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Four-body calculation of 2H(d, p)3H and 2H(d,n)3He reactions above breakup threshold
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Nucleon transfer reactions in deuteron-deuteron collisions at energies above the three- and four-body
breakup threshold are described using exact four-body equations for transition operators that are solved in the
momentum-space framework. Differential cross sections, analyzing powers, polarizations, and spin transfer
coefficients are obtained using realistic two-nucleon potentials and including the Coulomb repulsion between
protons. Overall good agreement between predictions and experimental data is found. Most remarkable
discrepancies are seen around the minima of the differential cross section at higher energies and in the outgoing
nucleon polarization at lower energies.
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I. INTRODUCTION

In the last 10 years significant progress has taken place
in exact ab initio calculations of two-cluster scattering in the
four-nucleon system, both below [1–9] and above [10–17] the
breakup threshold. In the case of multichannel reactions, i.e.,
processes with open rearrangements and/or breakup channels,
the most advanced calculations were performed by solving the
Alt, Grassberger, and Sandhas (AGS) equations [18,19] for
the four-particle transition operators in the momentum-space
framework. Realistic nucleon-nucleon (NN ) force models
were included as well as the Coulomb interaction between
protons and the effective three-nucleon (3N ) and four-nucleon
(4N ) forces through explicit �-isobar excitation. Comparing
the predictions with the available experimental data one could
say that the realistic force models provide a satisfactory
explanation of the cross sections and spin observables over
a broad energy regime up to about 30 MeV, reproducing
the proper energy dependence and changes in shape of the
observables as the energy rises. Agreement with data can be,
in some cases, paradigmatic, given the complex structure of
some observables that display several maxima and minima,
a feature that is not observed as often in three-nucleon data.
However, there are also a few disagreements with the data,
whose magnitude is sensitive to the force model used and
may serve as a fertile ground for the investigation of nuclear
interactions. Still missing in this study is the extension of
the nucleon transfer reactions 2H(d,p)3H and 2H(d,n)3He
initiated by deuteron-deuteron collisions at energies well
above the breakup threshold, where the existing differential
cross section and analyzing power data [20–32] show a
complicated structure involving several maxima and minima
that change with the energy. Therefore in the present paper we
aim to investigate 2H(d,p)3H and 2H(d,n)3He reactions up to
about 25-MeV deuteron beam energy.
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In Sec. II we present the theoretical framework. Differential
cross-section and spin observable results are reported in
Sec. III and a summary is presented in Sec. IV.

II. THEORY

The four-particle collision process is described by the exact
AGS equations [18,19] for the transition operators Uβα , whose
components are labeled according to the chains of partitions.
Given that in the isospin formalism neutrons and protons
are treated as identical particles, there are only two chains
of partitions that can be distinguished by the two-cluster
partitions, one (α = 1) being of the 3 + 1 type, i.e., (12,3)4,
and another (α = 2) being of the 2 + 2 type, i.e., (12)(34). For
nucleon-trinucleon scattering, in previous work we solved the
symmetrized AGS equations forUβ1, but for reactions initiated
by two deuterons, the transition operators Uβ2 are required. In
both cases the AGS equations share the same kernel but differ
in the driving term. Thus, in the present work we solve the
integral equations

U12 = (G0tG0)−1 − P34U1G0tG0U12 + U2G0tG0U22, (1a)

U22 = (1 − P34)U1G0tG0U12. (1b)

Here t is the two-nucleon transition matrix, U1 and U2 are the
transition operators for the 1 + 3 and 2 + 2 subsystems,
P34 is the permutation operator of particles 3 and 4, and
G0 = (E + iε − H0)−1 is the free four-particle resolvent at
the available energy E, whereas H0 is the free Hamiltonian.
Although the physical scattering process corresponds to ε →
+0, the complex energy method uses a finite ε value when the
AGS equations are solved numerically. The physical scattering
amplitudes are then obtained by extrapolating finite-ε results
to the ε → +0 limit. The extrapolation procedure, as well
as the special method for integrals with quasisingularities
encountered when solving Eqs. (1), is described in detail in
our previous works [10,13,33].
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TABLE I. 3H and 3He binding energies (in MeV) for different
NN potentials.

