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In nuclear matter at neutron-star densities and temperatures, Cooper pairing leads to the formation of a gap
in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport
coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude
can overcome this suppression for flavor-changing β processes, via the mechanism of “gap bridging.” We address
the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression
of neutrino emissivity for the realistic case of modified Urca processes in matter with 3P2 neutron pairing.
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I. INTRODUCTION

Ultra-dense nuclear matter is believed to be a superfluid
(via neutron Cooper pairing) and a superconductor (via proton
Cooper pairing) for at least part of the range of densities that
is relevant for neutron star physics [1–3]. This has a profound
effect on transport properties, many of which are suppressed as
exp(−�/T ) by the gap � in the neutron or proton spectrum.
Since neutron star core temperatures T are of order 0.01 MeV
[4] and � is typically in the MeV range [1], the suppression
factor can be as strong as 10−40.

It has previously been shown [5] that compression os-
cillations of sufficiently high amplitude can entirely over-
come this suppression for certain transport properties, such
as bulk viscosity and neutrino emissivity, that are dom-
inated by flavor-changing β (weak interaction) processes.
The mechanism, called “gap bridging,” is a threshold-like
behavior, separate from high-amplitude suprathermal en-
hancement of β processes [6–8]. Additional enhancement
may come from the suppression of the gap itself by
high-velocity flow of the superfluid relative to the normal
fluid [9].

The previous calculation of gap bridging [5] found that
oscillations with density amplitude that reached �n/n̄ ∼
10−4 could show gap-bridging enhancement. Gap bridging is
therefore expected to be relevant to high-amplitude oscillations
of neutron stars such as f- or r-modes [10,11], or the oscillations
caused by star quakes [12] or neutron star mergers [13].
However, the previous calculation was an illustrative proof
of principle in which the neutron pairing was assumed
isotropic, in the 1S0 channel, and only direct Urca processes
were considered. In this paper we provide a more realistic
calculation, obtaining the gap-bridging enhancement of the
modified Urca neutrino emissivity for nuclear matter with
3P2 neutron pairing. We find that gap bridging is just as
dramatic in this realistic scenario as the original estimates
indicated.

In Sec. II we describe the modified Urca process and
the quantities that we will calculate to characterize the
neutrino emissivity of nuclear matter. In Sec. III we calculate
the modified-Urca emissivity for matter with 1S0 pairing of
neutrons. In Sec. IV we calculate the modified-Urca emissivity
for matter with 3P2 pairing of neutrons. Section V contains our
conclusions.

II. MODIFIED URCA PROCESS

Urca processes change the flavor (isospin) of nucleons and
emit neutrinos. They dominate certain physical properties such
as bulk viscosity and neutrino emissivity. In this paper we will
calculate the enhancement of the neutrino emissivity by gap
bridging in high-amplitude compression oscillations.

Initial work on gap bridging studied the direct Urca process
because of its simplicity, but in β-equilibrated nuclear matter
direct Urca processes occur only when the density reaches
several times the nuclear saturation density, at which point the
proton and neutron Fermi momenta are sufficiently similar to
allow direct conversion of one species into the other. In most
if not all regions of a neutron star, the direct Urca process n →
p e− ν̄e is forbidden by energy and momentum conservation:
a neutron near its Fermi momentum pFn cannot turn into a
proton near its Fermi momentum pFp and an electron near
its Fermi momentum pFe because pFn > pFp + pFe. In the
absence of the direct Urca process, the main flavor-changing
β process is the modified Urca process in which a “spectator”
neutron, interacting via pion exchange, absorbs the extra
momentum (Fig. 1)

n + n → n + p + e− + ν̄e,

p + n + e− → n + n + νe.
(1)

We neglect the modified Urca process that uses a spectator
proton because it is suppressed by the lower density of the
protons.

