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New concept for the pairing anti-halo effect as a localized wave packet of quasiparticles
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The pairing anti-halo effect is a phenomenon that a pairing correlation suppresses a divergence of nuclear
radius, which happens for single-particle states with orbital angular momenta of l = 0 and 1 in the limit of
vanishing binding energy. While this effect has mainly been discussed in terms of Hartree-Fock-Bogoliubov
(HFB) theory, we here use a three-body model and provide its new intuitive concept as a localized wave packet
for a quasiparticle, that is, a coherent superposition of a weakly bound and continuum wave functions due to a
pairing interaction. We show that the one-particle density in the three-body model can be directly expressed with
such quasiparticle wave functions, which have a close analog to wave functions in the HFB approximation.
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I. INTRODUCTION

It has been known well that, in the limit of vanishing
binding energy, the root-mean-square radius diverges for a
wave function in a short range potential well with orbital
angular momenta of l = 0 and 1 [1,2]. Halo nuclei, which
are characterized by an extended density distribution [3,4],
have been interpreted to be due to such divergence with
a single-particle wave function for l = 0 and 1 [5]. See
Refs. [6–8] for recent review articles on halo nuclei.

For even-even nuclei, the pairing correlation among valence
neutrons plays a decisive role in the structure of weakly bound
nuclei [9–12]. Bennaceur, Dobaczewski, and Ploszajczak
have demonstrated that the root-mean-square radius does
not diverge for even-even nuclei as the pairing correlation
largely suppresses the halo structure in odd-mass nuclei, which
has been referred to as the pairing anti-halo effect [13]. In
Refs. [14–16], we have argued that the odd-even staggerings
observed in reaction cross sections [17,18] can be interpreted
in terms of the pairing anti-halo effect (see also Refs. [19,20]).

The pairing anti-halo effect has been studied using mainly
the Hartree-Fock-Bogoliubov (HFB) method [13,21–23]. In
this approach, the pairing anti-halo effect occurs because the
quasiparticle energy remains a finite value even when a single-
particle energy vanishes [13]. A key issue for this argument is
that the pairing gap needs to be finite in the zero binding limit.
Many HFB calculations have actually shown that it is indeed
the case [13–16,21–23], leading to a suppression of the halo
structure in even-even systems.

Although the HFB method provides a clear mathematical
interpretation of the pairing anti-halo effect, its physical
mechanism is less transparent. The aim of this paper is to
propose a more intuitive idea on the pairing anti-halo effect,
using a three-body model with a core nucleus and two valence
neutrons. This model is formulated to include many-body cor-
relations beyond the HFB model, providing a complementary
opportunity to clarify the concept based on the HFB method.
It can thus be used to test whether the pairing anti-halo effect
is specific only to the mean-field treatment or not.

The paper is organized as follows. In Sec. II, we first
show how the pairing anti-halo effect is realized in the HFB
method. We then introduce the three-body model and discuss
the pairing anti-halo effect in this model. In Sec. III, we
introduce a quasiparticle wave function within the three-body
model and investigate its structure. We show that a coherent
superposition of a weakly bound state and continuum states
is a key ingredient of the pairing anti-halo effect. We then
summarize the paper in Sec. IV.

II. PAIRING ANTI-HALO EFFECT

A. Hartree-Fock-Bogoliubov method

Before we discuss the pairing anti-halo effect with a three-
body model, we first show how it is understood in the HFB
method. This is also to clarify the notation used in this paper.

For a two-body system which consists of a valence neutron
and a core nucleus, we assume that the wave function for the
relative motion obeys the Schrödinger equation given by

ĥ ψnljm(r) =
[
− h̄2

2μ
∇2 + V (r)

]
ψnljm(r) = εnlj ψnljm(r),

(1)

where μ is the reduced mass and V (r) is the potential between
the valence neutron and the core nucleus. We have assumed
that V (r) is local and has spherical symmetry so that the wave
function is characterized by the orbital angular momentum l,
the total angular momentum j , and its z component m, as
well as the radial quantum number n. Here, εnlj is the energy
eigenvalue.

