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Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state

Bharat Kumar,* S. K. Biswal, and S. K. Patra
Institute of Physics, Bhubaneswar 751005, India

and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
(Received 30 September 2016; published 4 January 2017)

We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field
equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of
compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean
gravitational wave signature in binary inspiral. These are characterized by various Love numbers kl (l = 2, 3, 4),
that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured
through an advanced LIGO detector from the final stages of an inspiraling binary neutron star merger.
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I. INTRODUCTION

The detection of a gravitational wave is a major break-
through in astrophysics/cosmology which is detected for the
first time by the advanced Laser Interferometer Gravitational-
wave Observatory (aLIGO) detector [1]. Inspiraling and
coalescing of a binary black-hole results in the emission
of gravitational waves. We may expect that in a few years
the forthcoming aLIGO [1], VIRGO [2], and KAGRA [3]
detectors will also detect gravitational waves emitted by binary
neutron stars (NSs). This detection is certainly posed to be
a valuable guide and will help in a better understanding
of a highly compressed baryonic system. Flanagan and
Hinderer [4–6] have recently pointed out that tidal effects
are also potentially measurable during the early part of
the evolution when the waveform is relatively clean. It is
understood that the late inspiral signal may be influenced by
the tidal interaction between binary stars (NS-NS), which gives
important information about the equation of state (EOS). The
study of Refs. [7–16] inferred that the tidal effects could be
measured using the recent generation of gravitational wave
(GW) detectors.

In 1911, the mathematician A. E. H. Love [17] introduced
the dimensional parameter in Newtonian theory that is related
to the tidal deformation of the Earth due to the gravitational
attraction between the Moon and the Sun. This Newtonian
theory of tides has been imported to the general relativ-
ity [12,18], where it shows that the electric and magnetic type
dimensionless gravitational Love number is a part of the tidal
field associated with the gravitoelectric and gravitomagnetic
interactions. The tidal interaction in a compact binary system
has been encoded in the Love number and is associated with
the induced deformation responded by changing shapes of the
massive body. We are particularly interested in a neutron star in
a close binary system, focusing on the various Love numbers
kl (l = 2, 3, 4) due to the shape changes (like quadrupole,
octupole, and hexadecapole in the presence of an external
gravitational field). Although higher Love numbers (l = 3,
4) give negligible effect, still these Love numbers (kl) can
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have vital importance in future gravitational wave astronomy.
However, geophysicists are interested to calculate the surficial
Love number hl , which describes the deformation of the body’s
surface in a multipole expansion [12,18,19].

We have used the equation of state from the relativistic mean
field (RMF) [20–22] and the newly developed effective field
theory motivated RMF (E-RMF) [23,24] approximation in our
present calculations. Here, the degrees of freedom are nucleon,
σ , ω, ρ, π mesons, and photon. This theory very well explains
the properties of finite nuclei and nuclear matter systems at a
higher density region. Walecka has generalized [22] the RMF
approximation and then subsequently Boguta and Bodmer [25]
extended to the self-interaction of the σ meson to reproduce
proper experimental observables. In the E-RMF formalism, all
the possible couplings of the mesons among themselves and
also their cross-interactions are considered [23,24]. The self-
and crossed interactions are very significant. For example,
the self-interaction of the σ meson brings back the nuclear
matter incompressibility K∞ from an unacceptably high value
of K∞ ∼ 600 MeV to a reasonable K∞ of ∼270 MeV [25,26].
Similarly, the quartic self-interaction of the vector meson ω
softens the equation of state [27,28]. It is to be noted that all
the mesons and their self- and cross-interaction terms in the
effective Lagrangian do not need to be included, because of
some symmetry and their heavy masses [29]. This theory of
dense matter fairly explains the observed massive neutron star,
like PSR J1614-2230 with mass M = 1.97 ± 0.04M� [30] and
PSR J0348+0432 (M = 2.01 ± 0.04M�) [31].

The baryon octets are also introduced as the stellar system
is in extraordinary condition such as highly asymmetric or
extremely high density medium [32]. The coupling constants
for nucleon-mesons are fitted to reproduce the properties of a
finite number of nuclei, which then predict not only the observ-
ables of β-stable nuclei, but also of drip-lines and superheavy
regions [22,25,28,33–37]. The hyperon-meson couplings are
obtained from the quark model [38–40]. Recently, however, the
couplings were improved by taking into consideration some
other properties of strange nuclear matter [41].

The paper is organized as follows. In Sec. II, we give a
brief description on the relativistic mean field (RMF/E-RMF)
formalism. The ingredients of the quantum hadrodynamic
model (QHD) and resulting EOSs are outlined in this section.
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The various tidal Love numbers and tidal deformability of
neutron and hyperon stars are discussed in Secs. III C and III D
after describing the numerical scheme. Finally, the summary
and concluding remarks are given in Sec. IV.