The neutrino emissivity (energy radiation rate per unit
volume) arising from the modified Urca process (1) is [14]

ε =
∫ ⎡

⎣ 4∏
j=1

d3Pj

(2π )3

⎤
⎦ d3Pe

(2π )3

d3Pν

(2π )3
(2π )4δ(Ef − Ei)

× δ3( �Pf − �Pi)Eνf1f2(1 − f3)(1 − f4)(1 − fe)|Mf i|2,
(2)

where the index j labels the four nucleon states (two neutrons
in the initial state “i” and a proton and a neutron in the final state
“f”); fj ≡ 1/{1 + exp[(Ej − μj )/T ]} are the Fermi-Dirac
occupation distributions for the nucleons, Pj are the nucleon
momenta, Pe and Ee are the electron momentum and energy,
Pν and Eν are the neutrino momentum and energy, and
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FIG. 1. Feynman diagram for a modified Urca process. The initial
state contains two neutrons: n2, which undergoes β decay to a proton,
and n1, which is a spectator, interacting with the other neutron or
proton via the strong nuclear force.

|Mf i|2 is the squared matrix element summed over spin states.
In superfluid matter the matrix elements acquire coherence
prefactors (Bogoliubov coefficients) because the quasiparticles
are a superposition of particles and holes. We will neglect these
prefactors, which is valid when � � μ [15,16].

The matrix element |Mf i| depends on the magnitude and
relative orientation of the particle momenta and thus cannot
be taken out of the integral. However, because of the strong
degeneracy of nucleons and electrons in nuclear matter, the
main contribution to the integral in Eq. (2) comes from
the region near the Fermi surface. Therefore, we can set
| �p| = pF in all smooth functions of energy and momenta.
Furthermore, in the approximation where we treat the nucleons
as nonrelativistic and ignore the neutrino momenta as well as
the electron and the proton momenta (which are all small
in the region of our interest), the matrix elements turn out
to be independent of the relative orientation of the particle
momenta [14,17]. This enables us to take the matrix element
out of the integral. Since we will be interested in calculating
the ratio of the the neutrino emissivity rate with and without
superconductivity or superfluidity, the matrix element cancels
out at leading order in μ�/pF expansion. Interested readers
can find the expression for the matrix element in Eq. 139 of
[14] and Eq. 36 of [17].

A. Effect of superfluidity

We will consider phases of nuclear matter with neutron
superfluidity, with or without proton superconductivity. The
superfluidity or superconductivity arises from Cooper pairing
due to the attractive nuclear force between nucleons. Cooper
pairing creates a gap in the energy spectrum of the particles
near the Fermi surface. For nuclear matter in neutron stars the
temperature is far below the Fermi energy, so only the degrees
of freedom close to the Fermi surface are relevant for transport.
Their dispersion relation Ei(pi) is

(Ei − μi)
2 = v2

Fi(pi − pFi)
2 + �2

i , (3)

where i = n or p indexes the nucleon species, and �i is the
gap arising from Cooper pairing. For electrons and neutrinos
we can use the free dispersion relations E2

e = p2
e + m2

e and
Eν = pν .

We will write the neutrino emissivity ε as

ε = Rε ε0, (4)

where ε0 is the purely thermal emissivity (with no external
compression oscillations) for nonsuperfluid matter, and Rε is
the “modification factor” that takes into account the effects of
gaps in the fermion spectra and high-amplitude effects such
as suprathermal enhancement and gap bridging. As the gap
rises, Rε drops below 1 because of Boltzmann suppression
[18] but in the presence of compression oscillations that drive
the system out of β equilibrium Rε can be pushed up to very
large values. The modification function Rε for the modified
Urca process is

Rε = 945 P 3
Fn

92104 π13

∫ ∞

0
dxνx

3
ν

3∏
i=1

[∫ ∞

−∞
dxniW (xni,�n/T )

]

×
∫ ∞

−∞
dxpW (xp,�p/T ) A [f (X−) + f (X+)]

× f (xn1)f (xn2)f (−xn3)f (−xp), (5)

where

W (x,z) ≡ |x|�(x2 − z2)√
x2 − z2

, (6)

�(a) ≡ 1 if a > 0, or 0 if a < 0, (7)

A ≡ 4π

∫ 5∏
j=1

d	jδ
3( �Pf − �Pi), (8)

X± ≡ xn3 + xp + xν − xn1 − xn2 ± μ�/T , (9)

μ� ≡ μn − μp − μe, (10)

f (x) ≡ 1/(1 + ex), (11)

xi ≡ (Ei − μi)/T . (12)

The subscripts n1 and n2 refer to the incoming neutrons; n3
and p refer to the outgoing neutron and proton. The chemical
potential μ� arises from external compression oscillations that
drive the system out of β equilibrium. Rε is normalized so that
Rε = 1 when all the gaps are zero and μ� = 0.

