functions in which the dynamic effects
of particle-number and angular-momentum conservations as
well as shape fluctuations are incorporated by the projection
techniques and the generator coordinate method (GCM), in
full analogy to Refs. [5,6]. The SRC corrections neglected
in previous calculations of light-neutrino NME are now taken
into account via a Jastrow function using the Argonne V18
parametrization [59–61].

II. FORMALISM

In the framework of beyond-mean-field CDFT, the nuclear
many-body wave function is constructed by superposing a set
of quantum-number projected nonorthogonal states around the
equilibrium shape [62–66],

|JNZ; α〉 =
∑

κ∈{β2,K}
f Jα

κ P̂ J
MKP̂ N P̂ Z|β2〉. (5)

The deformation parameters β2 are chosen as the generator
coordinates in the GCM method so that the quadrupole axial
deformation and its quantum fluctuations are considered.
The reference states |β2〉 are a set of BCS states generated
from the self-consistent mean-field calculations based on
the universal relativistic energy functional PC-PK1 [67].
The projection operators P̂ G’s (G ≡ J,N,Z) [68] are re-
sponsible for restoring broken symmetries by projecting
the reference wave functions onto states with good angular
momenta J and numbers (N,Z) of neutrons and protons. The
coefficients f Jα

κ are determined by solving the Hill-Wheeler-
Griffin equation [68]. The indices α = 1,2, . . . distinguish
different nuclear states with energy Eα .

The 0νββ-decay operator is derived from the second-
order weak Hamiltonian with charge-exchange nucleonic and

leptonic currents. It reads

Ô0ν = 4πR

g2
A

∫∫
d3x1d

3x2

∫
d3q

(2π )3
h(q)

×J †
μ(x1)J μ†(x2)eiq·(x1−x2), (6)

with R = 1.2A1/3 fm.
The neutrino potential h(q) for light-neutrino exchange is

h(q) = q−1(q + Ed )−1,
(7)

Ed ≡ Ē − (EI + EF )/2,

where EI (F ) corresponds to the energy of initial (final) nuclear
state, and Ē is the average energy of intermediate states. For
heavy-neutrino exchange the neutrino potential is

h(q) = (mpme)−1. (8)

These potentials are obtained by taking the limiting forms of
the neutrino propagator in Eq. (2). While the light-mass limit
leads to a q−2 dependence in h(q), the heavy-mass limit gives
a constant.

The charge-exchange nucleonic current is given by
J †

μ(x) ≡ ψ̄(x)�μ(q)τ−ψ(x), with the vertex,

�μ(q) = gV (q2)γμ + igM (q2)
σμν

2mp

qν

− gA(q2)γμγ5 − gP (q2)qμγ5, (9)

where τ− is the isospin lowering operator. More details about
the current operator J †

μ as well as its nonrelativistic-reduced
form can be found in Refs. [5,6].

Here we consider the most probable path for the 0νββ
decay, namely, the transition between the ground states (Jπ =
0+) of even-even nuclei. Taking the nuclear wave functions
in Eq. (5) constructed with the GCM + PNAMP (particle-
number and angular-momentum projection) method, the total
NME reads

M0ν =
∑
βI

2 ,βF
2

f ∗
0+

F

(
βF

2

)
f0+

I

(
βI

2

) ∫
d3q

(2π )3
h(q)

×
∑
abcd

〈ab| �(1)
μ (q)�μ(2)(q)eiq·(x1−x2)|cd〉

× 〈
βF

2

∣∣ c(π)†
a c

(π)†
b c

(ν)
d c(ν)

c P̂ J=0P̂ NI P̂ ZI
∣∣βI

2

〉
, (10)

which is a weighted superposition of the projected matrix el-
ements with different initial and final deformation parameters
βI

2 and βF
2 . The neutron annihilation operators c

(ν)
c,d and proton

creation operators c
(π)†
a,b are responsible for transforming two

neutrons into protons.
To take into account the SRCs of two interacting nucleons,

the 0νββ-decay NME are calculated with nuclear wave
functions modified by a Jastrow correlation function [60,61],

F (r) = 1 − ce−ar2
(1 − br2), (11)

where r ≡ |x1 − x2| is the distance of two nucleons. This
is equivalent to modifying the decay operator, Ô0ν(r) →
F (r)Ô0ν(r)F (r). Therefore, the single integration over q in
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Eq. (10) now becomes twofold:∫
d3q

(2π )3
h(q)�(1)

μ (q)�μ(2)(q)eiq·(x1−x2)

⇒
∫

d3k

(2π )3
G̃(k)

∫
d3q

(2π )3
h(q)�(1)

μ (q)�μ(2)(q)ei(q+k)·(x1−x2).