For simplicity, we consider only an s wave solution of
this Schrödinger equation. The radial wave function unlj (r),
defined with the spin-angular function Yj lm(r̂), by

ψnljm(r) = unlj (r)

r
Yj lm(r̂), (2)

behaves asymptotically as

unlj (r) ∼ exp(−αnlj r), (3)
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where αnlj is defined as αnlj =
√

2μ|εnlj |/h̄2 . The expectation
value of r2 then reads

〈r2〉 ∼ 1

2α2
nlj

= h̄2

4μ|εnlj | , (4)

which apparently diverges in the limit of εnlj → 0.
In many-body systems with the pairing correlation, one

may consider the HFB equations given by [9,24,25]
(

ĥ − λ �(r)
�(r) −ĥ + λ

)(
Unljm(r)
Vnljm(r)

)
= Enlj

(
Unljm(r)
Vnljm(r)

)
, (5)

where ĥ is the mean-field Hamiltonian given in Eq. (1), �(r)
is the pairing potential, and λ is the chemical potential. We
have again assumed that both the mean-field potential in ĥ and
the pairing potential �(r) are spherical and local functions
of r . In the HFB equations, Eq. (5), Enlj is a quasiparticle
energy and Unljm(r) and Vnljm(r) are the upper and the lower
components of a quasiparticle wave function, respectively.
These are orthonormalized according to∫

d r[U ∗
α (r)Uβ(r) + V ∗

α (r)Vβ(r)] = δα,β, (6)

where α and β are shorthand notations for (njlm). The one-
particle density ρ(r) is given in terms of Vnljm(r) by

ρ(r) =
∑

n

∑
j,l,m

|Vnljm(r)|2. (7)

In the BCS approximation, Vnljm(r) is expressed by a
product of the occupation factor vBCS

nlj and the single-particle
wave function, ψnljm(r) [9,26]. In contrast, in the HFB, the
asymptotic form of the radial part for the lower component,
defined similarly to Eq. (3), reads [9,25]

vnlj (r) ∼ exp(−βnlj r), (8)

for l = 0, where βnlj is given as βnlj =
√

2μ(Enlj − λ)/h̄2

(see also Ref. [27], which discusses the asymptotic form of a
Cooper pair in weakly bound nuclei). The expectation value
of r2 with this wave function reads

〈r2〉 ∼ 1

2β2
nlj

. (9)

Notice that the quasiparticle energy Enlj is given in the BCS
approximation as Enlj =

√
(εnlj − λ)2 + �2

nlj , where �nlj is
the pairing gap. This implies that Enlj behaves as Enlj ∼ �nlj

in the zero binding limit with λ ∼ εnlj ∼ 0. The expectation
value of r2 then reads

〈r2〉 ∼ h̄2

4μ�nlj

, (10)

which remains finite as long as the pairing gap �nlj is finite.
This is nothing but the pairing anti-halo effect proposed in
Ref. [13]. An essential point for the pairing anti-halo effect is
that the single-particle energy εnlj is replaced by the quasipar-
ticle energy Enlj − λ, reflecting the pairing correlation, which
then induces a shrinkage of wave function according to Eq. (8).

B. Three-body model

In order to achieve a simple but still physical concept for
the pairing anti-halo effect, let us now introduce a three-body
model which consists of the core nucleus and two valence
neutrons. The Hamiltonian for the three-body model reads
[11,12]

H = ĥ(1) + ĥ(2) + vpair(r1,r2) + p1 · p2

mc

, (11)

where the single-particle Hamiltonian ĥ is the same as the one
in Eq. (1) and vpair(r1,r2) is a pairing interaction between the
two valence neutrons. The last term in this equation is the
two-body part of the recoil kinetic energy of the core nucleus,
whose mass is denoted by mc.

Using the eigenfunctions of the single-particle Hamiltonian
ĥ, that is, the wave functions ψnljm(r) in Eq. (1), the two-
particle wave function for the ground state of the three-body
system with spin parity of Jπ = 0+ is given as

�(r1,r2) =
∑

n,n′,l,j

Cnn′lj�
(2)
nn′lj (r1,r2), (12)

with

�
(2)
nn′lj (r1,r2) = [ψnlj (r1)ψn′lj (r2)]J=0, (13)

=
∑
m

(−1)j−m

√
2j + 1

ψnljm(r1)ψn′lj−m(r2). (14)

[For simplicity of the notation, we do not use here the anti-
symmetrized basis [10]. The anti-symmetrization is realized
by setting Cnn′j l = Cn′nlj ≡ C̃nn′lj /