II. THE RELATIVISTIC MEAN FIELD FORMALISM

The effective field theory motivated relativistic mean field
(E-RMF) Lagrangian is designed with underlying symmetries
of quantum chromodynamics (QCD) and the parameters of
G1 and G2 are constructed taking into account the naive
dimensional analysis and naturalness [23,24,42–44]. For prac-
tical purposes, the terms in the Lagrangian are taken up to
fourth order in meson-baryon couplings. The baryon-meson
interaction is given by [32]
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The covariant derivative Dμ is defined as

Dμ = ∂μ + igωωμ + igρI3τ
aρa

μ, (2)

where Ra
μν and 
μν are field tensors defined as

Ra
μν = ∂μρa

ν − ∂νρ
a
μ + gρEabcρ

b
μρc

ν , (3)


μν = ∂μων − ∂νωμ. (4)

Here, the symbol B stands for the baryon octet (n,p,�, �+,
�0,�−,�−,�0) and l represents e− and μ−. The masses mB ,
mσ , mω, and mρ are, respectively, for baryons and for σ , ω, and
ρ meson fields. In real calculation, we ignore the non-Abelian
term from the ρ field. I3 is the third component of isospin
projection. All symbols carry their own usual meaning [32,45].

For a given Lagrangian density in Eq. (1), one can solve
the equations of motion [32,45] in the mean-field level,
i.e., the exchange of mesons creates a uniform meson field,
where the nucleon has a simple harmonic motion. Then we
calculate the energy-momentum tensor within the mean field
approximation (i.e., the meson fields are replaced by their
classical numbers) and get the EOS as a function of baryon
density. The EOS remains uncertain at density larger than the
saturation density of nuclear matter, ρn ∼ 3 × 1014 g cm−3.
At these densities, neutrons can no longer be considered,
which may consist mainly of heavy baryons (mass greater
than nucleon) and several other species of particles expected
to appear due to the rapid rise of the baryon chemical
potentials [46]. The β equilibrium and charge neutrality

are two important conditions for the neutron/hyperon-rich
matter. Both these conditions force the stars to have ∼90%
of neutron and ∼10% proton. With the inclusion of baryons,
the β-equilibrium conditions between chemical potentials for
different particles are

μp = μ�+ = μn − μe,

μn = μ�0 = μ�0 = μn,
(5)

μ�− = μ�− = μn + μe,

μμ = μe,

and the charge neutrality condition is satisfied by

np + n�+ = ne + nμ− + n�− + n�− . (6)

The corresponding pressure and energy density of the charge
neutral β-equilibrated neutron star matter (which includes the
lowest lying octet of baryons) is then given by [32]

E =
∑
B

2

(2π )3

∫ kB

0
d3kE∗

B(k) + 1

4!
ζ0g

2
ωω4

0

+m2
σ σ 2

0

(
1

2
+ g3

3!

gσσ0

mB

+ g4

4!

g2
σ σ 2

0

m2
B

)

+ 1

2
m2

ωω2
0

(
1 + η1

gσσ0

mB

+ η2

2

g2
σ σ 2

0

m2
B

)

+ 1

2
m2

ρρ
2
03

(
1 + ηρ + gσσ0

mB

)
+ 3�v(gρρ03)2(gωω0)2

+
∑

l

El , (7)
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where Pl and El are the lepton’s pressure and energy density,
respectively. E∗

B = (k2
B + M∗2

B )1/2 is the effective energy, kB

is the Fermi momentum of the baryons. M∗
p and M∗

n are the
proton and neutron effective masses written as

M∗
p = Mp − gσσ0 (9)

and

M∗
n = Mn − gσσ0. (10)

III. RESULTS AND DISCUSSIONS

In this section, we present the results of our calculations in
Figs. 1–9 and Table II. Our calculated results of the equation
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FIG. 1. The equations of state obtained for nuclear and hyper-
nuclear matter under charge neutrality as well as the β-equilibrium
condition for G2 [24], FSUGold2 [47], FSUGold [27], and NL3 [37]
force parameters are compared with the empirical data [48] (shaded
area in the graph) for rph = R with the uncertainty of 2σ . Here, R and
rph are the neutron radius and the photospheric radius, respectively.

of state and related outputs are discussed in the subsequent
subsections.

A. Equations of state

Before going to the estimation of the tidal deformability
parameter λ, we check the validity of the EOSs obtained with
various well-known force parameters. It is worth mentioning
that in Ref. [49], the mass and radius of the hybrid stars
with hyperons and quarks are evaluated using the NL3 [37]
parameter set. In a relatively recent paper, Bhowmick et al. [50]
used the FSUGold [27] parameter set to study the properties
of hypernuclei for a finite nuclear system [50]. In the present
paper, we have used these sets along with FSUGold2 [47] and
G2 [24] forces. Although FSUGold2 is relatively new, G2 has
a large number of couplings, which are important for various
properties of finite and infinite nuclear systems. Figure 1
displays the equation of state for G2 [24], FSUGold2 [47],
FSUGold [27], and NL3 [37] parameter sets. From Fig. 1(a),
it is obvious that all the EOSs follow a similar trend. Among
these four, the celebrity NL3 set gives the stiffest EOS and
the relatively new FSUGold represents the softer character.
This is because of the large and positive g4 value as well
as the introduction of isoscalar-isovector coupling (�) in the
FSUGold set [27]. To have an understanding on the softer
and stiffer EOSs by various parametrizations, we compared
their coupling constants and other parameters of the sets
in Table I. We notice a large variation in their effective
masses, incompressibilities and other nuclear matter properties
at saturation. For higher energy density E ∼ 500–1400 MeV
fm−3, except the NL3 set which has the lowest nucleon
effective mass, all other sets are found in the region of empirical
data with the uncertainty of 2σ [48].