(12)

Note that the Fourier transform of the correlation function,

G̃(k) ≡
∫

d3rF 2(r)e−ik·r , (13)

is used to treat the NME in the reciprocal spaces.

III. NUMERICAL DETAILS

The single-particle Dirac equation is solved by expand-
ing the wave functions in the three-dimensional harmonic
oscillator basis with 12 major shells [69]. A zero-range force
V

pp
0 δ(r1 − r2) is implemented in the particle-particle channel.

The pairing strength parameters V
pp

0 are −314.55 MeV fm3

for neutrons and −346.5 MeV fm3 for protons, determined
by reproducing the corresponding pairing gaps of separable
finite-range pairing force [70] in 150Nd (see Fig. 1 of Ref. [5]).
Note that only the like-particle pairing has been considered
here. The isovector or isoscalar proton-neutron pairing is
not included and the isospin symmetry is broken. On the
one hand, the problem with isospin symmetry has been
addressed in the QRPA [38,71] and the IBM calculations
[54], respectively. It is proposed that the (partial) restoration of
isospin symmetry can be achieved by imposing the condition
that the 2νββ Fermi matrix elements M2ν

F vanish. This has
been realized by adjusting the value of the renormalization
constant gT =1

pp in QRPA [44,45] or by modifying the mapped
fermion operators in IBM [55]. Although the Fermi matrix
elements M0ν

F are considerably reduced, the restoration of
isospin symmetry has only a limited effect on the total NMEs.
On the other hand, it has been known in the case of QRPA
that the effect of the inclusion of the isoscalar pairing is
significant. The renormalization parameter gT =0

pp is crucial
to the NME calculation, and its value is usually determined
by the requirement that the calculated 2νββ Gamow-Teller
matrix elements M2ν

GT reproduce their experimental values [72].
Recently, this issue has been revisited by taking the isoscalar-
pairing amplitude as a generator coordinate in GCM [73,74].
This effect turns out to quench the NME M0ν significantly by
a factor even larger than 50%. Inclusion of this effect in CDFT
is not trivial and is to be investigated as the next step of our
study.

The generator coordinates are chosen in the interval of
β2 ∈ [−0.4,0.6] with a step size β2 = 0.1. The empirical
values for the energy denominator Ed = 1.12A1/2 MeV (Ed �
13.72 MeV for A = 150), proposed by Haxton et al. [10] and
examined in Ref. [5], are used in the calculations of the NME
with light-neutrino exchange.

Three parametrizations for the Jastrow SRC function F (r)
[59–61]—Miller-Spencer (M-S), Argonne V18 (Argonne),
and CD Bonn (Bonn)—are discussed and the final results with

the Argonne parameters a = 1.59 fm−2, b = 1.45 fm−2, and
c = 0.94 are shown.

IV. RESULTS AND DISCUSSION

A. NME with light- and heavy-neutrino exchange

We now discuss in detail the NME for the 0νββ decay,
150Nd → 150Sm, mediated by the exchange of light and
heavy neutrinos, respectively.

The major results of this paper for the 0νββ NME, labeled
as “Rel. (SRC)” in Fig. 1, are given by the calculations
based on the full relativistic decay operator and the Jastrow
SRCs using the Argonne parametrization. The values for the
total NME are M0ν = 5.46 in the light-neutrino mechanism
and M0ν = 218.2 in the heavy-neutrino case. Furthermore,
the results obtained from the relativistic operator and the
nonrelativistic-reduced operator are compared side by side
(Rel. vs NR) in the figure. For each case, two sets of
values, obtained with and without considering the SRCs, are
distinguished by the color-filled and open bars, respectively.

