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Pairing in neutron matter: New uncertainty estimates and three-body forces
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We present solutions of the BCS gap equation in the channels 1S0 and 3P 2 –3F 2 in neutron matter based on
nuclear interactions derived within chiral effective field theory (EFT). Our studies are based on a representative
set of nonlocal nucleon-nucleon (NN) plus three-nucleon (3N) interactions up to next-to-next-to-next-to-leading
order (N3LO) as well as local and semilocal chiral NN interactions up to N2LO and N4LO, respectively. In
particular, we investigate for the first time the impact of subleading 3N forces at N3LO on pairing gaps and
also derive uncertainty estimates by taking into account results for pairing gaps at different orders in the chiral
expansion. Finally, we discuss different methods for obtaining self-consistent solutions of the gap equation.
Besides the widely used quasilinear method by Khodel et al., we demonstrate that the modified Broyden method
is well applicable and exhibits a robust convergence behavior. In contrast to Khodel’s method it is based on a
direct iteration of the gap equation without imposing an auxiliary potential and is straightforward to implement.
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I. INTRODUCTION

A quantitative understanding of nuclear superfluidity is
central for a wide range of phenomena in nuclear systems,
from the structure of nuclei [1,2] to the cooling of neutron
stars [3–5]. In the inner crust of neutron stars, neutron-rich
nuclei form a crystal lattice surrounded by a background liquid
of neutrons in a superfluid state (see, e.g., Ref. [6] for a
review on superfluidity in neutron stars). At densities up to
0.5n0, with saturation density n0 = 0.16 fm−3, neutrons form
Cooper pairs in the 1S0 channel since this channel provides the
largest attractive interaction at low momenta. Deeper inside
the neutron star, in the outer core, the density increases and at
Fermi momenta of kF ∼ 1.5 fm−1 the 1S0 interaction becomes
repulsive and the pairing gap closes in this channel. At these
densities the dominant attraction is in the spin-triplet P wave
with total angular momentum J = 2, which is coupled to
the 3F 2 channel. Beyond this density it is not obvious to
what extent present nucleon-nucleon (NN) interactions are
well constrained by scattering data. Such uncertainties of the
interaction are reflected in results for the paring gaps.

Chiral effective field theory (EFT) provides a systematic
expansion for nuclear forces [7,8], connecting the symmetries
of quantum chromodynamics to the interactions between
nucleons. Recently, there have been efforts to derive also local
chiral interactions [9,10] as well as semilocal interactions
using local regulators for long-range pion exchanges while
regulating the short-range contact interactions nonlocally in
momentum space [11,12]. These efforts resulted in sets of NN
interactions at different orders in the chiral expansion for a
given regulator, which enable more systematic estimates of
theoretical uncertainties due to the input nuclear forces.
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Neutron pairing gaps in uniform matter have been investi-
gated in the BCS approximation based on chiral interactions,
e.g., in Refs. [13–19]. The BCS approximation is particularly
useful to test the sensitivity to nuclear forces. However, we
emphasize that there are important contributions beyond the
BCS approximation due to screening and vertex corrections,
which lead to significant changes to the BCS gaps (for a
discussion and further references see Ref. [6]). These are not
the focus of the present work and are not included in the
uncertainties studied here.

In the present paper, we study the zero-temperature pairing
gap in neutron matter in the 1S0 and 3P 2 –3F 2 channel based
on new local and semilocal NN interactions derived within
chiral EFT up to (next-to-next-to-leading order) N2LO and
N4LO, respectively. We also employ an improved method
for estimating uncertainties due to the truncation in nuclear
forces [11,12], which is not based on parameter variation but
on an order-by-order analysis in the chiral expansion. For the
solution of the gap equation, we show that the modified version
of Broyden’s method for solving general nonlinear equations
developed in Ref. [20] is a powerful method. In combination
with the usual method of Khodel et al. [21], it allows us to
assess systematically the iterative convergence. Furthermore,
we study the impact of three-nucleon (3N) forces on the pairing
gap at the level of normal-ordered two-body contributions.
Taking advantage of recent developments [22,23] we consider
for the first time N3LO 3N contributions to the pairing
interaction.

This paper is organized as follows. In Sec. II we discuss
details of our calculation, in particular the two independent
methods for solving the nonlinear gap equation and the
treatment of 3N forces. In Sec. III we present our results
for the pairing gap in neutron matter in the 1S0 and 3P 2 –3F 2

channel. We show results for the pairing gap using a free
and a Hartree-Fock (HF) single-particle spectrum and also
for the effective neutron mass as a function of density for all
interactions used. Finally, we summarize and give an outlook
in Sec. IV.
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II. CALCULATIONAL DETAILS

A. BCS gap equation

The pairing gap is a 2 × 2 matrix in single-particle spin
space obeying the BCS gap equation at zero-temperature [24]

�αα′ (k) = −
∑
β,β ′

k′

〈kαα′|V |k′ββ ′〉 �ββ ′(k′)

2
√

ξ 2(k′) + 1
2 Tr[��†](k′)

. (1)

The greek indices indicate the single-particle spin states |±〉,
Tr the trace in spin space and ξ (k) = ε(k) − μ labels the
single-particle energy; e.g., for a free spectrum ε(k) = k2/(2m)
with the neutron mass m, relative to the chemical potential μ.
Practically, Eq. (1) is solved in a partial-wave representation.
We review the decomposition in Appendix A in order to clarify
the conventions and approximations used. As shown in the
appendix the angular integration can be carried out analytically
if the pairing gap in the energy denominator in Eq. (1) is
averaged over all spacial directions:

�2(k) ≡ 1

2
Tr[��†]

av.−→ 1

2

∫
d�k

4π
Tr[��†]

=
∑
l,S,J

∣∣�J
lS(k)

∣∣2
. (2)

In this approximation, introduced in Ref. [25], the partial-wave
decomposed gap equation takes the form [21]

�J
lS(k) = −

∫ ∞

0

dk′ k′2

π

∑
l′

il
′−lV J

ll′S(k,k′)�J
l′S(k′)√

ξ 2(k′) + ∑
l̃,S̃,J̃

∣∣�J̃
l̃S̃

(k′)
∣∣2

.