√
2 in Eq. (12)]. The

one-particle density constructed with this two-particle wave
function is then given by [10]

ρ(r) =
∫

d r ′|�(r,r ′)|2, (15)

=
∑
n,n′,ñ

∑
j,l,m

C∗
nn′ljCñn′lj

2j + 1
ψ∗

nljm(r)ψñljm(r). (16)

Using the spherical reduction for the wave functions [see
Eq. (2)], one can show that the one-particle density is expressed
as [10]

ρ(r) = 1

4π

∑
n,n′,ñ

∑
j,l,m

C∗
nn′ljCñn′lj φ

∗
nlj (r)φñlj (r), (17)

where φnlj is defined as φnlj (r) = unlj (r)/r .
The upper panel of Fig. 1 shows a one-particle density

in the three-body model. To draw this figure, we consider
the 24O nucleus (24O = 22O +n + n), and employ a con-
tact pairing interaction, vpair(r,r ′) = −gδ(r − r ′), with g =
1374 MeV fm3, together with the cutoff energy of Ecut = 10
MeV. The continuum states are discretized with the box
boundary condition with the box size of Rbox = 30 fm. We
use a Woods-Saxon potential for the mean-field potential V (r)
with the radius parameter of R = 3.5 fm and the diffuseness
parameter of a = 0.67 fm [12]. The depth of the Woods-Saxon
potential is somewhat arbitrarily chosen to be V0 = −34.56
MeV, which has the 2s1/2 state at −0.275 MeV. For simplicity
of the discussion, we include only l = 0 in Eq. (12), for
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FIG. 1. Upper panel: The correlated (the solid line) and the
uncorrelated (the dashed line) one-particle densities obtained with
the three-body model for 24O. Only the s-wave single-particle states
are included in the calculations. In the uncorrelated case, the two
valence neutrons occupy the 2s1/2 state at ε = −0.275 MeV, while
they are scattered into the continuum states in the correlated case. A
zero-range pairing interaction is employed, which yields the ground
state energy of Eg.s. = −2.46 MeV. Lower panel: The decomposition
of the correlated density into three components. The bb component
(the dashed line) corresponds to the one in which both of the two
valence neutrons occupy the bound 2s1/2 state, while in the bc
component shown by the dot-dashed line, one of them is scattered
to a continuum state. The cc component shown by the dotted line
corresponds to the one in which both of the valence neutrons are
scattered into continuum states. The total correlated density is also
shown by the solid line.

which the 1s1/2 state is assumed to be occupied by the core
nucleus and is explicitly excluded in the summation. In this
model space, there are one bound state, 2s1/2, at ε = −0.275
MeV, and five discretized s-wave continuum states up to
10 MeV. This calculation yields the ground state energy of
Eg.s. = −2.46 MeV.

The dashed line in the figure shows the one-particle
density in the absence of the pairing interaction, which is
proportional to the square of the 2s1/2 wave function, that is,
ρ(r) = |φ2s1/2 (r)|2/4π . Since the 2s1/2 state is a weakly bound
s-wave state, the resultant density has an extended long tail.
In contrast, in the correlated density distribution shown by
the solid line, the density distribution is considerably shrunk
compared to the uncorrelated density. The root-mean-square
radii are

√
〈r2〉 = 5.18 and 8.83 fm for the correlated and the

uncorrelated cases, respectively. This is a clear manifestation
of the pairing anti-halo effect discussed in the previous
subsection.

The lower panel of Fig. 1 shows a decomposition of
the correlated density. Here, we decompose it into three

components, that is, (i) bb: both n and ñ in Eq. (17) belong
to the weakly bound state, 2s1/2; (ii) bc: one of them belongs
to the bound state while the other belongs to a continuum
state; and (iii) cc: both of them belong to continuum states.
The bb component in fact has the same radial profile as
the uncorrelated density shown in the upper panel, having
an extended tail. The bc component behaves similarly to the
bb component inside the potential, while it has the opposite
sign to the bb component in the tail region. Because of this,
the density in the inner part is enhanced while the bb and bc
components are largely canceled out in the outer part. One
can thus find that the scattering of a particle to the continuum
spectrum due to the pairing interaction plays an essential role
in the pairing anti-halo effect. The cc component, on the other
hand, provides only a small portion of the correlated density,
even though it is not negligible. This component is positive in
a wide range of radial coordinates, as one can see in the figure.