We will calculate Rε̄ , which measures how much the
emissivity is affected by nonlinear high-amplitude effects and
by Cooper pairing,

Rε̄(μ̂�) = 〈ε(μ�)〉
〈ε0〉 = 〈Rε(μ�)〉,

(13)
μ�(t) = μ̂� sin(ωt),

where 〈X〉 means the average of X over one oscillation cycle.
Since ε0, the emissivity in the absence of oscillations and with
no Cooper pairing, is independent of μ�, then 〈ε0〉 = ε0.

III. SINGLET STATE (1S0) PAIRING FOR BOTH
NUCLEONS

We first consider modified-Urca neutrino emission in matter
where both the neutrons and protons form Cooper pairs in the
1S0 state. As we will see in Sec. IV, the results for the realistic
case of 3P2 neutron pairing are qualitatively and quantitatively
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FIG. 2. Dependence of neutrino emissivity [via the averaged
modification function Rε̄ , Eqs. (13) and (4)] on the amplitude of
the applied oscillation [via the departure μ� from β equilibrium,
Eq. (10)], for 1S0 neutron and proton pairing. At low amplitude the
emissivity is Boltzmann suppressed by the gaps, but for high enough
amplitude gap bridging reverses the suppression.

similar to this case. For 1S0 pairing the gap is isotropic so the
angular integral A and the radial integral in Eq. (5) can be sep-
arated. After angular integration, the modification function is

Rε = 60480

11513π8

∫ ∞

0
dxνx

3
ν

3∏
i=1

∫ ∞

−∞
dxniW (xni,�n/T )

×
∫ ∞

−∞
dxpW (xp,�p/T )f (xn1)f (xn2)f (−xn3)f (−xp)

× [f (X−) + f (X+)]. (14)

In Fig. 2 we show the effect of increasing the amplitude of
the applied compression oscillations for the case where protons
and neutrons have the same 1S0 gap, �p = �n. For low-
amplitude oscillations the system remains in β equilibrium
(μ̂�/�n � 1) and the neutrino emissivity is very heavily
suppressed by the gaps, roughly as exp(−2�n/T ). As the
amplitude rises, Rε̄ rises due to suprathermal effects [a factor
of (μ�/T )8 [7]]. On the log scale used in Fig. 2 this appears
as a very slow, logarithmic, increase. When μ̂� becomes of
the same order as �n, gap bridging begins to occur: some
β processes start to become unsuppressed, and their rate rises
exponentially (straight line on this plot). As we discuss in more
detail below, this happens in two steps, until at high amplitude
of the oscillations, μ̂�/�n ≈ 4, all the Boltzmann suppression
due to the gap has been overcome, and Rε̄ ≈ 1, regardless of
how low the temperature may be.

To understand the staircase-like behavior of the dependence
of the emissivity on the amplitude, it is necessary to analyze
the different channels that contribute to the modified Urca
process. These channels are schematically shown in Fig. 3 and
their contribution to the modification function Rε̄ is shown in
Fig. 4 where we can already see how gap bridging is manifested
at different values of μ̂� depending on the channel, so the sum
of all the channels yields a staircase dependence on μ̂�.
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FIG. 3. The 16 channels that contribute to the modified Urca
process. For each channel we show the three Fermi seas: from left to
right, neutron (gapped), proton (gapped), and electron (ungapped)
with their Fermi energies aligned. The black arrows show the
transitions of the spectator neutron (leftmost arrow), the n ↔ p

conversion (arrow that goes from neutron to proton Fermi sea)
and electron (rightmost arrow). The vertical lengths of the arrows
represent the free energy input or output; by energy conservation
these add up to zero in each process.

Figure 3 contains 16 panels showing all the channels that
contribute to the modified Urca process. Each of the two
nucleons can have an initial state above or below its Fermi
energy and a final state above or below its Fermi energy,
yielding 24 = 16 possibilities. For each channel we show
the three Fermi seas in β equilibrium: from left to right,
neutron (gapped), proton (gapped), electron (ungapped). We
are interested in the free energy εi − μi of each species i, so
the Fermi energies are aligned. The black arrows show the
transitions of the spectator neutron, the n ↔ p conversion
(arrow that goes from neutron to proton Fermi sea), and
electron. The vertical length of each arrow shows the free
energy input or output, so by energy conservation and β
equilibration (μn = μp + μe) these add up to zero in each
process. The electron line starts at the electron Fermi energy
because the free energy cost of placing an electron there is
zero. The length of the electron arrow then tells us the amount
of energy yielded (or consumed) by the hadronic processes.