(3)

The different angular momenta l,l′ = |J ± 1| are coupled in
the spin-triplet channel, whereas in the singlet channel we
obtain l′ = l. We note that due to the energy denominator the
solutions of �J

lS are generally coupled, even if the interaction
does not couple these channels. However, in practice Eq. (3)
can be solved to a very good approximation independently for
fixed quantum numbers S and J , because they are dominated
by the channel in which the pairing interaction is most
attractive at a given density. This and angle averaging are
commonly used approximations. The latter is exact for the
1S0 channel and has been shown in Refs. [21,25] to be a
good approximation when used for the average value of the
gap at the Fermi surface. We note that the angle-averaging
approximation tends to slightly overestimate the gap according
to the discussion in Section 5 of Ref. [21]. Studying anisotropic
and nondegenerate gaps with respect to the M quantum number
would require keeping its angle dependence as in Refs. [21,26].

In this paper, we solve Eq. (3) in pure neutron matter for
the most attractive channels of the nuclear interactions: the
spin-singlet channel 1S0 and the triplet channel 3P 2 –3F 2. The
other channels in the triplet P wave, 3P 0 and 3P 1, as well as in
higher partial waves are less attractive or even repulsive at the
densities considered in this work. We have checked that this
also holds with the inclusion of 3N forces. Following Eq. (2)
we plot the total gap �(kF) =

√∑
l �

2
l (kF) evaluated on the

Fermi surface to estimate the pairing energy.

B. Solving the gap equation

The nonlinear gap equation (3) can be solved itera-
tively until a self-consistent solution is obtained. However,
such approaches are computationally challenging and require
more advanced algorithms. The simplest and straightforward
method that takes directly the right-hand side of Eq. (3) I [· · · ]
in the mth iteration step,

�
(m)
out = I

[
�(m)

in

]
with (4a)

�(m+1)
in = �

(m)
out , (4b)

converges poorly, if at all. Instead, it typically converges to the
(mathematically also valid) trivial solution � = 0, especially
if the nontrivial solution is small. We refer also to Ref. [27]
for a general discussion of iterative methods in the context of
nuclear physics. In Eqs. (4) we define a gap vector � having
as components the partial-wave �l sampled each on a Gauss
momentum mesh with Np points. The basis size of this vector
is Np (spin singlet) and 2Np (spin triplet), respectively.

In addition to methodical convergence issues, also the
evaluation of the integral in Eq. (3) requires some care. Since
the pairing gap is typically a small energy scale, the integrand
exhibits a strong peak structure for momenta close to the
Fermi surface. This quasisingularity of the BCS gap equation
has to be treated carefully when evaluating the integral
numerically. We observe that Gauss quadrature converges only
if multiple dense integration meshes concentrated around the
peak position are well distributed over the entire interval (see
also Ref. [13]). The presence of the peak makes the integral
nevertheless quite sensitive to variations in �(kF) and can
complicate obtaining a stable self-consistent solution. In order
to address these convergence issues, various methods have
been applied in the literature, for example the quasilinear and
linear methods of Khodel et al. [21] and Krotscheck [28],
or the instability analysis based on in-medium Weinberg
eigenvalues [19,29].

In order to assess the methodical convergence of our results
we employ two independent algorithms. These are discussed in
detail in the next sections. As it is often referred to, we quantify
briefly the term convergence. Let us consider a general solver
that returns the vectors �(m)

in and �
(m)
out after the mth iteration,

specified by an update rule, for instance of the simple form
Eq. (4b). The solver is stable if the norm of the difference,

F(m) = �
(m)
out − �(m)

in , (5)

decreases with m, eventually becomes smaller than an arbitrary
fixed threshold value and finally a self-consistent solution is
found if |F(m)| = 0. In practice, a small but finite threshold
serves as a break condition for the self-consistency cycle. We
check the break condition for 5 to 10 additional iterations once
it is fulfilled.

1. Khodel’s method

The method of Khodel et al. was first presented in
Refs. [21,30] and has since then been widely used in nuclear
physics (see, e.g., Refs. [17,19] for recent applications). It is
based on a reformulation of the gap equation (3) such that the
peak of the integrand, causing the large sensitivity to �(kF), is
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removed. This is achieved by rewriting the potential Vll′ (k,k′)
in a separable part

φll′(k) = Vll′(k,kF)

vll′
and φT

ll′(k
′) = Vll′ (kF,k

′)
vll′

, (6)

where the definition vll′ = Vll′ (kF,kF) 
= 0 normalizes
φll′(kF) = φT

ll′(kF) = 1, and a remainder

Wll′ (k,k′) = Vll′ (k,k′) − vll′φll′(k)φT
ll′(k

′), (7)

which vanishes when at least one argument is on the Fermi
surface. This property is key to removing the peak. Inserting
the remainder (7) in the gap equation (3) gives

�l(k) +
∑

l′
il

′−l

∫
dk′k′2

π
Wll′ (k,k′)

�l′(k′)√
ξ 2(k′) + �2(k′)

=
∑

l′
Dll′φll′(k), (8)

with the coefficients defined as

Dll′ = −il
′−lvll′

∫
dkk2

π

φT
ll′(k)�l′(k)√

ξ 2(k) + �2(k)
. (9)

The partial-wave gap �l in Eq. (8) can be written as linear
combinations of shape functions χ

l1l2
l (k)