According to the different coupling channels of �μ(q)
in Eq. (9), the total NME can be decomposed into vector
(VV), axial-vector (AA), axial-vector and pseudoscalar (AP),
pseudoscalar (PP), and weak-magnetism (MM) terms. Figure 1
shows the contributions of these individual terms to the total
NMEs in different cases. All of them are consistent with the
conclusion in Ref. [6] that the AA term exhausts more than
95% of the total NME. The values for the total NMEs are listed
in Table I.
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FIG. 1. NME M0ν for the 0νββ decay of 150Nd → 150Sm
mediated by (a) light- and (b) heavy-neutrino exchange, with the total
and the VV, AA, AP, PP, and MM components separately. Results are
calculated within the GCM + PNAMP scheme based on the CDFT
using both the full relativistic (Rel.) and the nonrelativistic-reduced
(NR) decay operators with (SRC) and without (bare) the Argonne-
parametrized SRCs.
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TABLE I. NME M0ν for the 0νββ decay of 150Nd → 150Sm,
calculated within the GCM + PNAMP scheme based on the CDFT
using both the full relativistic (Rel.) and nonrelativistic-reduced
(NR) decay operators with (SRC) and without (bare) the Argonne-
parametrized SRCs. The bold data are our recommended values.

NME (light-ν) NME (heavy-ν)

150Nd
Bare SRC Bare SRC

Rel. 5.59 5.46 365.3 218.2
NR 5.55 5.51 320.3 220.8

Comparing to our previous calculations for the light-
neutrino NME [5], the new results obtained here after imple-
menting the SRCs indicate that the SRC effects can be safely
neglected in this circumstance. Moreover, the calculation
confirms our previous conclusion that the nonrelativistic
reduction of the decay operator is a very good approximation
to the full operator in the light-neutrino NME, regardless of
whether the SRCs are included.

The heavy-neutrino NME, however, has a more sensitive
response to both the inclusion of the SRCs and the nonrela-
tivistic reduction of the decay operator. First, Fig. 1(b) shows
that the SRCs introduce a significant reduction in the total
NME up to 40%. This can be understood by considering the
short-range nature of the heavy-neutrino exchange process,
as we shall see in the detailed investigation later. Second,
the impacts of relativity on the heavy-neutrino NME manifest
clearly a dual feature; while the nonrelativistic approximation
results in a reduction of 12% in the bare NME, this effect
is completely compensated after the implementation of the
SRCs. The cancellation of relativistic effects mainly comes
from the PP and AP channels whose contributions have the
opposite signs. With the onset of the SRCs, the positive
relativistic effects in the PP channel are decreased while
the magnitude of the negative relativistic effects in the AP
channel are increased, resulting in the final elimination of the
difference in the total NME. The interplay between the effects
of SRCs and relativity in the heavy-neutrino NME will be
further discussed in the following.

B. Effects of SRCs

The disparate SRC responses of the light- and heavy-
neutrino 0νββ NME can be well understood by decomposing
the NME into its contributions from the various channels
i = VV, AA, AP, PP, and MM. For this purpose, we rewrite
the NME in Eq. (10) as

M0ν
i ≡ 4πR

g2
A

∫
q2dq

(2π )3
Hi(q)Ii(q). (14)

Here the q dependence in �μ(q) is put into the function Hi(q),
i.e.,

HVV(q) = h(q)g2
V (q2), (15a)

HAA(q) = h(q)g2
A(q2), (15b)

HAP(q) = h(q)gA(q2)gP (q2)q, (15c)

HPP(q) = h(q)g2
P (q2)q2, (15d)

HMM(q) = h(q)g2
M (q2)q2/4m2

p. (15e)

For simplicity, the other parts of the NME in Eq. (10) that
are not included in Hi(q) are defined as a new function Ii(q),
which is also channel specified and q dependent. With this
definition, the SRC-corrected NME, which contains a twofold
integration as in Eq. (12), can be calculated by simply replacing
Hi(q) with a modified function H src

i (q) in Eq. (14),

H src
i (q) = Hi(q) +

∫
q ′2dq ′

(2π )2
Hi(q

′)
1

2qq ′

∫ (q+q ′)2

(q−q ′)2
dug(u),

(16)

where g(u) = 4π
∫ ∞

0 [F 2(r) − 1]j0(kr)r2dr , where u ≡ k2,
F (r) is the aforementioned Jastrow SRC correlation function,
and j0(kr) is the spherical Bessel function.

