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Background: Symmetries are a powerful way to characterize nuclear wave functions. A true dynamical
symmetry, where the Hamiltonian is block-diagonal in subspaces defined by the group, is rare. More likely
is a quasidynamical symmetry: states with different quantum numbers (i.e., angular momentum) nonetheless
sharing similar group-theoretical decompositions.
Purpose: We use group-theoretical decomposition to investigate backbending, an abrupt change in the moment
of inertia along the yrast line, in 48,49,50Cr: prior mean-field calculations of these nuclides suggest a change
from strongly prolate to more spherical configurations as one crosses the backbending and increases in angular
momentum.
Methods: We decompose configuration-interaction shell-model wave functions using the SU(2) groups L (total
orbital angular momentum) and S (total spin), and the groups SU(3) and SU(4). We do not need a special basis
but only matrix elements of Casimir operators, applied with a modified Lanczos algorithm.
Results: We find quasidynamical symmetries, albeit often of a different character above and below the
backbending, for each group. While the strongest evolution was in SU(3), the decompositions did not suggest a
decrease in deformation. We point out with a simple example that mean-field and SU(3) configurations may give
very different pictures of deformation.
Conclusions: Persistent quasidynamical symmetries for several groups allow us to identify the members of
a band and to characterize how they evolve with increasing angular momentum, especially before and after
backbending.
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I. INTRODUCTION

Backbending is an abrupt change in the nuclear moment of
inertia along the yrast line [1], seen in nuclides ranging from
22Ne [2] through the actinides [3]. In a rotational band with
constant moment of inertia the γ transition energy Eγ (I ) =
E(I ) − E(I − 2) grows steadily with angular momentum I ,
but in backbending Eγ (I ) abruptly falls and then rises again
with a different slope, as illustrated in Fig. 1 for 48,49,50Cr.

There are three general explanations for the change in the
moment of inertia [1]

(1) a change in deformation;
(2) a change from superfluid to normal phase;
(3) a change in alignment of quasiparticles.

Of course, backbending may be due to a mixture of these
explanations; furthermore, it may not be the same for all
nuclei [4].

Because backbending occurs mostly frequently in heavy
nuclei, most calculations of backbending have used mean-
field and related methods [5], such as cranked Hartree-Fock-
Bogoliubov [6–9] and the (angular-momentum) projected shell
model [10]. A favorite target of theory, however, has been
backbending in the chromium isotopes [11–16], because in

addition to mean-field and similar studies [4,17,18] one can
fully diagonalize the nuclear Hamiltonian in the 1p-0f (“pf ”)
shell using configuration-interaction methods [19–26].

We will discuss some of these prior investigations in more
detail below. We are especially motivated, however, by recent
assertions [24] that that for 48Cr the lower subband (below the
backbending) can be associated with a well-defined intrinsic
state, but not the upper subband (above the backbending). We
follow this up by decomposing the nuclear wave functions
into subspaces defined by group Casimir operators, that is,
operators which are invariant under all elements of a Lie group
and its related algebra [27–29]. We see strong characteristics
of quasidynamical symmetry, that is, consistent fragmentation
of the wave function with increasing I ; in most cases we see a
change as one crosses the backbending, and in SU(3) we see
significant evolution of the fragmentation in the upper subband
as I increases.

As described below in Sec. II B, we use an efficient
method to decompose a wave function according to subspaces
labeled by eigenvalues of Casimir operators. We choose
total orbital angular momentum L and total spin S, both
of which belong to group the group SU(2), as well as the
groups SU(3) and SU(4). We limit ourselves to two-body
Casimirs.
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FIG. 1. Backbending in 48−50Cr, as signaled by the evolution of
Eγ (I ) = E(I ) − E(I − 2). The distinct shapes/colors represent, to
the best of our ability to identify, different configurations along the
yrast as discussed in detail in the text: (red) solid squares for the
lower subband, (blue) dotted triangles for the upper subband, and a
black “×” and (green) striped circle for upper and lower “intruder”
levels, respectively. The calculated values are in good agreement with
experiment (not shown).