�l(k) =
∑
l1,l2

Dl1l2χ
l1l2
l (k), (10)

and thus one obtains an equation for the momentum depen-
dence of the partial-wave gaps

χ
l1l2
l (k) +

∑
l′

il
′−l

∫
dk′k′2

π
Wll′ (k,k′)

χ
l1l2
l′ (k′)√

ξ 2(k′) + �2(k′)

= δll1φl1l2 (k). (11)

Since Wll′ vanishes by construction if at least one argument is
on the Fermi surface, the integral in Eq. (11) is dominated by a
momentum region where �(k) is far less important than ξ (k).
The shape functions therefore only depend weakly on �(k).
This allows us to treat Eq. (11) to a good approximation as
quasilinear; that means by approximating �(k) by a constant.
Consequently, the momentum dependence of the gap con-
verges rapidly in Khodel’s method and almost independently
of their magnitudes (9) due to the separation (10).

In practice, the iteration scheme works as follows [21]:
each momentum dependence is sampled on a suitable Gauss
mesh to ensure convergence of the quadrature. Given �(k)
from the previous iteration, one solves Eq. (11) for the shape
functions χ

l1l2
l (k) by matrix inversion. For the first iteration a

small constant value, e.g., �(k) = 1 keV, serves as a suitable
starting point. We checked that our final results are independent
of that choice. The coefficients Dll′ can then be determined via
Eq. (9) combined with Eq. (10) using a nonlinear solver such
as the Newton-Raphson method. With the new Dll′ and χ

l1l2
l (k)

Eq. (10) updates the partial-wave gaps �l(k). It follows directly
from Eq. (11) that χ

l1l2
l (kF) = δll1 for all l2, so the total gap on

the Fermi surface for the next iteration step is simply �l(kF) =∑
l2

Dll2 . The procedure is repeated until self-consistency is
reached, typically within a few iterations.

2. Modified direct-iteration method

As an alternative to Khodel’s method, we solve for the
gap by a modified version of the direct-iteration method in
Eqs. (4). Since Eq. (4b) is known to be too simplistic, more
advanced update rules are crucial to achieve convergence. As
a first step, the stability of the convergence can be significantly
improved by dampening the update prescription. The simplest
modification involves a linear superposition of the input and
output vector of the current iteration:

�(m+1)
in = α�

(m)
out + (1 − α)�(m)

in

= �(m)
in + αF(m), (12)

where α is the damping factor. We attempted to find suitable
values for α that lead to reliable convergence patterns for
various NN interactions over a typical range of densities.
However, we found that using simple mixing still results in
too many discontinuities of the gap as a function of density in
order to be useful in practice. These numerical artifacts had
to be removed by fine-tuning the damping factor for different
densities. Hence, reliable calculations for the gap require more
sophisticated updates.

We now demonstrate that Broyden’s method for solving
general nonlinear equations is in particular well suited for
the gap equation (3). Specifically, we make use of a modified
version of Broyden’s method developed in Ref. [20]. It is a fast,
stable and computationally efficient quasi-Newton-Raphson
method with the advantage of a simple but powerful update
rule. The inverse of the Jacobian is approximated by the
knowledge of previous iterations without needing to store or
to process high-rank matrices. We review here briefly the
ingredients to obtain stable results for the gap and refer to the
original Ref. [20] as well as to Ref. [27] for first applications
to the nuclear many-body problem.

In the modified version of Broyden’s method, the gap vector
after the mth iteration is updated according to the rule

�(m+1)
in = �(m)

in + αF(m) −
m−1∑
n=1

wnγmnu(n), (13)

with the definitions

γmn =
m−1∑
k=1

ckmβkn, (14)

βkn = (
w2

01 + a
)−1
kn

, (15)

ckm = wk δF(k)†F(m), (16)

akn = wkwn δF(n)†δF(k), (17)

and

u(n) = α δF(n) + δ�(n), (18)

δ�(n) = �(n+1)
in − �(n)

in

|F(n+1) − F(n)| , (19)

δF(n) = F(n+1) − F(n)

|F(n+1) − F(n)| , (20)
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FIG. 1. Comparison of the gap � as a function of Fermi momentum kF in the 1S0 (left panel) and 3P 2 –3F 2 (right panel) channels obtained
using Khodel’s method (red-solid line) and via the new modified direct-iteration method (blue-dashed line). Results are obtained with the N3LO
NN potential EM 500 MeV [8,31]. Values from Refs. [14,19] are depicted as black dots. The results are in very good agreement; especially,
the two methods of this work demonstrate excellent methodical convergence.

where δF(n) is normalized, δF(n)†δF(n) = 1. The procedure
requires us to store �(m)

in and F(m) of the current iteration as well
as u(m) and δF(m) of all previous steps. Since akn is typically
of rank much smaller than that of the full Jacobian it can be
stored for efficiency. Although the update rule (13) includes
simple mixing, the additional correction allows usually larger
damping factors α, which typically leads to accelerated conver-
gence. Besides guesses for �(1)

in and α, the weights wm have to
be chosen as well, whereas w0 = 0.01 needs to be sufficiently
small [20]. We use wm = 1, m � 1, similar to Ref. [27]. In
addition, Ref. [20] suggested wm = min(1,

√
(F(m)†F(m))−1) to

promote solutions of advanced convergence.
We show in Fig. 1 an exemplary benchmark for the gap

�(kF) obtained with Khodel’s method (red-solid lines) and
with the modified direct-iteration method (blue-dashed lines)
in comparison to the literature (points) [14,19]. The gaps are
based on the N3LO NN potential EM 500 MeV [8,31] in
the channels 1S0 (left panel) and 3P 2 –3F 2 (right panel). We
observe in general almost perfect agreement (deviations are of
order of 10 eV) of the two methods for the singlet as well as
the triplet channel. We used the same optimized Gauss mesh
for the two methods. Furthermore, the results in Fig. 1 agree
well with the literature, also in the regions of small gaps. In
practice, Khodel’s method requires typically 2 to 3 times fewer
steps to converge while the computational runtime is shorter
for the modified direct-iteration method due to its simplicity.
In rare cases the modified direct-iteration method leads to
apparent discontinuities in the gap as a function of kF. In all of
our calculations we could easily recover these by modifying
slightly the damping factor α. On the other hand, Khodel’s
method in its usual implementation1 is naturally unstable if
the Vll′ (k,k) gets small or even has nodes.