A. Rates at zero compression amplitude

The processes fall into five classes, labeled by the number
below each panel. At μ̂� = 0 the degree of suppression of
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FIG. 4. Amplitude dependence of the neutrino emissivity for
different channels that contribute to the modified Urca process. This
explains the step structure in Fig. 2.

the rate for each process can be estimated by keeping track of
the Boltzmann factors that arise when one tries to annihilate a
fermion in a sparsely populated part of phase space, or create
a fermion in a densely occupied part of phase space, according
to the following rules:

(i) For each arrow starting at energy +|E| (i.e., above the
Fermi surface): a factor of exp(−|E|/T ).

(ii) For each arrow ending at energy −|E| (i.e., below the
Fermi surface): a factor of exp(−|E|/T ).

The result of applying this rule to each class of channel is

Classes 1 and 5: exp(−4�/T ),
Classes 2 and 4: exp(−3�/T ),

Class 3: exp(−2�/T ).
(15)

For example, class 1 contains one channel (top left panel
of Fig. 3). To see that this has a suppression factor of
exp(−4�/T ), we look at each arrow in turn. The spectator
neutron transitions from an occupied state at free energy −�n

to an unoccupied state at free energy +�n, so it contributes no
suppression factor according to the rules. The “protagonist”
neutron starts in an occupied state at free energy −�n and be-
comes a proton in an unoccupied state at free energy +�p, so it
also contributes no suppression factor. However, these two pro-
cesses each require an energy input of 2� so the electron that
is created by the β process must produce 4� by ending up in a
state at free energy −4� which is deep in the occupied electron
sea, yielding a suppression factor of exp(−4�/T ) which
reflects the unlikeliness of finding an unoccupied state there.

We can now understand the μ̂� = 0 part of Fig. 4: channels
1 and 5 are the most suppressed, then channels 2 and 4, and
finally the least suppressed is channel 3 where the nucleon
transitions are energy neutral so the electron yields or requires
no energy.

B. Rates as a function of compression amplitude

We now analyze the variation of the rates in the various
channels in the presence of a density oscillation whose

amplitude μ̂� rises to values as large as 5�n. The external
compression drives the system out of β equilibrium. Under
a relatively fast compression the proton and neutron Fermi
energies increase by the same fraction, but because the proton
fraction in β-equilibrated matter rises with density, the proton
Fermi energy is then μ� below its β-equilibrated value at the
higher density. This reflects the fact that the system now “wants
to make more protons.”

The rules are modified as follows:

(i) For channels where the electron is created with energy
−|E| (i.e., below the electron Fermi energy), its
Boltzmann factor is now exp[(−|E| + μ�)/T ], or
(μ�/T )8 if μ� > E.

(ii) For channels where the electron is created with
energy above the electron Fermi energy, there is an
additional overall factor of (μ�/T )8 (suprathermal
enhancement).

In channels of classes 3–5, at μ̂� = 0 the electron is created
in a state at or above the Fermi energy. There is therefore no
gap bridging, just suprathermal enhancement which multiplies
the μ̂� = 0 rate by (μ�/T )8. On the log scale used in Fig. 4
this gives a very weak growth with μ̂� which appears as
the horizontal lines at approximately exp(−2�/T ) (class 3
channels), exp(−3�/T ) (class 4 channels) and exp(−4�/T )
(class 5 channels). For class 3 channels, where the electron is
created at its Fermi energy, there is small gap-bridging growth
at very small amplitudes where μ� ∼ T .