II. MICROSCOPIC METHODS

A. Configuration-interaction shell model

We carry out calculations in the framework of the
configuration-interaction (CI) shell model [30–32], which ex-
presses the nuclear Hamiltonian as a large-dimensioned matrix
in a basis of shell-model Slater determinants (antisymmetrized
products of single-particle states), recasting the many-body
Schrödinger equation as a matrix eigenvalue problem,

Ĥ |�i〉 = Ei |�i〉. (1)

We find the low-lying eigenpairs, via the Lanczos algo-
rithm, using the BIGSTICK configuration-interaction code [33].
Because the Hamiltonian is rotationally invariant, the total
magnetic quantum number M (or Jz, the z component of the
total angular momentum) is conserved and one can easily
construct a basis with fixed M; this is called an M-scheme
basis.

Although ab initio calculations for 0p-shell nuclides are
now routine, for the chromium isotopes we use the modified G-
matrix interaction for the 1p-0f (pf ) shell GXPF1 [34], which
assumes a frozen 40Ca core and valence particles restricted
to the 1p-0f single-particle space. Like other high-quality
semiphenomenological interactions in the pf shell, calculated
spectra using GXPF1 have good agreement with experiment
(which we do not show to avoid further cluttering our figures).
We also made decompositions in the same space using the
monopole-modified Kuo-Brown effective interaction version
KB3G [35] and the modified GXPF1 interaction, version
A, [36] and found very similar results.

B. Group decomposition and quasidynamical symmetry

Modern computers allow us to carry out large scale calcu-
lations previously unimaginable. The M-scheme dimensions
for 48,49,50Cr in the 1p-0f valence space are 2 million, 6
million, and 14.6 million, respectively, but fully converged
low-lying states can be computed in a matter of minutes
on a laptop, and leadership-class configuration-interaction
calculations have basis dimensions of the order of 1010. This
prompts the question, do we really need that many numbers?

One attempt to simplify the description of nuclei is
through dynamical symmetries, where the Casimirs of a group
commute with the nuclear Hamiltonian; then the eigenstates
of the Hamiltonian will also be eigenstates of the Casimirs
of the group, and one can just choose a basis within a single
irreducible representation (irrep) of the group [27–29], which
is the smallest possible subspace where all group elements are
block-diagonal. (The simplest, though still nontrivial, example
of this would be a J -scheme basis, where the states have fixed
total angular momentum J rather than M . J -scheme bases
are an order of magnitude smaller than M-scheme bases, but
because each J -scheme state is a linear combination of M-
scheme states, computing matrix elements is correspondingly
more difficult and the Hamiltonian matrix is significantly
denser.) The most prominent choice is the group SU(3), from
which rotational bands arise naturally [37,38], or its extension
the symplectic group Sp(3,R). We loosely say we decompose
the wave functions into group irreps, although in our SU(3)
and SU(4) examples we use only one Casimir operator for the
decomposition, and hence technically in those cases we are
combining results from different irreps. In principle one could
fully decompose into true irreps, but we chose not to, partly
to avoid in using three-body Casimirs for SU(3) as well as to
keep our already busy figures from becoming less readable.

Alas, it has long been known that the nuclear force, in
particular the spin-orbit [39–41] and pairing [42] components,
strongly mixes SU(3). But not all is lost: while the wave
functions are distributed or fragmented across many irreps, in
many cases the patterns are strongly coherent and consistent
across members of a band [39,41]. This is the concept of a
quasidynamical symmetry [43–45] and helps to explain why
SU(3) dynamical symmetry works well phenomenologically
even though it fails microscopically.

To illuminate quasidynamical symmetry, we decompose a
wave function into subspaces labeled by Casimir eigenvalues.
Given a wave function |�i〉, which is an eigenstate of the
nuclear many-body Hamiltonian (1), and a group Casimir Ĉ
with eigenpairs

Ĉ|z,α〉 = g(z)|z,α〉, (2)

where z is a quantum number or numbers labeling subspaces
of the group [for example, for SU(2) I is a quantum number
and g(I ) = I (I + 1); note that, for consistency with many
past papers on backbending, we use I rather than J for
nuclear angular momentum] and α labels distinct states in
the subspace, that is, solutions of (2) degenerate in g(z), we
want to find the fraction F(z) of the wave function |�i〉 in the
subspace labeled by z, that is,

F(z) =
∑
α∈z

|〈z,α|�i〉|2. (3)