Based on these benchmarks, we conclude that the two
algorithms are both reliable. Comparing the results of Khodel’s
method and the modified direct-iteration method allows us to
assess the methodical convergence of our calculations. Such an

1Note that there is a modified version of Khodel’s method in
Ref. [30] accounting for Vll′ (k,k) = 0.

independent benchmark is particularly important for density
regions of slow convergence, as discussed above. We therefore
do not recommend a specific single method but emphasize the
strength of the combined approach. For the results presented
in the following sections we have checked that both methods
provide practically identical results.

C. Three-nucleon forces, normal ordering,
and single-particle energies

Our calculations are based on NN and 3N interactions up
to N3LO in the chiral expansion. The contributions from 3N
forces are taken into account at the normal-ordered two-body
level. Normal-ordering with respect to a given reference state
allows us to include the dominant 3N contributions in terms of
density-dependent two-body interactions V

as
3N [15,23,32–34].

Specifically, normal ordering of 3N forces in neutron matter
involves the summation of one particle over occupied states in
the Fermi sea:

V
as
3N = Trσ3

∫
dk3

(2π )3
A123V3N nk3

∣∣∣∣
nnn

, (21)

where the Fermi-Dirac distribution function is given at zero
temperature by a simple step function, nk = θ (kF − |k|), and
the Fermi momentum kF associated with the particle density by
n = k3

F/(3π2). The antisymmetrized 3N interactions A123V3N

used in this work are regularized by the nonlocal regulator
fR(p,q) = exp{−[(p2 + 3q2/4)/�2

3N]4}, where p,q are the
Jacobi momenta and �3N is the 3N cutoff scale.

The contributions of 3N forces at N2LO to the BCS pairing
gap have already been studied via normal ordering; see, e.g.,
Refs. [15–17,19]. The calculation of V

as
3N can be performed

directly based on the operator structure of the 3N interactions
as in Refs. [15,32]. However, this approach becomes rather
cumbersome for subleading 3N forces at N3LO due to the
complex operator structure of 3N interactions at this order.
In order to study N3LO 3N contributions we make use of
recent developments [22,23] and evaluate the effective NN
potentials (21) using the partial-wave decomposition of the
3N forces. The partial-wave matrix elements of the 3N forces,
〈p′q ′α′ |A123V3N | pqα〉, are given in a Jj -coupled 3N plane-
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wave basis of the form

|pqα〉 =
∣∣∣∣pq;

[
(LS)J

(
l
1

2

)
j

]
J

(
T

1

2

)
T

〉
, (22)

where the relative orbital angular momentum, spin, total
angular momentum, and isospin of particles 1 and 2 are
labeled by L, S, J , and T (with T = 1 in the case of neutron
matter). The quantum numbers l and j , respectively, denote
the orbital angular momentum and total angular momentum
of particle 3 relative to the center of mass of the pair with
relative momentum p. The quantum numbers J and T are
the total 3N angular momentum and isospin (with T = 3/2
here). These 3N matrix elements are currently available up
to N3LO [22], with a large enough truncation on the total
three- and two-body total angular momenta J � 9/2 and
J � 6, respectively, to obtain well converged 3N Hartree-Fock
energies in neutron and symmetric nuclear matter [22,23].
We refer to these references also for detailed discussions of
normal ordering in the partial-wave basis. The effective NN
potential (21) depends in general on the total momentum P of
the two remaining particles in contrast to a Galilean-invariant
NN interaction. At the BCS level, the paired particles are in
back-to-back kinematics and we therefore have P = 0.

The normal-ordered two-body part of 3N forces can then
be combined with NN interactions:

V as
NN+3N = V as

NN + ζ V
as
3N, (23)

where ζ is a combinatorial factor that depends on the type
of quantity of interest (see Ref. [15] for details). For the gap
equation (3) we find ζ = 1 (see Appendix B for details).

The energy denominator of the gap equation (3) depends
on the single-particle energy ε(k). We take into account
self-energy corrections to the kinetic energy due to the
interaction (23). In the Hartree-Fock approximation the
single-particle energy is given by

ε(k) = k2

2m
+ �(1)(k), (24)

where �(1)(k) denotes the spin-averaged Hartree-Fock self-
energy [15],

�(1)(k1) = 1

2π

∫
dk2 k2

2

∫
d cos θk1,k2 nk2

∑
l,S,J

(2J + 1)

×〈k12/2 | V J
llS | k12/2〉(1 − (−1)l+S+1), (25)

with k12 = |k1 − k2|. For the combinatorial factor ζ in
the interaction matrix element V = V as

NN+3N in Eq. (25) we
obtain ζ = 1/2 (see Appendix B or Refs. [15,19,23]). The
corresponding effective mass m∗ at the Fermi surface is then
given by

m∗(kF)

m
=

(
m

k

dε(k)

dk

)−1∣∣∣∣
k=kF

. (26)

Our calculations with a free and a Hartree-Fock spectrum serve
as a simple measure for the dependence of �(kF) on the single-
particle energy.