B (MeV)

3H 3He

N3LO 7.85 7.13
CD Bonn 8.00 7.26
CD Bonn + � 8.28 7.53
INOY04 8.49 7.73
Experiment 8.48 7.72

The pp Coulomb force is included using the method of
screening and renormalization [4,34], where the screening
radius R = 12 to 16 fm is found to be sufficient to achieve
convergence for the Coulomb-distorted short-range part of
the amplitude. The obtained results are well converged with
respect to the partial-wave expansion. When solving Eqs. (1)
we take into account isospin-singlet 2N partial waves with
total angular momentum jx � 4 and isospin-triplet 2N partial
waves with orbital angular momentum lx � 7, 3N partial
waves with spectator orbital angular momentum ly � 7 and
total angular momentum J � 13

2 , and 4N partial waves
with 1 + 3 and 2 + 2 orbital angular momentum lz � 8.
Initial and final deuteron-deuteron states with relative orbital
angular momentum L � 6 are sufficient for the calculation of
observables except at the 25.3-MeV beam energy, where we
take into account also the states up to L � 8 that yield a small
but visible contribution.

III. RESULTS

The scattering of two deuterons, compared to nucleon-
trinucleon collisions, is more challenging from the compu-
tational point of view but also interesting physicswise. Since
deuterons are loosely bound and spatially large objects, their
collision involves more partial waves and gives rise to much
higher breakup cross sections than encountered in other 4N
reactions initiated by nucleons and trinucleons.

The thresholds for one- and two-deuteron breakup cor-
respond to the deuteron beam energies Ed = 4.45 MeV
and Ed = 8.90 MeV, respectively. We calculate differential
cross sections dσ/d� and various spin observables for the
2H(d,p)3H and 2H(d,n)3He reactions as functions of the
nucleon center-of-mass (c.m) scattering angle �c .m . at Ed

ranging from 5.0 to 25.3 MeV. At all considered energies
the results are obtained using the realistic inside-nonlocal
outside-Yukawa (INOY04) potential of Doleschall [2,35] since
it nearly reproduces the experimental values of the 3He
and 3H binding energies with no additional 3N force. To
investigate the dependence of the results on the interaction
model, at Ed = 10 and 25.3 MeV, we also show the predictions
obtained with other high-precision NN potentials. These
are the chiral effective field theory potential at next-to-next-
to-next-to-leading order (N3LO) [36], the charge-dependent
Bonn potential (CD Bonn) [37], and its extension, CD Bonn +
� [38], which explicitly includes the excitation of a nucleon
to a � isobar. This mechanism generates effective 3N and
4N forces that are mutually consistent but quantitatively
still insufficient to reproduce 3N and 4N binding energies,
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FIG. 1. Differential cross section for the 2H(d,p)3H reaction as a function of the c.m. scattering angle at deuteron beam energies ranging
from 5.0 to 25.3 MeV. Results are obtained using the INOY04 potential (solid curves) and, at 10.0 and 25.3 MeV, also the CD Bonn + �

(dashed-dotted curves), CD Bonn (dotted curves), and N3LO (double-dotted–dashed curves) potentials. Experimental data are from Refs. [20]
and [21] (filled squares), Ref. [22] (open squares), and Ref. [23] (filled circles).
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FIG. 2. Differential cross section for the 2H(d,n)3He reaction as a function of the c.m. scattering angle at deuteron beam energies ranging
from 5.0 to 25.3 MeV. Curves are as in Fig. 1. Experimental data are from Refs. [24] (filled squares), Ref. [25] (crosses), Ref. [22] (open
squares), Ref. [26] (filled triangles), and Ref. [23] (filled circles).
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FIG. 3. Deuteron analyzing powers for the 2H(d,p)3H reaction at Ed = 5.5, 7.0, 10.0, and 13.0 MeV. Curves are as in Fig. 1. Experimental
data are from Ref. [21].

024003-3



A. DELTUVA AND A. C. FONSECA PHYSICAL REVIEW C 95, 024003 (2017)

although they reduce the discrepancy [39]. The predictions for
3He and 3H binding energies for all employed force models
are listed in Table I.

In Figs. 1 and 2 we show the differential cross sections
for the transfer reactions 2H(d,p)3H and 2H(d,n)3He, respec-
tively. Due to identity of the two deuterons this observable
is symmetric with respect to �c .m . = 90◦ and is peaked in
the forward and backward directions. As the energy rises,
the local maximum of dσ/d� at �c .m . = 90◦ evolves into a
local minimum between two local maxima at about 60◦ and
120◦. Over the whole energy and angular regime the INOY04
results closely follow the experimental data [20–24], only
slightly underpredicting some of them around �c .m . = 90◦.
The 2H(d,n)3He data from Ref. [26] are obviously wrong,
as they are inconsistent with the global evaluation [25]. The
sensitivity to the NN force model is visible at Ed = 10 MeV,
where it can reach 15%, but decreases with the energy,
becoming insignificant at Ed = 25.3 MeV. As at very low
energies [5], the predictions roughly scale with the trinucleon
binding energy.