Luckily, there is an efficient method to find F(z) using the
Lanczos algorithm [41,46] that does not require finding all
states in the irrep. This method only finds the magnitude in
each subspace, not the phase. In the next section we plot F(z),
the fraction of the wave function in the subspace labeled by z,
versus either z [or g(z), in the case of SU(3) and SU(4), where
z represents several labels] as bar graphs for states along the
yrast band.
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The group Casimirs we use are total orbital angular
momentum L̂2 labeled by L, total spin Ŝ2 labeled by S, and
the two-body Casimirs of SU(3) and SU(4). The irreps of
SU(3) are labeled by the quantum numbers λ and μ via their
Young tableaux [28], and which can be interpreted in terms
of the standard deformation parameters β and γ (see Fig. 2 in
Ref. [47] or Fig. 1 in Ref. [42]). We use only the two-body
Casimir,

C2(SU(3)) = 1
4 ( �Q · �Q + 3L2), (4)

where

Qm =
√

4π

5

(
r2

b2
Y2m(�r ) + b2p2Y2m(�p)

)
, (5)

the (dimensionless) so-called Elliott quadrupole operator,
whose matrix elements are nonzero only within a major
harmonic oscillator shell; here �r and �p refer to the standard
angles θ,φ in spherical coordinates for the position and
momentum vectors, respectively. This Casimir has eigenvalues
λ2 + λμ + μ2 + 3λ + 3μ (in the above b is the harmonic
oscillator length parameter). One could distinguish between
different combinations of λ and μ by including the third-
order Casimir, which is numerically more challenging. We
discuss interpretation of the SU(3) decomposition in terms of
deformation in Sec. III D.

Wigner suggested [48,49] looking for an SU(4) symmetry
built upon SUS(2) × SUT (2), sometimes called a supermulti-
plet. The irreps of SU(4) are labeled by the quantum numbers
P , P ′, and P ′′, which arise from the Young tableaux [28,49],
found by the Casimir operator

C2(SU(4)) = �S2 + �T 2 + 4
∑
i,j

(�Si · �Sj )( �Ti · �Tj ), (6)

where the sum is over particles labeled by i,j , and which has
eigenvalues [28,49],

P (P + 4) + P ′(P ′ + 2) + (P ′′)2 (7)

In the highest weight states, P = S and P ′ = T . Despite
its early history, SU(4) has recently been neglected, in part
because it is badly broken in nuclei, for example in the sd and
pf shells [50]. It has been primarily investigated in its role
in the Wigner energy [51]. Although we confirm breaking of
SU(4), we also demonstrate strong quasidynamical symmetry.

Group decompositions of the wave functions are of course
not experimentally observable. Prior work, however, in L and
S decomposition comparing phenomenological and ab initio
calculations demonstrated remarkable consistency [46].

III. RESULTS

Throughout we attempt, as much as possible, to use a
consistent labeling scheme of levels; e.g, for levels in the lower
subband we use (red) solid circles for the excitation energies
and (red) solid bars for the decomposition; for levels in the
upper subband we use (blue) dotted triangles for excitation
energies and (blue) dotted bars for decomposition; and finally
for “intruder” states, that is, levels which do not belong to
either the upper or lower subbands, we use black ×’s and
black cross-hatched bands and (green) striped circles/bars.
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FIG. 2. Calculated spectrum of 48Cr. The x axis (angular mo-
mentum I ) is scaled as I (I + 1) so as to emphasize rotational bands.
The labeling of levels, i.e., (red) squares, (blue) triangles, and (green)
circles, correspond to the same (initial) state as in panel (a) of Fig. 1.
According to our decompositions, the yrast state at I = 10, marked by
as “×,” belongs to neither the lower nor upper subbands. Bars indicate
levels found in our calculation but which we do not decompose.

In all of this we group together levels via quasidynamical
symmetry, that is, by inspecting the decomposition into irreps.
Using group decomposition and quasidynamical symmetry,
we attempt to extend members of a band beyond the yrast in
order to identify band crossings; we were able to do this for
48,50Cr but not 49Cr.