D. Theoretical uncertainties

An improved approach for estimating theoretical uncer-
tainties based on the chiral expansion has been proposed in
Refs. [11,12] and applied to few-body calculations [35,36].
In contrast to previous uncertainty estimates, which involved
cutoff variations of nuclear interactions at a given chiral
order, these are based on results at different chiral orders for
a fixed cutoff value. This allows us to study the order-by-
order convergence in the chiral expansion for an observable
at a given momentum scale. Currently, local [9,10] and
semilocal [11,12] NN potentials are available up to N2LO
and N4LO, respectively, with cutoffs of R0 = (0.8–1.2) fm.
Semilocal means in this context that only the long-range part is
regularized locally in coordinate space whereas the short-range
part is regularized nonlocally in momentum space.

The contributions to the gap from interaction terms at chiral
order i = 0,2,3, . . . are given by

d�(i) =
{
�(2) − �(0), i = 2,

�(i) − �(i−1), i � 3,
(27)

and are expected to scale like (Q(kF))i , where

Q(kF) = max

(
p

�b

,
mπ

�b

)
(28)

is the ratio of a typical momentum scale p or mπ of the system
and the breakdown scale �b. Since the pairing gap results from
attractive interactions of two particles on the Fermi surface we
use in the following p = kF for the relative momentum in
Eq. (28). Note that this scaling is in general only expected
to be valid for complete calculations involving all many-body
forces at a given chiral order. In Sec. III we present results
based on local and semilocal interactions without inclusion of
many-body forces. Complete calculations with full uncertainty
estimates will be possible as soon as partial-wave matrix
elements of the corresponding 3N forces are available. For
the local and semilocal NN interactions the breakdown scale
was chosen as follows for the different cutoffs R0 [11]:

�b =
⎧⎨
⎩

600 MeV for R0 = 0.8,0.9,1.0 fm,
500 MeV for R0 = 1.1 fm, and
400 MeV for R0 = 1.2 fm.

(29)

The chiral expansion can be used to define the theoretical
uncertainty [11,12], where we focus on uncertainties at N2LO
and higher (i � 3),

δ�(i) = max
3�j�i

(Qi+1−j |d�(j )|). (30)

We do not show uncertainties at LO and NLO, because at these
orders the scattering phase shifts are not well reproduced at
the relevant momenta, particularly not in the coupled 3P 2 –3F 2

channel. Note that, in contrast to Refs. [11,12], for the above
reason we neglect the LO contributions to the higher-order
uncertainties, and moreover we do not consider a term that
ensures that the next order always lies within the uncertainty
band of the previous order by taking into account information
of higher-order results in the chiral expansion.

As mentioned in Sec. II C, the normal ordering is cur-
rently based on 3N forces with nonlocal regulators. Once
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FIG. 2. Gap � as a function of Fermi momentum kF in the 1S0 channel for the four local NN potentials with R0 = (0.9–1.2) fm (rows) each
up to N2LO with a free spectrum (left column) and a Hartree-Fock spectrum (center column). The third column shows the effective mass at
the Fermi surface corresponding to the Hartree-Fock spectrum (second column). As discussed in the text, the uncertainty bands (if present) are
given by the color-filled region between the dashed lines while the actual calculation is depicted by the solid line. There are no uncertainties
shown for LO and NLO; for details see text.

available, it will be straightforward to incorporate also local
or semilocal 3N interactions. Work in this direction is
currently in progress. Following the paradigm to regularize
NN and many-body forces consistently, we do not show
results based on local or semilocal NN forces combined
with nonlocal 3N interactions. Instead, we use the nonlocal
N3LO NN potentials EM 500 MeV [8,31], EGM 450/500
MeV and EGM 450/700 MeV [37] with the 3N uncertainty

estimate governed by variation of the 3N parameters c1,c3

and �3N = (2.0–2.5) fm−1. As recommended in Ref. [38],
we take for calculations with N2LO 3N forces the ranges
c1 = −(0.37–0.73) GeV−1, c3 = −(2.71–3.38) GeV−1 and
with N3LO 3N forces c1 = −(0.75–1.13) GeV−1, c3 =
−(4.77–5.51) GeV−1. The N3LO 3N contributions shift c1,c3

and depend additionally on the LO NN low-energy constants
which we consider consistently with the NN potentials.
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FIG. 3. Gap � as a function of Fermi momentum kF in the 1S0 channel for the four semilocal NN potentials with R0 = (0.9–1.2) fm (rows)
each up to N4LO with a free spectrum (left column) and a Hartree-Fock spectrum (center column). The third column shows the effective mass
at the Fermi surface corresponding to the Hartree-Fock spectrum (second column). There are no uncertainties shown for LO and NLO; for
details see text.

A compilation of the values can be found in Table I of
Ref. [39].

III. RESULTS

A. Local and semilocal NN potentials

We present in Figs. 2 and 3 the gap in the 1S0 channel based
on the local and semilocal NN potentials up to N2LO and

N4LO, respectively. Each row corresponds to the regulators
R0 = 0.9, 1.0, 1.1, and 1.2 fm as annotated. The left (center)
column shows the gap using a free (Hartree-Fock) spectrum.
The effective mass m∗(kF)/m from the Hartree-Fock spectrum
are depicted in the right column. As discussed in Sec. II D
we assign uncertainty estimates to the results beyond NLO
according to Eq. (30). In Figs. 2 and 3 the results for
�(kF) at different orders are depicted by solid lines, and the
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FIG. 4. Gap � as a function of Fermi momentum kF in the 3P 2 –3F 2 channel for the four local NN potentials with R0 = (0.9–1.2) fm (rows),
each up to N2LO with a free spectrum (left column) and a Hartree-Fock spectrum (center column). The third column shows the effective mass
at the Fermi surface corresponding to the Hartree-Fock spectrum (second column). As discussed in the text, the uncertainty bands (if present)
are given by the color-filled region between the dashed lines while the actual calculation is depicted by the solid line. There are no uncertainties
shown for LO and NLO; for details see text.

uncertainty bands �(kF) ± δ� are shown as shaded bands
whose boundaries are highlighted by dashed lines. We restrict
the bands to the region of positive energies.