In class 2 channels, at μ̂� = 0 the hadronic processes are
suppressed in two ways. First, there is a Boltzmann factor of
exp(−�/T ) from either trying to place a final-state hadron
in the mostly occupied states below the gap, or from finding
an initial-state hadron in the sparsely occupied states above
the gap. Second, the hadronic processes require an energy
input of 2�, either to move the spectator neutron up above
its pairing gap, or to convert the other neutron into a proton
above its pairing gap. This leads to an additional suppression
by exp(−2�/T ) since to deliver this amount of energy the
electron must be created at free energy −2�, deep in its
occupied Fermi sea. As μ̂� increases, this second factor is
canceled by gap bridging: the required energy input is reduced
by μ̂�, since the proton Fermi sea is lowered by this amount.
The electron can therefore be created in a state with free
energy μ̂� − 2�, so the second Boltzmann suppression factor
is reduced and eventually when μ̂� ≈ 2� the electron has
enough energy to be placed in a state above its Fermi energy
where there are plenty of unoccupied states and there is no
Boltzmann suppression factor. Any further increase in μ̂�

only results in suprathermal enhancement, with the remaining
exp(−�/T ) (described at the start of this paragraph) which is
not affected by gap bridging.

In channel 1, all the hadrons are taken from below the gap
and created above the gap, so there are no Boltzmann factors
associated with hadronic Fermi-Dirac distributions. However,
this requires a large energy input (4� at μ̂� = 0) from the
electron, which leads to a suppression factor of exp(−4�/T )
from forcing the electron into the heavily occupied phase space
deep in its Fermi sea at a free energy of −4�. As μ̂� rises, the
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FIG. 5. How the amplitude dependence of the neutrino emissivity
depends on the 1S0 proton pairing gap, for 1S0 neutron pairing with
�n/T = 60. We show curves for �p/�n = 1/2, 1, 2.

proton energy states drop relative to the neutron ones, and the
n → p process requires less and less energy. At μ̂� = 2�
the process breaks even, and at μ̂� = 4� it can provide all
the energy needed by the spectator neutron. The electron is then
relieved of the requirement to subsidize the hadrons, and can
be created above its Fermi energy. All Boltzmann suppression
has been canceled by gap bridging, and further increase
in μ̂� produces only suprathermal enhancement. In conclu-
sion, even though this channel is the most suppressed at
μ̂� = 0 it dominates at large μ̂� because all the suppression
arises from the hadronic energy requirements, which can be
eliminated by gap bridging.

Up to now we have assumed that the protons and neutrons
have the same pairing gap. We now explore the effect of
varying the proton gap: fixing the temperature so that �n/T =
60, we plot the amplitude dependence of the emissivity for
�p/�n = 2, 1, 1/2.

In Fig. 5 we show the results of this variation in �p. Not
surprisingly, lower values of the proton gap bring the point
of complete gap bridging to a lower μ̂�/�n. This is because
at large μ̂�/�n the rate is dominated by channel 1 where,
as explained in the previous paragraph, all the suppression
comes from the energy requirements of the hadronic processes.
For the spectator neutron to jump the gap requires 2�n and
the conversion of a neutron below the gap to a proton above
the gap requires energy �n + �p, so the total requirement is
3�n + �p. Thus when �p/�n = 1/2 full gap bridging can be
achieved when μ̂�/�n ≈ 3.5 (top curve in Fig. 5) rather than
4�n when �p = �n (middle curve in Fig. 5).

When �p/�n = 2, the suppression factor is exp(−5�n/T )
so a compression oscillation of magnitude μ̂�/�n ≈ 5, is
necessary for complete gap bridging.

IV. TRIPLET STATE (3P2) NEUTRON PAIRING

We now calculate the modified Urca neutrino emissivity for
nuclear matter in the inner regions of a neutron star where the
neutron density is high and the neutrons pair in a 3P2 channel,
while the proton density is relatively low and the protons

pair in a 1S0 channel [19]. For the neutrons there are other
available triplet channels, but 3P0 is only weakly attractive
while the 3P1 state is repulsive [1,20]. For the 3P2 channel,
there is still a choice of orientation of the condensate: Jz could
be 0, ±1, ±2. Microscopic calculations [19,21,22] find that
Jz = 0 is very slightly energetically favored over the other
values; however this is not conclusive because of uncertainties
in the microscopic theory [23]. In the following discussion we
will consider neutron condensates with Jz = 0 and ±2. We
expect these to show different dependencies of the emissivity
on temperature and oscillation amplitude because for Jz = 0
all neutron states at the Fermi surface are gapped, but for
Jz = ±2 there are ungapped nodes at the poles [14].

In our calculations we will assume �p = �n for simplicity.
In real neutron star core matter it is likely that �p is
significantly larger than �n [3].