Although we attempt to give a reasonable summary of the
existing literature, for purposes of comparison we emphasize
those whose interpretations mostly clearly can be illuminated
by our calculations, namely those which focus on shape
deformations, and less so on K quantum numbers (the Jz value
in the intrinsic frame) and quasiparticle excitations which,
while of course relevant, are harder to connect to our group
decompositions.

A. 48Cr

We begin with backbending in 48Cr [11,12]. Fig. 2 shows
the spectrum, spaced by I (I + 1) so that rotational bands are
linear and easily picked out. In fact we see here and for our
other two isotopes that the yrast bands are not ideal rotors
but positioned between vibrational (linear in I ) and rotational
(quadratic in I ).

Caurier et al. [19] compared a cranked Hartree-Fock-
Bogoliubov (CHFB) calculation with the finite range Gogny
force against a full pf -shell diagonalization. Both calculations
yielded similar backbending and excellent agreement in
B(E2) values, quadrupole and magnetic dipole moments,
and orbital occupations; the CHFB calculation showed an
axially deformed rotor up to the backbend, while the yrast
states after the backbend are more spherical and with the
triaxiality parameter γ less well-defined. Because full space
configuration-interaction (CI) calculations do not have an
intrinsic frame, the deformation cannot be computed directly,
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FIG. 3. Decomposition of wave functions of 48Cr into compo-
nents of total L (orbital angular momentum). The fill (and color)
scheme is matched to the levels shown in Fig. 2, i.e., (red) solid
bars: lower subband; (blue) dotted: upper subband; and (black) cross-
hatched and (green) striped: intruder levels. Here and throughout
we superimpose levels which have the same I but which belong to
different subbands.

but Caurier et al. argued that, given the good agreement
between CI and CHFB in other quantities, the CHFB inter-
pretation is likely robust.

Later calculations support this picture. A subsequent CHFB
calculation [4] arrived at similar results, i.e., consistent axial
deformation up to the backbending, and then rapid transition
to a spherical nucleus. These authors emphasized the lack of a
level crossing in the single-particle orbits, which is associated
with backbending in heavier nuclides, and the importance of
careful treatment of the residual interaction.

Calculations with the “projected shell model” or PSM [17],
which uses a basis of deformed quasiparticle-quasihole states
projected out with good angular momentum and particle
number, also described the backbending of 48Cr in terms
of a spherical band crossing a deformed band; furthermore,
they identified two crossings: the first around I = 6, where
a two-quasiparticle (2-qp) band crosses the ground state 0-qp
band, which does not show up as backbending; and the second,
around I = 10, where a 4-qp band crosses the 2-qp band.

Finally the hybrid “projected configuration interaction”
(PCI) [24]—which is similar to the projected shell model but
using deformed particle-hole states (that is, explicitly number-
conserving), rather than quasiparticle-quasihole states, which
are then projected out to good angular momentum and the
Hamiltonian is diagonalized in this basis—yielded results
similar to that of Caurier et al. (Another germane difference
is that the PSM used a schematic interaction tuned to
reproduce levels within their calculations, while the PCI uses
semi-realistic shell-model interaction fitted within the full
configuration space.) In particular they emphasized that levels
below, but not above the backbending are dominated by a
single deformed intrinsic state.

Now we turn to our group decompositions for 48Cr. The
L decompositions, Fig. 3, at first glance look like a intrinsic

0
0.2
0.4

0
0.2
0.4

0
0.2
0.4

0
0.2
0.4

0 1 2 3 40
0.2
0.4

0 1 2 3 4
S

Fr
ac

tio
n 

of
 W

av
ef

un
ct

io
n

I=0

I=2

I=4

I=6

I=8

I=10

I=12

I=14

I=16

I=18

FIG. 4. Decomposition of wave functions of 48Cr into compo-
nents of total S (spin). The fill (and color) scheme is the same as in
Fig. 3.

shape being spun up: the distribution of L is similar for all
the yrast states, though shifted up as total angular momentum
I increases. But there are subtleties. For example, the ground
state is dominated by L = 1, while the states I = 2,4,6, . . .
have their strength centering roughly around L = I . Above
the backbend at I ≈ 10, this shifts; now the strength centers
roughly around L ≈ I − 2.