At NLO and beyond we observe that the 1S0 gap agrees up to
kF ∼ (0.6–0.8) fm−1, depending only slightly on the regulator
for local potentials. As investigated in detail, e.g., in Ref. [14],
the pairing gaps are strongly constrained by phase shifts. The
LO gaps are therefore expected to be different. For R0 �

1.0 fm we find that the gaps at N3LO and N4LO agree well
over the entire density range. Generally, the gap uncertainties
based on Eq. (30) are very small for the highest chiral orders.
However, we emphasize that the gap uncertainties only include
contributions from the chiral expansion, whereas neglected
higher-order many-body corrections are not assessed.

In addition, we find that the sensitivity of the pairing gap
to the energy spectrum is rather small and affects mainly the
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FIG. 5. Gap � as a function of Fermi momentum kF in the 3P 2 –3F 2 channel for the four semilocal NN potentials with R0 = (0.9–1.2) fm
(rows), each up to N4LO with a free spectrum (left column) and a Hartree-Fock spectrum (center column). The third column shows the effective
mass at the Fermi surface corresponding to the Hartree-Fock spectrum (second column). As discussed in the text, the uncertainty bands are
given by the color-filled region between the dashed lines while the actual calculation is depicted by the solid line. There are no uncertainties
shown for LO and NLO; for details see text.

maximum value of the gap. For both, local and semilocal po-
tentials we find �max ∼ (2.7–3.1) MeV at kF ∼ (0.8–0.9) fm−1

for the highest chiral order and all cutoffs. The rather small
suppression due to the spectrum can be directly understood
based on the fact that the ratio m∗(kF)/m is close to one for all
regulators and chiral orders (right columns).

In Figs. 4 and 5 we show the 3P 2 –3F 2 gap based on the
same NN potentials. Since 3P 2 –3F 2 pairing takes place at
larger densities than in the 1S0 channel, the uncertainties are
much larger. The maximum of the LO pairing gap for the local
potentials changes significantly with increasing R0, indicating
that the results are strongly affected by regulator artifacts at
this order. On the other hand, the pairing gap for the semilocal
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FIG. 6. Gap � as a function of Fermi momentum kF in the 1S0 channel with a free spectrum (left column) and a Hartree-Fock spectrum
(center column) for the N3LO NN potentials EM 500 MeV (first row), EGM 450/500 MeV (second row), and EGM 450/700 MeV (third
row). The third column depicts the effective mass at the Fermi surface corresponding to the Hartree-Fock spectrum. The NN-only results are
shown by the black solid lines. The uncertainty bands for N2LO and N3LO are determined by variations of the 3N parameters c1, c3, and �3N

as discussed in the text.

potentials at LO is vanishing for all densities and cutoff values
and therefore not shown in Fig. 5. These results reflect the
poor description of the phase shifts at this order, from only the
one-pion-exchange interaction at this order for the semilocal
case.

At higher chiral orders it is not straightforward to extract
robust quantitative trends for the 3P 2 –3F 2 gap. In general,
the gap opens around densities of kF ∼ 1 fm−1 for all
considered interactions. For the semilocal potentials the results
at N3LO and N4LO agree well up to kF ∼ 1.6 fm−1. Also
the corresponding uncertainty bands strongly overlap in this
density region. We find the maximum gap values at N2LO
and higher orders in the density range kF = (1.6–2.1) fm−1

for all interactions. Overall, the large uncertainties at high
densities reflect the regulator dependencies and the breakdown
of the chiral expansion. In particular, for a Fermi momentum
kF = 2.0 fm−1 the expansion parameter Q(kF) of Eq. (28) is

Q(2.0 fm−1) =
⎧⎨
⎩

0.66 for R0 = 0.8,0.9,1.0 fm,
0.79 for R0 = 1.1 fm, and
0.99 for R0 = 1.2 fm.

(31)

Clearly, it is not obvious that the chiral expansion is efficient
anymore in this density regime.

B. N2LO and N3LO 3N forces

We also study the pairing gaps based on three nonlocal
NN potentials at N3LO combined with contributions from

N2LO and N3LO 3N forces. The results are shown in Figs. 6
and 7 in the 1S0 and 3P 2 –3F 2 channel, respectively. The rows
correspond to the NN potentials EM 500 MeV [31], EGM
450/500 MeV, and EGM 450/700 MeV [37], as annotated.
The left and center columns show energy gaps using a free and
a Hartree-Fock spectrum, whereas the right column shows the
corresponding Hartree-Fock effective mass. NN-only results
are shown by black solid lines, with the inclusion of the leading
(subleading) 3N forces by orange (blue) bands. As discussed
in Sec. II D, the uncertainty bands are obtained by variations
of the 3N parameters c1, c3, and �3N.

Figures 2, 3, and 6 show that the 1S0 gaps at N3LO without
3N forces are in good agreement. This observation can be
traced back to the well-reproduced phase shifts at this order.
Contributions from 3N forces do not change the results for the
pairing gaps at low densities, kF � (0.7–0.8) fm−1, and only
lead to a minor suppression at higher densities. The uncertainty
bands including 3N forces are very small for all potentials at
N2LO as well as N3LO. In addition, self-energy contributions
to the single-particle energies are small.