The information regarding the decay mechanism of light-
or heavy-neutrino exchange is contained exclusively in the
function Hi(q) in Eq. (14) or in H src

i (q) after the modification
with the SRCs. Figure 2 shows the function Hi(q) (bare) in
comparison with the SRC-modified function H src

i (q) (SRC)
for the light- and heavy-neutrino cases, respectively. For
heavy-neutrino exchange [Figs. 2(b) and 2(d)], the H (q)
functions are altered significantly by the SRC correction. For
instance, the downward shift of HAA(q) is responsible for
the large-amplitude reduction of the AA matrix element by
the SRCs in Fig. 1(b). The curve of HMM(q) is also shifted
downward. In this case, it becomes negative in the low-q range,
leading to a cancellation of the SRC-corrected MM matrix
element after the q integration. On the contrary, Figs. 2(a) and
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)d()c(
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FIG. 2. The function Hi(q) with (SRC) and without (bare) the
Argonne-SRC modification for the VV, AA, AP, PP, and MM channels
in the 0νββ NME of light- and heavy-neutrino exchange, respectively.
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TABLE II. Normalized NME M0ν
sph for the 0νββ decay obtained with the particle-number projected spherical mean-field configurations

(βI
2 = βF

2 = 0) based on CDFT. Columns 2–8 list the calculated light-neutrino NME without (bare) and with three types of SRC, respectively.
Columns 9–15 show the counterparts in the case of heavy neutrinos. Also shown are the relative corrections src.

NME (light-ν) NME (heavy-ν)

Bare M-S src (%) Argonne src (%) Bonn src (%) Bare M-S src (%) Argonne src (%) Bonn src (%)

48Ca 3.67 3.26 11 3.62 1 3.74 −2 145.6 42.8 71 82.3 43 117.0 20
76Ge 7.61 6.36 17 7.48 2 7.84 −3 466.8 135.7 71 267.0 43 378.1 19
82Se 7.60 6.38 16 7.48 2 7.83 −3 454.0 132.7 71 261.4 42 369.0 19
96Zr 5.68 4.84 15 5.58 2 5.82 −2 307.3 89.0 71 177.7 42 250.5 18
100Mo 10.99 9.38 15 10.80 2 11.27 −3 596.3 174.1 71 346.7 42 487.4 18
116Cd 6.19 5.18 16 6.08 2 6.37 −3 378.3 111.3 71 222.7 41 311.2 18
124Sn 6.70 5.68 15 6.58 2 6.87 −3 381.2 111.7 71 224.6 41 313.8 18
130Te 9.55 8.03 16 9.38 2 9.82 −3 573.0 168.5 71 339.2 41 472.8 17
136Xe 6.62 5.58 16 6.51 2 6.80 −3 394.5 116.3 71 234.3 41 326.2 17
150Nd 13.26 11.11 16 13.00 2 13.62 −3 804.1 237.7 70 481.7 40 667.9 17

2(c) show only minor differences between the H (q) functions
with and without including the SRC correction in different
channels of the light-neutrino NME. This explains the reason
why the light-neutrino NMEs are merely affected by the SRCs
and can be easily interpreted in terms of the q dependence of
neutrino potential h(q). Unlike the constant h(q) in Eq. (8) for
heavy-neutrinos, the light-neutrino h(q) in Eq. (7) grows very
sharply when q → 0 and vanishes very rapidly as q increases.
As a result, for light neutrinos, the h(q) dominates the q
dependence of the H (q) function, diminishing the difference
between Hi(q) and H src

i (q). Therefore, the differences in the q
dependence of the neutrino potential h(q) cause the different
effects that the SRCs have on the light- and heavy-neutrino
NMEs.