This pattern is of course echoed in the S decompositions
(Fig. 4): below the backbend, the decomposition is dominated
by S = 1, with some S = 0 which decreases, and S = 2
which increases slightly, while after the backbend S = 2
dominates with S = 1,3 subdominant. Of course, in this space
the maximum S is 4, which means when one reaches I = 18
the minimum L is 14; this helps to explain the shifting
pattern in the L decomposition. Nonetheless, notice that the
I = 18 state is significantly different, particular in S. This
is easily understood: the ground state band is predominantly
(0f7/2)8 [19] but the maximum angular momentum for that
configuration is I = 16.

The SU(3) decompositions, Fig. 5, also show a pronounced
change around the backbending. SU(3) is highly fragmented,
as is well known for the pf shell [41]. After the backbend,
the distribution of SU(3) is much more narrow and in fact
narrows further with increasing I . K-band termination may be
contributing to this evolution, with some SU(3) (λ,μ) dropping
out due to their maximum possible L values. On the other
hand, the L and S decompositions do not change much within
the uppper subband, until one reaches the termination of the
(0f7/2)8 configuration at I = 16.

Previous work on SU(4) only showed its fragmenta-
tion [50], while we appear to be the first to demonstrate
quasidynamical symmetry in SU(4) in the pf shell, as in
Fig. 6. The SU(4) decomposition also changes dramatically at
the backbend, although the spread does not evolve as it does for
SU(3). Again the abrupt shifts at I = 18 are easily interpreted
as the termination of the (0f7/2)8 configuration band at I = 16.
Interestingly, the change in the SU(4) decomposition at the
backbend is more pronounced for 48Cr than for our other two
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FIG. 5. Decomposition of wave functions of 48Cr into SU(3)
irreps, labeled by eigenvalues of the two-body SU(3) Casimir (see
text for definition). The fill (and color) scheme is the same as in
Fig. 3.

nuclides. This is suggestive of studies investigating the relative
role of isovector and isoscalar pairing in N = Z and N �= Z
nuclides, as in [51].

By using the decompositions, we were able to identify levels
which are not part of the yrast band but which do appear to
be continuations of the component subbands. For example,
we were able to trace the continuation of the lower subband
up through I = 12, as well as trace the upper subband down
to I = 8. Furthermore we can see the actually yrast level at
I = 10, marked by × in Fig. 2 and cross-hatched bars in
Figs. 3–6, belongs to neither the lower nor the upper subbands.

0

0.2

0.4

0

0.2

0

0.2

0

0.2

0 10 20 300

0.2

0 10 20 30

I=0

I=2

I=4

I=6

I=8

I=10

I=12

I=14

I=16

SU(4) Casimir Eigenvalue

Fr
ac

tio
n 

of
 W

av
ef

un
ct

io
n

I=18

FIG. 6. Decomposition of wave functions of 48Cr into SU(4)
irreps, labeled by eigenvalues of the two-body SU(4) Casimir (see
text for definition). The fill (and color) scheme is the same as in
Fig. 3.
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FIG. 7. Calculated spectrum of 49Cr. The x axis (angular mo-
mentum I ) is scaled as I (I + 1) to emphasize rotational bands. The
labeling of levels, i.e., red squares, blue triangles, and green circles,
corresponds to the same (initial) state as in panel (b) in Fig. 1.
Bars indicate levels found in our calculation but which we do not
decompose.

B. 49Cr

Figure 7 shows the spectrum of 49Cr spaced by I (I + 1).
The yrast band of 49Cr has been measured up to 31/2− [13,14],
which is the highest angular momentum we calculate. It was
previously calculated in the full pf model space using shell-
model CI [23], where the authors explicated the results in
terms of Nilsson diagrams and detailed effects of the residual
interaction; other calculations emphasize the role of K bands
and quasiparticle excitations of the intrinsic state [18,25,26].

As with all three of our nuclides, the L decompositions,
Fig. 8, increase steadily with I ; similar to what we saw with
48Cr, the L decomposition for each angular momentum I
centers around L ≈ I − 1/2, while in the upper subband it
centers around L ≈ I − 3/2.

The spin decompositions, Fig. 9, show strong (but distinct)
quasidynamical symmetry below and above the backbend, and
could be approximated by taking the spin decompositions of
48Cr and shifting up by 1/2 unit of angular momentum (the L
decomposition also strongly parallel that of 48Cr): below the
backbend the yrast band is dominated by S = 1/2,3/2, while
above the backbend S = 3/2,5/2 dominate.