The deuteron vector analyzing power iT11 and tensor
analyzing powers T20, T21, and T22 are shown in Figs. 3
and 4 for the same transfer reactions up to Ed = 13 MeV
and compared with the experimental data [20,21,27,28]; we
are not aware of experimental data at higher energies. These
observables do not exhibit any symmetry with respect to
�c .m . = 90◦, as only the beam deuteron is polarized. We

observe a few small discrepancies between predictions and
data, mostly for iT11 and T20 at �c .m . < 60◦ in 2H(d,p)3H,
but the overall agreement with the data is impressive given the
complicated angular dependence of the analyzing powers. The
sensitivity to the NN force model is again visible, especially
for iT11, but shows no clear correlation with the trinucleon
binding energy.

The polarization Py of the outgoing nucleon for 2H(d,p)3H
and 2H(d,n)3He reactions is presented in Fig. 5. This
observable is antisymmetric with respect to �c .m . = 90◦;
hence we show only the angular regime �c .m . < 105◦ for
Ed up to 14 MeV where the experimental data [29,30] are
available. This observable exhibits a peak near �c .m . = 45◦
whose height is well reproduced by the calculations with
the INOY04 potential, but the position is shifted to larger
angles by about 2◦ to 8◦; this shift is more pronounced at
lower beam energies. The sensitivity to the NN potential at
Ed = 10 MeV is comparable to the one observed for analyzing
powers but becomes significantly larger at lower energies. This
is illustrated by the CD Bonn predictions at Ed = 6 MeV,
which are consistent with the strong model dependence found
in Ref. [40] at Ed = 3 MeV. We note that Py is equal to the
nucleon analyzing power Ay in the respective time-reversed
reactions 3H(p,d)2H and 3He(n,d)2H at the same energy E.
Given that Ay in low-energy nucleon-trinucleon scattering
shows sizable discrepancies between predictions and data
for both elastic and charge-exchange reactions [16], some
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FIG. 4. Deuteron analyzing powers for the 2H(d,n)3He reaction at Ed = 5.5, 7.0, 10.0, and 13.0 MeV. Curves are as in Fig. 1. Experimental
data are from Refs. [27] (exes), [20] (crosses), and [28] (open squares).
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FIG. 5. Outgoing nucleon polarization of the 2H(d,p)3H (left)
and 2H(d,n)3He (right) transfer reactions at deuteron beam energies
ranging from 6 to 14 MeV. Curves are as in Fig. 1. Experimental
data are from Refs. [29] and [30] for the 2H(d,p)3H and 2H(d,n)3He
reactions, respectively.

discrepancies for Ay in the coupled nucleon transfer reactions
are expected. A similar conclusion can also be drawn regarding
the NN force sensitivity in all coupled reactions.

Measurement of double-polarization observables is highly
complicated; thus, the corresponding data are quite scarce.
We are aware of only two experiments measuring the angu-
lar dependence of deuteron-to-nucleon polarization transfer
coefficients, i.e., Kx ′

x , Kz′
x , Kx ′

z , Kz′
z , K

y ′
y , and K

y ′
yy in the

2H( �d,�n)3He reaction at Ed = 10 MeV [31] and Kx ′
x , Kx ′

z , K
y ′
y ,

K
y ′
xx, K

y ′
yy, K

y ′
zz , and K

y ′
xz in the 2H( �d, �p)3H reaction at Ed =

10.15 MeV [32]. The former set is analyzed in our earlier
work [14]. Despite the very complex angular dependence of
deuteron-to-neutron polarization transfer coefficients having
up to six local extrema, a good agreement between theory
and experiment and little sensitivity to the NN force model
are found. A similar situation holds also for the 2H( �d, �p)3H
reaction at Ed = 10.15 MeV. We present our predictions using
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FIG. 6. Outgoing proton polarization Py and deuteron-to-proton
polarization transfer coefficients for the 2H(d,p)3H reaction at
10.15-MeV deuteron energy. Curves are as in Fig. 1. Experimental
data are from Ref. [32].

the INOY04 and N3LO potentials in Fig. 6. There are only four
data points for each observable, and almost all of them lie on
theoretical curves, the exceptions being one or two points for
K

y ′
yy and K

y ′
xz having quite large error bars. Thus, one may

conclude that the overall description of polarization transfer
data for both the 2H( �d,�n)3He and the 2H( �d, �p)3H reactions is
quite satisfactory.