To validate the above conclusions in a systematic way,
we generalize the NME calculations to several other 0νββ
candidate nuclei, by considering three parametrizations for the
SRC function F (r) in Eq. (11): M-S, Argonne, and Bonn, using
the parameters determined in Refs. [59–61]. The systematic
calculations are performed with the full relativistic decay
operator and the particle-number projected spherical wave
functions, where the normalized NMEs are provided as

M0ν
sph =

〈
βF

2 = 0
∣∣Ô0νP̂ NI P̂ ZI

∣∣βI
2 = 0

〉
∏

a=I,F

√〈
βa

2 = 0
∣∣P̂ Na P̂ Za

∣∣βa
2 = 0

〉 . (17)

Table II shows the calculated NMEs M0ν
sph for ten candidate

nuclei, ranging from 48Ca to 150Nd, for the 0νββ decay
mediated by light- and heavy-neutrino exchange. The relative
corrections src ≡ (M0ν

bare − M0ν
src)/M0ν

bare represent the SRC
effects in a quantitative way. Columns 2–8 of Table II list the
calculated light-neutrino NMEs without (bare) and with three
types of SRC, as well as the relative corrections src. Columns
9–15 show the counterparts in the case of heavy neutrinos.

Consistent with the full GCM calculation for 150Nd,
the inclusion of the Argonne-parametrized SRCs can re-
duce the light-neutrino NME by a factor of 1%–3% and
the heavy-neutrino NME by a factor of 40%–44%. In the case
of light-neutrinos, only the M-S SRCs provide a noticeable
correction of about 15%. Both the Argonne and the Bonn SRCs

have few influences on the total NME. For the heavy-neutrino
NME, the M-S and the Bonn SRCs introduce the most
significant (70%) and the most modest (15%–20%) quenching
effects, respectively. The correction given by the Argonne
parametrization lies in between.

In the calculation of the 0νββ NMEs for the heavy-neutrino
exchange mode, it is not surprising that the short-range effects
play a significant role. Besides the nucleon-nucleon SRCs, the
effect of finite nucleon size (FNS) also comes into play. The
FNS effect is considered in this work by employing the phe-
nomenological dipole nucleon form factors in the momentum
space [75,76]. The sensitivity of the heavy-neutrino NMEs
to the form factors has been manifested in Ref. [77] via the
calculation with both the phenomenological form factors and
the form factors deduced from the quark confinement model.
Despite that there exist only small differences between the two
types of the form factors, the resulting values for the NMEs
differ by almost one order of magnitude. Furthermore, it is
seen for the heavy-neutrino exchange mode in Ref. [77] as
well as in this paper that the absolute values of M0ν

AP and M0ν
PP,

which are originated from the nucleon pseudoscalar coupling
interaction, are comparable in size to that of M0ν

AA and M0ν
VV.

This fact, according to Ref. [77], emphasizes the importance of
the alternative 0νββ-decay mechanisms such as double charge
exchange of the pions in flight between the two nucleons [78].
A similar conclusion has also been drawn in the framework
of R-parity-violating supersymmetry that the pion-exchange
mechanism may dominate over the conventional two-nucleon
one if the 0νββ decay is mediated by heavy neutrinos [79,80].
Thus, it still needs more investigations as to the accurate
treatment of the FNS as well as the 0νββ-decay mechanisms
in the calculation with heavy neutrinos.

C. Effects of relativity

The relativistic correction that is missing in the nonrela-
tivistic approximation is of the order of (q/mp)4 at the lowest
level. In other words, the effects of this correction display
a high-q character. Consequently, relativity does not play an
important role in the calculation of light-neutrino NME owing
to the large suppression of h(q) in the intermediate- and high-q
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FIG. 3. The q-space distribution of the 0νββ NME with heavy-neutrino exchange. Comparisons are made between the calculations using
both the full relativistic (Rel.) and the nonrelativistic-reduced (NR) decay operators with (SRC) and without (bare) the Argonne-parametrized
SRCs. Particle-number projected spherical wave functions are used in this calculation for the initial nucleus 150Nd and the final nucleus 150Sm.

regions. There are small differences in the individual channels,
especially the PP and the AP channels, but the differences
almost cancel out in the total NME.

For the heavy-neutrino NME, the relativistic corrections
have a more significant effect. As we have seen in Fig. 1(b),
the contribution of the relativistic correction constitutes about
12% of the total NME without switching on the SRCs. In
this case the effects in the PP and other positive terms are
not entirely canceled out by the negative contribution arising
from the AP term. With the SRCs, however, the positive and
negative contributions from those individual terms become
compensated with each other as in the light-neutrino case. So
there are no remarkable effects left in the total NME.