Also like 48Cr, the SU(3) decomposition of 49Cr, Fig. 10,
is relatively coherent below the backbend, while above the
backbend the distribution becomes narrower and has more
pronounced evolution.

Figure 11 shows strong quasidynamical symmetry in SU(4),
especially in the lower subband, but with significant coherence
in the upper band as well; while there is a definite change across
the backbend, it is not as dramatic as for 48Cr. Here we were
not able to identify continuations of the subbands beyond their
locations on the yrast band.

In our figures we include the low-lying I = 1/2,3/2 levels
which, though part of the yrast band, are not the yrast band
heads; in the S and SU(4) decompositions they clearly are
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grouped with the rest of the low-lying yrast levels, but they
have nontrivial differences in the other decompositions, most
markedly in SU(3).

C. 50Cr

The yrast band of 50Cr has been measured up to Iπ =
18+ [14–16], as shown in Fig. 12, with backbending seen
around I ≈ 10 and a second backbending around I ≈ 16
which is easily interpreted as the terminus of levels generated
within the (0f7/2)10 configuration. The origin of the change at
the backbending is somewhat unclear within CI calculations;
Martı́nez-Pinedo et al. [22] interpret it as a shift from strongly
prolate to weakly oblate, similar to what is seen in 48Cr, yet
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nents of total S (spin). The fill (and color) scheme is the same as in
Fig. 8.
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FIG. 10. Decomposition of wave functions of 49Cr into SU(3)
irreps. See text for the definition of the SU(3) Casimir. The fill (and
color) scheme is the same as in Fig. 8.

Zamick et al., looking at the sign of the quadrupole moments
in just the (0f7/2)10 configuration space [21], argue instead the
upper subband could belong to a high-K prolate band.

Similar to the work on 48Cr [19], calculations using
the configuration-interaction (CI) shell model were com-
pared directly with cranked Hartree-Fock-Bogoliubov cal-
culations [22], and with similar results: both CI and CHFB
showed backbending at I ≈ 10 and I ≈ 16; the latter is where
pure (0f7/2)10 configurations must terminate. In particular they
find 50Cr to be axially symmetric and prolate below I ≈ 10,
after which it becomes oblate and weakly triaxial, until it
reaches I ≈ 16 where, again at the termination of the (0f7/2)10

configuration, it becomes strongly triaxial.
While the decomposition in L, shown in Fig. 13, shows

significant shifts at the two backbending points, the de-
compositions in S, Fig. 14, and SU(4), Fig. 16, are more
subtle than for our other two nuclides: in the run-up to the
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FIG. 11. Decomposition of wave functions of 49Cr into SU(4)
irreps. See text for the definition of the SU(4) Casimir. The fill (and
color) scheme is the same as in Fig. 8.
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FIG. 12. Calculated spectrum of 50Cr. The x axis (angular
momentum I ) is scaled as I (I + 1) to emphasize rotational bands.
The labeling of levels, i.e., (red) squares, (blue) triangles, and (green)
circles, correspond to the same (initial) state as in panel (a) of Fig. 1.
Bars indicate levels found in our calculation but which we do not
decompose.

backbend, at I = 6,8, the decompositions of both subbands
are nearly identical, but as I increases up to and past the
backbend at I = 12, the decompositions of the upper subband
show a stronger evolution. Like the other nuclides, in the
SU(3) decomposition, Fig. 15, we see strong quasidynamical
symmetry in the lower subband, with strong changes at the two
backbends, and the fragmentation becoming more narrow.
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momentum). Much like Fig. 3, the fill (and color) scheme is matched
to the levels shown in Fig. 12, i.e., (red) solid bars: lower subband;
(blue) dotted: upper subband; and (green) striped: “intruder,” that
is, outside of the (0f7/2)10 configuration space. Here and throughout
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of Fig. 13.

D. SU(3) and deformations

For a given state wholly in an SU(3) irrep labeled by
(λ,μ) one can map it to a deformed shape and determine
its deformation parameters β and γ ; in particular, the value
of the two-body SU(3) Casimir is proportional to β2 [47].
This has been used in prior work to examine SU(3) breaking
by the pairing and spin-orbit forces [40,42]. The broad
fragmentations we see in SU(3) is similar to the broad
distributions of β and γ values in the presence of strong
spin-orbit splitting in Figs. 2 and 3 of [40].