III. QUASIPARTICLE WAVE FUNCTION
IN THE THREE-BODY MODEL

In order to get a deeper insight into the pairing anti-halo
effect in the three-body model, we next re-express the one-
particle density in a different form. To this end, we first notice
that the two-particle wave function, Eq. (12), is expressed as

�(r1,r2) =
∑
n′

∑
l,j

[ψ̃n′lj (r1)ψn′lj (r2)]J=0, (18)

with

ψ̃n′ljm(r) ≡
∑

n

Cnn′lj ψnljm(r). (19)

The one-particle density, Eqs. (16) and (17), is then given as

ρ(r) =
∑

k

∑
j,l,m

1

2j + 1
|ψ̃kljm(r)|2 (20)

= 1

4π

∑
k

∑
j,l

∣∣∣∣ ũklj (r)

r

∣∣∣∣
2

, (21)

where ũklj (r) is defined as

ũklj (r) ≡
∑

n

Cnklj unlj (r). (22)

Notice that this is in a similar form to the one-particle
wave function in the Hartree-Fock-Bogoliubov approximation,
especially if one expands the quasiparticle wave function,
Vkljm, on the Hartree-Fock basis, ψnljm [26,28,29]. For this
reason, we shall call ψ̃n′ljm(r) a “quasiparticle” wave function
hereafter. Notice that the quasiparticle wave functions ψ̃nljm

are not orthonormalized, just the same as the HFB wave
functions Vnljm [see Eq. (6)].

The solid line in Fig. 2 shows the radial dependence of
the quasiparticle wave function for the weakly bound 2s1/2

state, that is, ũklj (r) with (klj ) = 2s1/2, for the three-body
Hamiltonian introduced in the previous subsection. The dashed
and the dot-dashed lines show its decomposition into the bound
state and the continuum state contributions, respectively. They

024304-3



K. HAGINO AND H. SAGAWA PHYSICAL REVIEW C 95, 024304 (2017)

0 10 20 30
r   (fm)

-0.4

-0.2

0

0.2

0.4
qu

as
ip

ar
ti

cl
e 

 w
f 

  (
fm

-1
/2

)

total
bound state
continuum

FIG. 2. The radial part of the quasiparticle wave function,
ũ2s1/2 (r), defined by Eq. (22), for the weakly bound 2s1/2 state.
The solid line shows the total wave function, while the dashed
and the dot-dashed lines denote its bound state and continuum state
contributions as defined by Eq. (23), respectively.

are defined as

ũklj (r) = ũ
(b)
klj (r) + ũ

(c)
klj (r) (23)

=
∑

n=2s1/2

Cnklj unlj (r) +
∑

n=cont.

Cnklj unlj (r). (24)

One can see that the main feature of this quasiparticle
wave function is similar to the one-particle density shown
in Fig. 1(b). That is, the bound state and the continuum state
contributions are largely canceled with each other outside the
potential while the two components contribute coherently in
the inner region. We notice that the localization due to a coher-
ent superposition of continuum states is the same mechanism
as a formation of a localized wave packet. This is an essential
ingredient of the pairing anti-halo effect, that is, a formation
of localized wave packet induced by a pairing interaction.

A question still remains concerning why the superposition
is in such a way that the tail part of the bound wave function
is suppressed. In order to clarify this point, let us restrict
ourselves only to two single-particle states: one is the weakly
bound 2s1/2 state at εb = −0.275 MeV and the other is the low-
est discretized s-wave continuum state. For the potential given
in the previous section, the latter state is at εc = 0.51 MeV for
Rbox = 30 fm. Figures 3(a) and 3(b) show the radial part of
the wave functions for these states. The solid and the dashed
lines correspond to the bound state and the scattering states,
respectively. Figure 3(b) shows the radial wave functions φ(r),
while Fig. 3(a) shows u(r) = rφ(r). In the inner part, the two
wave functions behave similarly to each other, because the
absolute value of the single-particle energies, |ε|, is small for
both the states, so that V (r) − ε ∼ V (r). In the outer region
where the potential V (r) disappears, the two wave functions
should behave differently. Since they behave similarly in the
inner region, the two wave functions have to have opposite sign
in the outer region in order to fulfill the orthogonal condition.