The cancellation mainly comes from the PP and AP
channels. Figure 3(b) shows for the PP channel that the q-space
distribution of the heavy-neutrino NME, Hi(q)Ii(q)q2,i = PP,
is only modified slightly by the SRCs when the nonrelativistic
operator is used [“NR (bare)” vs “NR (SRC)”], while the dis-
tribution changes remarkably in the full relativistic calculation
[“Rel. (bare)” vs “Rel. (SRC)”]. As a result, the nonrelativisitc
NME in the PP channel is almost unchanged by the SRCs,
while the relativistic NME gets reduced, leading to a smaller
difference between the two NMEs, i.e., a relatively weak
relativistic effect. The opposite is found for the AP channel in
Fig. 3(c). The relativistic effects in this channel are enhanced
by the SRCs as the nonrelativisitc curve is modified more
significantly. The other channels, whose q-space distributions
are shown in Figs. 3(d)–3(f), have little contribution to the
relativistic effects. Notably, the relativistic corrections in
the AP and PP channels have the opposite signs. Therefore,
the decrease of the positive contribution and the increase of

the negative term diminish the overall (positive) effects that
appear in the bare NME. From the q-space distribution of
the total NME,

∑
i Hi(q)Ii(q)q2, shown in Fig. 3(a), it is

also clearly seen that the SRCs affect the relativistic NME
more significantly than the nonrelativistic one, resulting in
an overall reduction of the relativistic effect. For the sake of
simplicity, the functions plotted in Fig. 3 are extracted from
the NME-calculations with only spherical configurations of
the initial and final nuclear states. The features we discuss
here should apply to the complete GCM calculations without
loss of generality.

We have carried out systematic investigations of the
relativistic effects on the 0νββ-decay NMEs of other candidate
nuclei. The normalized NMEs of Eq. (17) are calculated
with the relativistic and nonrelativistic operators respectively,
and the relative corrections Rel. ≡ (M0ν

Rel. − M0ν
NR)/M0ν

Rel. are
extracted.

Shown in Table III are the values of Rel. obtained for
both the light- and heavy-neutrino exchange NMEs with
and without considering the SRC effects. Consistent with
the full GCM calculation for 150Nd, the error arisen from
the nonrelativistic approximation for the light-neutrino NME
is marginal. It increases or decreases the total NME by a
factor less than 5%. The relativistic corrections become more
significant in the heavy-neutrino case where we find that the
nonrelativistic calculations underestimate the bare NME by
10%–15% while they overestimate the SRC-corrected NME
by a factor of roughly 5%. Interestingly, the SRCs, by affecting
the PP and AP channels differently, not only reduce the
relativistic effects observed in the bare NMEs, but also reverse
the signs of net effects in most circumstances.
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TABLE III. Relativistic correction Rel. in the 0νββ-decay NME
with (SRC) and without (bare) the Argonne-parametrized SRCs.
Particle-number projected spherical mean-field wave functions (βI

2 =
βF

2 = 0) based on the CDFT are used in the calculation.

Rel. (light-ν) Rel. (heavy-ν)

Bare (%) SRC (%) Bare (%) SRC (%)

48Ca −2 −1 15 −2
76Ge −1 −3 10 −6
82Se −1 −3 11 −5
96Zr 1 −1 11 −2
100Mo 1 −1 11 −2
116Cd 1 −1 12 −3
124Sn −1 −2 10 −3
130Te −1 −2 10 −3
136Xe −1 −3 10 −3
150Nd 1 −0 13 −0

D. Comparison and discussion

Table IV displays our final NMEs for the 0νββ decay
of 150Nd → 150Sm in comparison with those from earlier
investigations: nonrelativistic EDF [56,58], PHFB [50,51],
QRPA by the Tübingen group (QRPA-Tü) [45], Skyrme QRPA
by the North-Carolina group (QRPA-NC) [42], and IBM [55].
Here, only the results obtained with consideration of nuclear
deformations are adopted for comparison. All results are
calculated with an unquenched axial-vector coupling constant
gA = 1.254 or a value close to it and using the radius parameter
R = 1.2A1/3 fm.