In Fig. 7 we show the corresponding results for the 3P 2 –3F 2

channel. Since the relevant densities are larger than in the
1S0 channel, the impact of 3N forces is generally larger for
the pairing gap and also for the effective mass. We observe
nonvanishing gaps for the three investigated NN potentials
for all three cases considered. In contrast to the 1S0 channel,
the inclusion of 3N forces typically provides additional
attraction and hence increases the pairing gap, except for the
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FIG. 7. Gap � as a function of Fermi momentum kF in the 3P 2 –3F 2 channel with a free spectrum (left column) and a Hartree-Fock spectrum
(center column) for the N3LO NN potentials EM 500 MeV (first row), EGM 450/500 MeV (second row), and EGM 450/700 MeV (third
row). The third column depicts the effective mass at the Fermi surface corresponding to the Hartree-Fock spectrum. The NN-only results are
shown by the black solid lines. The uncertainty bands for N2LO and N3LO are determined by variations of the 3N parameters c1, c3, and �3N

as discussed in the text.

EM 500 MeV potential with subleading 3N forces. As shown
in the right column, 3N contributions generally tend to enhance
the effective mass (see also Ref. [15]), even to values larger
than one at the Hartree-Fock level. In general, we find that
the results for the 3P 2 –3F 2 pairing gaps differ significantly for
the various potentials and that it is delicate to extract robust
quantitative predictions based on our results.

IV. SUMMARY AND OUTLOOK

In this paper, we have studied solutions of the BCS gap
equation in the 1S0 and the 3P 2 –3F 2 channel based on a broad
range of nuclear interactions derived within chiral EFT at
different chiral orders. We benchmarked and optimized two
different algorithms that allow together a reliable and accurate
solution of the nonlinear BCS equation. With these advances,
we studied the gap based on local NN interactions [9,10]
up to N2LO and semilocal NN interactions [11,12] up to
N4LO for the four coordinate-space cutoffs R0 = 0.9, 1.0,
1.1, and 1.2 fm. At the highest chiral orders the results
in the 1S0 channel agree for all interactions over the entire
density region. The 1S0 pairing gap reaches a maximum around
kF = (0.8–0.9) fm−1 with �max = (2.9–3.3) MeV for a free
single-particle spectrum and a suppression of about ∼0.3 MeV
when including self-energy corrections in the Hartree-Fock
approximation.

In the triplet channel 3P 2 –3F 2 the situation is much
less clear. The gaps generally open at densities of kF ∼
(0.9–1.0) fm−1 for all interactions. Beyond this density

the results depend on details of the interactions and the
chiral order. At the highest chiral orders we observe a gap
maximum at densities in the region kF = (1.7–1.9) fm−1

with �max < 0.4 MeV. However, we emphasize that these
Fermi-momentum scales are already close to the EFT
breakdown scale of the corresponding interactions. Conse-
quently, the observed strong regulator dependence is not
surprising.

For the estimate of theoretical order-by-order uncertainties
of the Hamiltonian, we followed the method first presented
in Ref. [11] with two modifications. We obtained very small
uncertainties for the 1S0 channel for all densities, but sizable
uncertainties in the 3P 2 –3F 2 channel. In the latter case the
uncertainty bands at successive chiral orders are generally not
entirely overlapping. However, at N3LO and N4LO we find
that the bands are of comparable size and overlapping. We
emphasize that our calculations at N2LO, N3LO, and N4LO
are not complete since no 3N forces have been taken into
account for these interactions. Hence, the analysis should be
revisited as soon as the calculation of the corresponding local
3N partial-wave matrix elements have been completed. This
is work in progress.

In addition, we also investigated the impact of 3N forces
on the pairing gap for nonlocal N3LO potentials. Taking
advantage of recent developments for including 3N forces in
a partial-wave basis [22,23], we were able to incorporate for
the first time subleading 3N contributions in the gap equation
via normal ordering. We found only small repulsive effects
from 3N forces in the singlet channel 1S0, whereas in the
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3P 2 –3F 2 channel the effects from 3N forces are larger and
lead to attractive contributions in most cases. Also for these
interactions, we find significant regulator dependencies in the
3P 2 –3F 2 channel.

We conclude that due to the high densities of the 3P 2 –3F 2

gaps, which are reaching the limit of the employed chiral
EFT interactions, it is not possible to draw final quantitative
conclusions on the size of the 3P 2 –3F 2 gap in neutron
matter. However, we have observed nonvanishing gaps for
all employed realistic NN potentials, also when including
3N contributions. We further emphasize that the contributions
from higher many-body corrections beyond the BCS approx-
imation have not been taken into account and are known to
be significant [6,40], although their quantitative assessment is
especially challenging in the 3P 2 –3F 2 channel.

The methods discussed in this paper can be used for
improved studies of pairing gaps in the future. In particular,
the advanced treatment of 3N forces in terms of partial
waves allows us to handle in a straightforward way arbitrary
partial-wave decomposed 3N forces. In addition, it is also
possible to perform calculations based on consistently evolved
NN and 3N forces [41] via the similarity renormalization group
(SRG). This is in particular of interest when taking into account
many-body corrections beyond the BCS approximation in
calculations of the pairing gap, since SRG-evolved forces are
expected to exhibit an improved many-body convergence. Go-
ing beyond the BCS approximation involves the incorporation
of particle-hole correlations in the pairing interaction. This
can either be performed perturbatively, as done for the first
time in Ref. [42], or nonperturbatively, e.g., within Landau
Fermi-liquid theory as in Refs. [18,43]. A full treatment
would require one to incorporate particle-particle/hole-hole
and particle-hole correlations on an equal footing.
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APPENDIX A: PARTIAL-WAVE DECOMPOSITION

In this Appendix we briefly review the partial-wave decom-
position of the gap equation (3) and specify the conventions
used in this work. Following Refs. [21,44,45] we decompose
the gap matrix in the form