A. 3P2( Jz = 0) neutron pairing

For neutrons that Cooper pair in the 3P2 state with Jz = 0,
rotational symmetry is broken. There is a preferred direction
in space (we will align the z axis along it) and the gap in the
neutron spectrum becomes dependent on the angle θ between
the momentum of the neutron quasiparticle and the z axis [19],

�n(θ ) = �n0

√
1 + 3 cos2(θ ). (16)

Note that the gap varies between a minimum of �n0 (around
the equator) and 2�n0 (at the poles) but does not vanish
anywhere on the Fermi surface. We therefore expect that 3P2

pairing will be qualitatively similar to 1S0 pairing, having the
same parametric dependence of the rate on temperature and
oscillation amplitude.

The dependence of the 3P2 gap on θ restricts us from
separating the angular and radial part of the integral in Eq. (5).
However, the gap has no φ dependence so we can integrate the
momentum-conserving δ function in Eq. (5) over the azimuthal
angles analytically [24]

∫ 2π

0
dφ1 dφ2 dφ3 δ3(P1 + P2 + P3)

= 4π �
(

3
4 − c1c2 − c2

1 − c2
2

)
p3

Fn

√
3
4 − c1c2 − c2

1 − c2
2

δ(c1 + c2 + c3), (17)

where cj ≡ cos θj and � is the unit step function. We
then perform the remaining angular and radial integrals
numerically.

Figure 6 shows how the neutrino emissivity is affected by
increasing the amplitude of compression oscillations. Since
the neutrons are gapped everywhere on the Fermi surface we
expect the results to be similar to those calculated for 1S0

neutron pairing in Sec. III, and comparing Fig. 6 with Fig. 2
we see this this is indeed the case. The overall pattern of the
dependence on T and μ̂� is the same, the only difference is
that Rε̄ for 3P2(Jz = 0) pairing is smaller than for 1S0 pairing
by a factor that varies between 400 and 20 as μ̂� ranges from
0 to 5�n.
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FIG. 6. Dependence of the neutrino emissivity on the amplitude
of the applied compression oscillations, for 3P2 (Jz = 0) neutron
pairing and 1S0 proton pairing.

B. 3P2( Jz = ±2) neutron pairing

We now consider the case where the neutron Cooper pairs
are in the 3P2 state with |Jz| = 2 while the protons pair in the
1S0 channel. The angular dependence of the neutron gap in
this channel is [19]

�n(θ ) = �n0 sin(θ ). (18)

Note that the neutron gap vanishes at the poles and has a
maximum value of �n0 around the equator.

In Fig. 7, we show the effect of increasing the amplitude of
the applied compression oscillations. To explain this figure we
first explain how the angular dependence of the gap affects the
modified Urca process. In Fig. 8 we have plotted a typical
arrangement of the neutron momenta. To understand the
overall behavior we can neglect the proton and electron Fermi
momenta, which are significantly smaller than the neutron
Fermi momentum. The momenta of the incoming neutrons
n1 and n2 (Fig. 1) then add up to the momentum of the

FIG. 7. Dependence of neutrino emissivity on the amplitude of
the applied compression oscillations for 3P2 (Jz = 2) neutron pairing
and 1S0 proton pairing.

n3

n2n1
2 n0

60o

FIG. 8. Momenta of the neutrons in one example of a typical Urca
process in a 3Ps(Jz = ±2) neutron superfluid. The shaded region is the
gap at the neutron Fermi surface. The momenta of the two initial-state
neutrons n1 and n2 add up to the momentum of the final-state neutron
n3 (neglecting the proton and electron momenta). Only one of the
three neutron momenta can be at a gapless node on the Fermi surface.

outgoing neutron n3. Since all three neutron momenta lie near
the neutron Fermi surface, pn1 and pn2 must be at a 60◦ angle to
pn3, on opposite sides in the same plane. Only one of the three
neutrons can be at the gapless node on their Fermi surface.
In Fig. 8 we placed pn3 at the node. The other two neutron
momenta are at θ = π/3 where the gap is

√
3�n0/2.

We can now understand the effect of increasing the
amplitude of the applied compression oscillations, as shown in
Fig. 7. For low amplitudes the neutrino emissivity is exponen-
tially suppressed by the gap, roughly as exp(−1.73�n0/T ), as
compared with exp(−2�n/T ) for 1S0 neutron pairing (Fig. 2).
It is natural to expect the 3P2(Jz = ±2) pairing to be less
suppressed because there is a gapless node on the neutron
Fermi surface.