The Argonne parametrization is applied in our calculation
for the nucleon-nucleon SRCs, as well as in the listed results
of PHFB and IBM. The nonrelativistic EDF calculation
considers the SRCs via the unitary correlation operator
method, which, according to Ref. [54], gives similar effects
as the Argonne-parametrized Jastrow function. The QRPA-Tü
calculation uses the Bonn parametrization for the SRCs, while
the QRPA-NC calculation neglects the SRCs completely, both
of which are expected to result in a larger total NME than the
Argonne parametrization. However, according to Table II, the
discrepancies are negligible in the light-neutrino NME. Hence,
the possible uncertainties arisen from different ways of treating
the SRCs will not alter the conclusions of this comparison.

The EDF calculations are carried out within a similar
beyond-mean-field framework as ours and based on the nonrel-
ativistic Gogny functional D1S. By choosing the quadrupole
deformation β2 as the generator coordinate in the GCM
method, the final NME includes the shape mixing effect and
the resulting NME is M0ν = 1.71 [56]. This value increases
to M0ν = 2.19 when the pairing fluctuations are included
explicitly [58]. The results from the PHFB model are obtained
with a pairing plus quadrupole-quadrupole interaction, and the
ranges presented in the table are given by choosing a series
of different parametrizations for this interaction [50,51]. The
NME of QRPA-Tü is obtained by deformed QRPA calculations
based on a set of Woods-Saxon single-particle levels and using
the G matrix of the realistic CD Bonn potential as residual
interaction. Isospin symmetry is partially restored by enforcing
the Fermi matrix element M2ν

F = 0 [45]. In the QRPA-NC
calculations, modern Skyrme functionals (SkM*/modified
SkM*) are used in a self-consistent way for generating both the
HFB mean fields and the residual interactions in QRPA [42].
The IBM results are calculated by applying the interacting
boson model IBM-2 [55].

Among different nuclear models, our CDFT beyond-mean-
field calculation provides the largest values for the NMEs
of the 0νββ decay for 150Nd → 150Sm. In particular, our
result obtained for the light-neutrino NME is almost 3 times
as large as that of the density-functional method using the
nonrelativistic Gogny functional D1S for possible reasons
that have been discussed in detail in Refs. [5,6]. Other
nuclear models provide predictions for the NME that lie
between the two density-functional results. For the heavy-
neutrino mediated 0νββ process, the NME is not provided by
nonrelativisitc EDF, but our result is larger by a factor of 2
than those from PHFB and IBM. Moreover, we find that the
ratios of the heavy-neutrino NME to the light-neutrino NME
given by our calculations and by IBM are surprisingly similar,
which are around 40, while the PHFB calculations lead to a
smaller ratio of around 30.

The results of double-β-decay experiments, recently re-
leased by the NEMO-3 Collaboration, have set a lower
limit of T 0ν

1/2 > 2.0 × 1022 yr (90% C.L.) for the half-life

of 150Nd [3]. With the computed phase-space factor G0ν =
63.03 × 10−15 yr−1 [4], it is straightforward to derive the
constraints on the fundamental parameters in f (mi,Uei)
according to Eq. (1). Combining the experimental data and

TABLE IV. NME for the 0νββ decay of 150Nd → 150Sm mediated by light- and heavy-neutrino exchange. The column “CDFT” shows the
results of this work in bold face, which are calculated within the GCM + PNAMP scheme based on the CDFT, in comparison with the results
from other model calculations. With the latest data for the half-life T 0ν

1/2 > 2.0 × 1022 yr (90% C.L.) [3] and the calculated phase-space factor
G0ν = 63.03 × 10−15 yr−1 [4], the limits for the effective neutrino masses |〈mν〉|(eV) and |〈m−1

νh
〉|−1(×106 GeV) are derived for each model

calculation using Eq. (1).

CDFT EDF PHFB QRPA-Tü QRPA-NC IBM

light-ν NME 5.46 1.71/2.19 2.49–3.31 3.37 3.14/2.71 2.67
|〈mν〉| <1.7 <5.4/4.2 <3.7–2.8 <2.7 <2.9/3.4 <3.4
heavy-ν NME 218.2 — 77.3–97.8 — — 116.0∣∣〈m−1

νh

〉∣∣−1
>11.4 — >4.0–5.1 — — >6.1
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TABLE V. The NMEs M0ν and the limits imposed the effective
neutrino masses |〈mν〉| (eV) and |〈m−1

νh
〉|−1 (×106 GeV) based

on the present CDFT calculation. The lower limits of the half-
life T 0ν

1/2(×1022 yr, 90% C.L.) for the 0νββ decay are from the
most recent measurements [2,3,81–89], and the phase-space factors
G0ν(×10−15 yr−1) are from Ref. [4].