With these two single-particle states, we assume, for
simplicity, that the two-particle wave function is given by

�(r1,r2) = Cbb ψb(r1)ψb(r2) + Cbc A[ψb(r1)ψc(r2)], (25)
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FIG. 3. (a),(b) The radial component of the wave functions for
the weakly bound 2s1/2 state (the solid line) and the lowest discretized
s-wave state at ε = 0.51 MeV (the dashed line). Panel (b) shows the
radial wave function φ(r) while panel (a) shows u(r) ≡ rφ(r). (c)
Integrand of the matrix element for the zero-range pairing interaction
between the components [ψb(r)ψb(r ′)] and A[ψb(r)ψc(r ′)], where
A is the anti-symmetrizer and ψb and ψc are the wave functions for
the weakly bound state and the lowest continuum state, respectively.

where ψb and ψc are the bound and the scattering wave
functions, respectively, and A is the anti-symmetrizer.
The coefficients Cbb and Cbc are obtained by solving the
eigenvalue equation,(

εbb F
F εbc

)(
Cbb

Cbc

)
= E

(
Cbb

Cbc

)
, (26)

where εbb and εbc are the diagonal components of the
three-body Hamiltonian including the pairing matrix elements
(in the present case, εbb and εbc are −2.16 and −0.53
MeV, respectively). F is the matrix element of the pairing
interaction between the two configurations, that is,

F = − g

4π

∫ ∞

0
r2dr [φb(r)φb(r)]∗[φb(r)φc(r)]. (27)

The integrand is shown in Fig. 3(c). As one can see, the
integrand is positive, except for large values of r , for which
the contribution is negligibly small, and thus F is negative for
an attractive pairing interaction with g > 0.

The eigenvalues E and the corresponding eigenvectors of
Eq. (26) read

E± = 1
2 {(εbb + εbc) ±

√
(εbc − εbb)2 + 4F 2}, (28)
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(
Cbb

Cbc

)
= N

(
F

E± − εbb

)
, (29)

where N is the normalization factor. For the lower eigenvalue
E− the quantity E− − εbb reads

E− − εbb = 1
2 {(εbc − εbb) −

√
(εbc − εbb)2 + 4F 2}, (30)

which is apparently negative. Since F and E− − εbb are
both negative, Cbb and Cbc thus have the same sign to
each other [see Eq. (29)], leading to the quasiparticle wave
function which has a suppressed tail as shown in Fig. 2. This
feature remains the case even when higher continuum states
and/or the configuration with ψc(r1)ψc(r2) are included in the
two-particle wave function.

There is a freedom for the phase of single-particle wave
functions to take a positive value or a negative value at the
origin. In Fig. 3(b), the two s1/2 wave functions are taken to
be positive at the origin. We notice that the shrinkage of the
halo wave function is independent of the choice of the sign
of the wave function. That is, if one takes the negative sign
for the continuum wave function at the origin, the sign of
the pairing matrix F turns to be positive so that Cbb and Cbc

have a different sign from one another. However, the one
particle density as well as the quasiparticle wave function
remain the same, since the sign of the amplitude Cbb in Eq. (29)
and that of the single-particle wave function, ψc(r2), in Eq. (25)

are simultaneously altered, whereas the sign of Cbc remains the
same.

IV. SUMMARY

We have discussed the pairing anti-halo effect from a
three-body model perspective. In contrast to the conventional
understanding based on a Hartree-Fock-Bogoliubov (HFB)
wave function, the present study provides a simple and intuitive
concept for the pairing anti-halo effect. Namely, we have
found that an essential ingredient of the pairing anti-halo
effect is a coherent superposition of a loosely bound and
continuum states due to a pairing interaction, which leads to
a localized wave function as a wave packet. The coherence of
the wave functions results in an enhancement of one-particle
density in the inner region while the long tail of a weakly
bound wave function is largely canceled out with continuum
wave functions. The present study offers a complementary
understanding for the pairing anti-halo effect to the one with
the HFB approximation. In fact, we have shown that the
one-particle density with a three-body model can be cast into
a similar form of the density in the Hartree-Fock-Bogoliubov
approximation. We have pointed out that such “quasiparticle”
wave functions show the shrinkage effect as a consequence of a
coherent superposition of weakly bound and continuum states.
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