�αα′ (k) =
∑
l,S
J,M

√
8π

2J + 1
�JM

lS (k)
(
GJM

lS (k̂)
)
αα′ , (A1)

and accordingly the nuclear interaction

(4π )−2 〈kαα′|V |k′ββ ′〉
=

∑
l,l′,S
J,M

il
′−l

(
GJM

lS (k̂)
)
αα′

(
GJM

l′S (k̂′)
)∗
ββ ′V

J (M)
ll′S (k,k′), (A2)

with
(
GJM

lS (k̂)
)
αα′ =

∑
m,mS

CSmS

1/2α1/2α′CJM
lmSmS

Ym
l (k̂). (A3)

These functions obey the orthogonality relations
∫

d�k

∑
β,β ′

[(
GJM

l′S (k̂′)
)∗
ββ ′

(
GJ ′M ′

l′′S ′ (k̂′)
)

ββ ′

]

= δll′δMM ′δJJ ′δSS ′ . (A4)

The J -dependent factor in Eq. (A1) is chosen such that the gap
equation in partial-wave representation takes a particularly
simple form. Inserting Eqs. (A1) and (A2) in the gap
equation (1) leads to

(4π )−2
∑
l,S
J,M

�JM
lS (k)√
2J + 1

(
GJM

lS (k̂)
)
αα′

= −
∫

dk′ k′2

(2π )3

∑
l,l′,J,M,S
l′′,J ′,M ′,S ′

il
′−l

(
GJM

lS (k̂)
)
αα′

×V
J (M)
ll′S (k,k′)

�J ′M ′
l′′S ′ (k′)√
2J ′ + 1

×
∫

d�k′

∑
β,β ′

[(
GJM

l′S (k̂′)
)∗
ββ ′

(
GJ ′M ′

l′′S ′ (k̂′)
)
ββ ′

]
2
√

ξ 2(k′) + 1
2 Tr[��†](k′)

. (A5)

This equation can be simplified significantly by averaging the
energy gap in the denominator over all angles, specifically

1

2
Tr[��†]

av.−→ 1

2

∫
d�k

4π
Tr[��†]

=
∑
l,S,J

∣∣�J
lS(k′)

∣∣2 ≡ D2(k). (A6)

Because of the degeneracy with respect to M quantum number
in this approximation we summed here over all allowed values
and used identity (A4). Projecting out the components in
Eq. (A5) leads to the partial-wave decomposed gap equation

�J
lS(k) = −

∫ ∞

0

dk′ k′2

π

∑
l′

il
′−lV J

ll′S(k,k′)�J
l′S(k′)√

ξ 2(k′) + ∑
l̃,S̃,J̃

∣∣�J̃
l̃S̃

(k′)
∣∣2 .

(A7)

APPENDIX B: NORMAL-ORDERING
SYMMETRY FACTORS

In this section we discuss the symmetry factor ζ that appears
in the interaction kernel in Eq. (23) for normal-ordered 3N
contributions in the normal self-energy � and the anomalous
self-energy �. For this we consider a general Hamiltonian of
the form

Ĥ = T̂ + V̂NN + V̂3N, (B1)
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where T̂ represents the kinetic energy, V̂NN all two-nucleon
interactions and V̂3N three-nucleon interactions. By using
Wick’s theorem we can recast the Hamiltonian exactly in an
equivalent form by normal ordering all operators with respect
to a given reference state. For the treatment of superfluid
systems it is convenient to choose the BCS state as reference
state. We represent V̂NN and V̂3N in terms of antisymmetrized
matrix elements:

V̂NN = 1

4

∑
ijkl

〈ij |V as
NN|kl〉â†

i â
†
j âl âk, (B2)

V̂3N = 1

36

∑
ijklmn

〈ijk|V as
3N|lmn〉â†

i â
†
j â

†
kânâmâl, (B3)

where the indices represent generic single-particle quantum
numbers. When applying Wick’s theorem with respect to a
BCS reference state it is important to note that both normal
contractions (connecting a creation operator with an annihila-
tion operator) as well as anomalous contractions (connecting
two creation or two annihilation operators) contribute. For the
normal self-energy � the relevant contractions are of the form

1

4

∑
ijkl

〈ij |V as
NN|kl〉â†

i â
†
j âl âk, (B4)

1

36

∑
ijklmn

〈ijk|V as
3N|lmn〉â†

i â
†
j â

†
kânâmâl, (B5)

whereas for the anomalous self-energy � the relevant contrac-
tions take the form

1

4

∑
ijkl

〈ij |V as
NN|kl〉â†

i â
†
j âl âk, (B6)

1

36

∑
ijklmn

〈ijk|V as
3N|lmn〉â†

i â
†
j â

†
kânâmâl . (B7)

Since the interaction operators are represented in terms
of antisymmetrized matrix elements, all different possible
choices of picking creation or annihilation operators are
equivalent and just lead to combinatoric factors. Hence, in
order to determine ζ it is necessary to determine the number
of different contractions cN for Eqs. (B4) to (B7). We obtain
cN = 4 for (B4), cN = 18 for (B5), cN = 1 for (B6), and
cN = 9 for (B7). Combining these combinatoric factors with
the prefactors 1/4 and 1/36 of the NN and 3N interactions,
we directly obtain ζ = 1/2 for � and ζ = 1 for �. We also
note that in the present work we approximate the normal
contractions in Eq. (B7) by their contributions in normal
systems. It has been shown in Ref. [33] that the inclusion of
correlations in the reference state has only very small effects on
the matrix elements of the normal-ordered 3N contributions for
nuclear matter calculations. In addition to contributions from
normal contractions in Eq. (B7) we also obtain nonvanishing
contributions from multiple anomalous contractions. However,
these contributions are small since such terms only include
contributions from momenta around the Fermi surface and are
of higher order in the gap.
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