To understand more fully the origin of the suppression
factor, we analyze one of the dominant channels at low
μ̂�/�n0, shown in Fig. 9(a). In the figure we show two
neutron Fermi seas, one gapless, corresponding to a neutron
momentum at the gapless node on the Fermi surface (polar
angle θ = 0), and one with a gap of

√
3�n0/2 ≈ 0.866�n0,

corresponding to neutron momenta at θ = π/3 or 2π/3.
For the process shown in Fig. 9(a) there is a suppression
factor of exp(−√

3�n0/t) ≈ exp(−1.73�n0/t), arising from
the unlikelihood of finding both initial-state neutrons in the
sparsely occupied region above the gap at θ = π/3. The
final-state neutron is at the gapless node and so experiences no
Boltzmann suppression. The electron is created above its Fermi
surface (because the hadrons provide an energy surplus to be
absorbed by the electron) so it too experiences no Boltzmann
suppression.

As we see in Fig. 7, increasing the amplitude of compression
oscillation leads to gap bridging: some of the β processes
become unsuppressed which results in steady increase of the
neutrino emissivity until at μ̂�/�n0 ≈ 2.73 the β process rate
reaches the ungapped limit (Rε ∼ 1), regardless of how low
the temperature may be.
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FIG. 9. Channels that in the presence of 3P2(Jz = ±2) neutron
pairing and 1S0 proton pairing will dominate the modified Urca
process in different regimes: (a) at low μ�/�n0, (b) at high μ�/�n0.

To understand why complete gap bridging happens at
μ̂�/�n0 ≈ 2.73, we show in Fig. 9(b) the channel of class
1 (Fig. 3) which dominates at large μ̂�/�n0. As in the case of
1S0 neutron pairing, this is because all the suppression comes
from the energy requirements of the hadronic sector, none from
hadronic Fermi-Dirac factors (all hadrons start below the gap
and end in the sparsely occupied region above the gap). At
μ̂� = 0 the energy required for this is 0.866�n0 for n1 → n3

and 0.866�n0 + �p for n2 → p, totalling 2.73�n0 assuming
�p = �n0. This energy is supplied by the electron, which must
be created deep in its Fermi sea at a free energy of −2.73�n0,
yielding a Boltzmann suppression of exp(−2.73�n0/T ).

As we increase μ̂�, the proton Fermi surface is lowered by
μ̂� relative to the neutron Fermi surface and the n → p process
requires less and less energy. At μ̂� = 1.866�n0 the n → p
process breaks even, and at μ̂� = 2.73�n0 it can provide all the
energy needed by the spectator neutron. The electron can then
be created above its Fermi energy. All Boltzmann suppression
has then been canceled by gap bridging, and further increase
in μ� produces only suprathermal enhancement.

V. CONCLUSION AND DISCUSSION

We have shown that the exponential suppression of flavor-
changing β processes in superfluid and superconducting nu-
clear matter can be completely overcome, via the mechanism
of gap bridging, by compression oscillations of sufficiently
high amplitude, regardless of how low the temperature may
be. This confirms the conjecture outlined in previous work [5],
and shows that it applies to the realistic case of modified Urca
processes and 3P2 neutron pairing.

We expect gap bridging to be relevant in processes that
induce density oscillations of amplitude �n/n̄ ∼ 10−3 to
10−2 [5]. This is sufficient to overcome typical nucleon
pairing gaps which are of order 1 MeV. In hyperonic
[25,26] or quark [27,28] matter, there are processes which
are only suppressed by � � 0.01 MeV, and these could be
bridged by oscillations with amplitudes as small as �n/n̄ �
10−4. Relevant physical scenarios that are likely to involve
high-amplitude oscillations include unstable oscillations of
rotating compact stars such as f-modes or r-modes [10],
events like star quakes [12], and neutron star mergers [13].
When such high-amplitude compression oscillations occur
in superfluid or superconducting matter, certain transport
properties, such as bulk viscosity and neutrino emissivity,
will be greatly enhanced, leading to nonlinear (in amplitude)
damping of the mode itself, and enhanced cooling via neutrino
emission.
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