It is therefore tempting to interpret our SU(3) decomposi-
tions as telling us something about deformation. By eye one
can see, and we confirmed in detail, the expectation value of
C2(SU(3)) does not change much along the yrast line for each
of our nuclides; by the above mapping this would suggest
the average value of β2 also remains near constant. This,
however, contradicts prior work using mean-field frameworks
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suggesting 48,49,50Cr are all strongly prolate, axially symmetric
rotors below the backbend, while above the backbend they
become nearly spherical and are less well interpreted in terms
of a single intrinsic shape [4,19,22,24,26]. (Although we
do not show it, we confirmed this behavior with a separate
Hartree-Fock code using shell-model interactions.)

It is important to note that a deformed Slater determinant
does not necessarily correspond to a single SU(3) irrep. Rather,
it can be fragmented across many group irreps, as previously
demonstrated in [52], where a projected Hartree-Fock state had
a much stronger overlap with the full configuration-interaction
ground state wave function than the highest-weight SU(3)
state, driven predominantly by the single-particle spin-orbit
force.

We can provide a class of simple examples which show the
mapping of SU(3) labels (λ,μ) to deformation can conflict with
a simple mean-field picture. Consider a state which consists
of a filled single-j shell, for example, 48Ca where one fills the
0f7/2 shell with neutrons. This is a single Slater determinant
and is a manifestly spherical shape: the expectation value of
the quadrupole tensor vanishes. Yet if one decomposes it using
the SU(3) two-body Casimir, it has only a 1% fraction in the
spherical (λ,μ) = (0,0) irrep; the rest of the wave function is
broadly spread across many SU(3) irreps. This result is not
unique to 48Ca, but occurs whenever one fills a j -shell but
not its spin-orbit partner. The fact that one has large SU(3)
mixing is not surprising, given the spin-orbit splitting, but it
also suggests that a picture of deformation can depend strongly
upon whether it is determined from a mean-field solution or
from an SU(3) decomposition.

IV. CONCLUSIONS

In order to illuminate backbending in chromium isotopes,
we carried out group decomposition of shell model CI wave
functions, using total orbital angular momentum L, total
spin S, and the two-body Casimir operators of SU(3) and
SU(4). We saw strong quasidynamical symmetry in all cases,
often with a significant shift in the fragmentation as one
crosses from the lower to the upper subband. Above the
backbend the SU(3) distribution shows the largest evolution
with increasing I , a narrowing of the distribution but with a
nearly constant average. On one hand large expectation values
of the SU(3) two-body Casimir eigenvalues suggest persistent
large deformation, but mean-field calculations consistently
depict the yrast states at high I have decreasing deformation.
We note that this clash of deformation pictures, that is,
mean-field versus SU(3), can be found even in the very
simple example of a simple spherical Slater determinant, a
filled j -shell, which also has a broad distribution across many
deformed SU(3) irreps.

In contrast, spin S and SU(4) show less evolution in the sub-
bands, both below and above the backbending. SU(4) shows
the most pronounced shift in decomposition at the backbend in
48Cr, much less so in our other two nuclides; nonetheless, we
have demonstrated pervasive SU(4) quasidynamical symmetry
in the pf shell. Overall the L decomposition simply shows a
steady and coherent increase in angular momentum.

Of course, the pf shell space is limited and the GXPF1
interaction is phenomenological and heavily renormalized
relative to the “real” nuclear force. While there has been work
decomposing ab initio wave functions for very light nuclei
into SU(3) irreps [53], quasidynamical symmetry has not been
deeply investigated in such calculations. We only note that one
previous investigation, in the L and S decomposition only [46]
in p-shell nuclei, showed remarkable congruence between
results from phenomenological and ab initio interactions.

While it would be interesting to apply these same analyses
to heavier nuclei with backbending, the fact that tractable
model spaces for such nuclei generally exclude spin-orbit
partners makes exact decomposition impossible. One could
consider pseudospin, pseudo-SU(3), and other approximate
symmetries, but this we also leave to future work.
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