T 0ν
1/2 G0ν Light-ν Heavy-ν

M0ν |〈mν〉| M0ν
∣∣〈m−1

νh

〉∣∣−1

48Ca 5.8 24.81 2.71 <3.2 84.5 >4.7
76Ge 3000 2.363 6.04 <0.2 209.1 >82.1
82Se 36 10.16 5.30 <1.0 189.3 >16.9
96Zr 0.92 20.58 6.37 <3.7 220.9 >4.5
100Mo 110 15.92 6.48 <0.4 232.6 >45.4
116Cd 17 16.70 5.43 <1.1 201.1 >15.8
124Sn 0.005 9.04 4.25 <114 168.5 >0.2
130Te 280 14.22 4.89 <0.3 193.8 >57.1
136Xe 10 700 14.58 4.24 <0.06 166.3 >306.5
150Nd 2.0 63.03 5.46 <1.7 218.2 >11.4

the CDFT results for the NMEs, our predictions for the limits
of neutrino masses are |〈mν〉| < 1.7 eV for light neutrinos
and |〈m−1

νh
〉|−1 > 11.4 × 106 GeV for heavy neutrinos. The

predictions by other nuclear models are shown in Table IV.
By comparison, the CDFT beyond-mean-field results impose
the most stringent constraints on the effective masses of both
light and heavy neutrinos.

Table V lists our final NMEs M0ν of the 0νββ decay in
ten candidate nuclei for both the light- and the heavy-neutrino
exchange modes. According to the lower limits of the half-
life T 0ν

1/2 from the most recent measurements [2,3,81–89] and
the phase-space factors G0ν [4], the limits on the effective
neutrino masses |〈mν〉| and |〈m−1

νh
〉|−1 are further estimated,

respectively. So far, the most stringent constraints are set by
the case of 136Xe, which implies that |〈mν〉| < 0.06 eV for
light neutrinos and |〈m−1

νh
〉|−1 > 3.065 × 108 GeV for heavy

neutrinos. Finally, the CDFT results are compared with the
NMEs M0ν recently obtained from other nuclear models in
Fig. 4. Our results are among the largest values of the existing
calculations in most cases, except that the NMEs M0ν for
124Sn and 130Te are considerably smaller than those given by
the nonrelativistic EDF calculation. The agreements with the
EDF results are remarkable in the nuclei other than 124Sn,
130Te, and 150Nd.

V. SUMMARY

The 0νββ-decay NMEs have been calculated within the
framework of beyond-mean-field CDFT by considering the
underlying mechanisms of both light- and heavy-neutrino
exchange. In particular, by investigating in detail the effects of
relativity and SRCs in 150Nd, we come to the following con-
clusions. (1) Both effects are negligible for the light-neutrino
NME, which indicates that the nonrelativistic reduction to
the decay operator is a good approximation and the SRC
correction can be safely neglected. (2) The heavy-neutrino
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FIG. 4. Comparison of the NMEs M0ν of the 0νββ decay from
different model calculations, which include the EDF [58], IBM
[55], PHFB [50,51], QRPA-NC [42], QRPA-Tü [45], and CSM [15]
calculations, as well as the CDFT calculation in this paper with
the GCM + PNAMP wave functions and the Argonne-parametrized
SRCs. The CDFT results without considering the SRC effect [6] is
also shown for the light-neutrino exchange mode by the dashed line
in panel (a).

NME is more sensitive to both the relativistic correction
and the inclusion of SRC than in the light-neutrino case.
Therefore, it should be treated more carefully. (3) For the
SRCs, the M-S and the Bonn parametrizations, respectively,
introduce the most and the least quenching effects to the total
NME, while the Argonne parametrization lies in between.
Finally, according to our results for the total NMEs in
ten candidate nuclei, combined with the observed lower
limits on the 0νββ-decay half-lives, the predicted strongest
limits on the effective masses are |〈mν〉| < 0.06 eV for
light neutrinos and |〈m−1

νh
〉|−1 > 3.065 × 108 GeV for heavy

neutrinos.
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