Finally, in Fig. 7 we show the energy dependence of the total
cross section (integrated over the scattering angle) for both
transfer reactions and the sum of the three- and four-cluster
breakup. An explicit calculation of the breakup amplitudes
is highly demanding, but the total breakup cross section is
obtained as the difference between the full and all two-cluster-
channel cross sections, applying optical theorem for ampli-
tudes calculated with a sufficiently large Coulomb screening
radius [13]. The comparison with data for the transfer cross
sections is reasonably good as could be expected from the com-
parison of differential cross sections in Figs. 1 and 2. We are not
aware of total breakup cross-section data. We predict a rapid
increase in the breakup cross section at low energies, exceeding
the transfer cross sections around Ed = 9 MeV and becoming
the most important inelastic channel. For example, at Ed =
25.3 MeV the breakup cross section reaches 287 mb, more than
6 times larger than each of the transfer cross sections. In Fig. 7
we also show the total proton-deuteron breakup cross section
as a function of the proton beam energy. This reaction has a
lower threshold, but beyond 12 MeV the deuteron-deuteron
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breakup cross section exceeds the one for the proton-deuteron
breakup, reaching a factor of 2 between them at 25 MeV. It
is interesting to note that this factor of 2 at higher energies
may be simply conjectured as resulting from the sum of
projectile deuteron breakup and target deuteron breakup, given
the symmetry of the deuterons in the entrance channel.

IV. SUMMARY

In the present paper we show the results of our numerical
calculations aiming to describe the world data for both
transfer reactions, 2H(d,p)3H and 2H(d,n)3He, in the energy
region above the three- and four-body breakup threshold and
present predictions for the total deuteron-deuteron breakup
cross section up to Ed = 25 MeV. The calculations include
realistic NN force models and the Coulomb interaction
between protons. Given the large size of the deuteron, elastic
scattering of two deuterons can be expected to be peripheral
and display little sensitivity to the choice of NN interaction.
Nevertheless, this argument is not completely valid for the
transfer reactions where threshold positions depend on the
NN force. Furthermore, due to the weak binding, deuteron-
deuteron reactions are more demanding computationally, as
they involve more partial waves and give rise to higher breakup

cross sections. In contrast to nucleon-trinucleon reactions,
given the symmetry of the two deuterons in the initial channel,
only states that are symmetric under the exchange of the two
deuterons contribute the observables, which by itself curtails
the number of combinations through which the NN force
affects the transfer observables. Another aspect in favor of
deuteron-deuteron reactions relative to nucleon-trinucleon is
that the threshold is well above the region where the four-
nucleon system displays a complex structure of resonances.
Nevertheless, these features do not allow for a reasonable
simplification of the AGS equations, (1), as all the terms are
important and cannot be neglected.

This being said, one cannot avoid concluding that the
results we obtain provide a very impressive description of the
world data for the 2H(d,p)3H and 2H(d,n)3He reactions up to
Ed = 25 MeV. Given the complex structure of these data, not
seen in nucleon-trinucleon or nucleon-deuteron scattering,
discrepancies are very few and limited to a few observables
such as iT11 and Py and small angular regions, in spite of the
large number of maxima and minima displayed by the data.
Also, double-polarization experiments are well described by
the calculations.

With this work we have completed the study of all
possible two-cluster reactions in the four-nucleon system using
realistic pairwise potentials and have brought the four-nucleon
scattering problem to the same degree of development that
three-nucleon scattering obtained a number of years ago.
Further progress is still needed to calculate the breakup
observables, but the lack of accurate breakup data makes the
effort superfluous for now. In a recent article [41] we reviewed
our previous work and suggested that the best theoretical
laboratory for study of NN force models is in fact the
low-energy region, where there are a number of four-nucleon
resonances in both the T = 0 and the T = 1 total isospin
configurations. Although four-nucleon calculations are more
time-consuming and pose greater numerical challenges, one
finds a greater sensitivity to NN force models compared to
the three-nucleon system.
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