Figure 1(b) shows a hump-type structure on the nucleon-
hyperon equation of state at E around 400–500 MeV fm−3.
This kink (E ∼ 200–300 MeV) shows the presence of hyper-
ons in the dense system. Here, the repulsive component of the

TABLE I. Parameters and saturation properties for NL3 [37],
G2 [24], FSUGold [27], and FSUGold2 [47]. The parameters gσ , gω,
gρ , g3, and g4 are calculated from nuclear matter given saturation
properties using the relations suggested by the authors of Ref. [51].

Parameters NL3 G2 FSUGold FSUGold2

mn(MeV) 939 939 939 939
mσ (MeV) 508.194 520.206 491.5 497.479
mω(MeV) 782.501 782 783 782.5
mρ(MeV) 763 770 763 763
gσ 10.1756 10.5088 10.5924 10.3968
gω 12.7885 12.7864 14.3020 13.5568
gρ 8.9849 9.5108 11.7673 8.970
g3(MeV) 1.4841 3.2376 0.6194 1.2315
g4 −5.6596 0.6939 9.7466 −0.2052
η1 0 0.65 0 0
η2 0 0.11 0 0
ηρ 0 0.390 0 0
ζ0 0 2.642 12.273 4.705
� 0 0 0.03 0.000823
ρ0(fm−3) 0.148 0.153 0.148 0.1505 ± 0.00078
E/A(MeV) −16.299 −16.07 −16.3 −16.28 ± 0.02
K∞(MeV) 271.76 215 230 238.0 ± 2.8
J(MeV) 37.4 36.4 32.59 37.62 ± 1.11
L(MeV) 118.2 101.2 60.5 112.8 ± 16.1
m∗

n/mn 0.6 0.664 0.610 0.593 ± 0.004

vector potential becomes more important than the attractive
part of the scalar interaction. As a result the coupling of
the hyperon-nucleon strength gets weak. At a given baryon
density, the inclusion of hyperons significantly lowers the
pressure compared to the equation of state without hyperons.
This is possible due to the higher energy of the hyperons,
as the neutrons are replaced by the low-energy hyperons.
The hyperon couplings are expressed as the ratio of the
meson-hyperon and meson-nucleon couplings:

χσ = gYσ

gNσ

, χω = gYω

gNω

, χρ = gYρ

gNρ

. (11)

In the present calculations, we have taken χσ = 0.7 and χω =
χρ = 0.783. One can find similar calculations for stellar mass
in Refs. [51–54].

B. Mass and radius of neutron star

Once the equations of state for various relativistic forces
are fixed, then we extend our study for the evaluation of the
mass and radius of the isolated neutron star. The Tolmann-
Oppenheimer-Volkov (TOV) equations [55] have to be solved
for this purpose, where EOSs are the inputs. The TOV
equations are written as

dP (r)

dr
= − [E(r) + P (r)][M(r) + 4πr3P (r)]

r2
(
1 − 2M(r)

r

) (12)

and

dM(r)

dr
= 4πr2E(r). (13)
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TABLE II. Properties of a 1.4M� neutron and hyperon star for a different class of the EOS. The quadrupolar tidal deformability λ and
uncertainty error �λ̃ in (1036 g cm2 s2).

Neutron star

EOS R(km) C fc(Hz) k2 k3 k4 h2 h3 h4 λ �λ̃ �

NL3 14.422 0.144 1256.7 0.1197 0.0353 0.0142 0.9775 0.6519 0.5074 7.466 2.027 1288.81
G2 13.148 0.157 1440.9 0.0934 0.0265 0.0103 0.8879 0.5951 0.4596 3.668 1.486 652.76
FSUGold2 13.850 0.149 1332.4 0.1040 0.0301 0.0119 0.9275 0.6237 0.4854 5.299 1.763 944.08
FSUGold 12.236 0.170 1608.0 0.0882 0.0244 0.0071 0.8589 0.5634 0.4268 2.418 1.178 414.13

Hyperon star
NL3 14.430 0.143 1252.9 0.1203 0.0355 0.0143 0.9800 0.6541 0.5096 7.527 2.018 1341.20
G2 12.686 0.163 1520.6 0.0804 0.0229 0.0088 0.8434 0.5707 0.4399 2.641 1.321 465.83
FSUGold2 13.690 0.151 1355.9 0.0988 0.0287 0.0113 0.9108 0.6154 0.4789 4.750 1.696 839.04
(FSUGold)1.3M� 9.922 0.194 2119.0 0.0421 0.0116 0.0042 0.6884 0.4683 0.3518 0.4048 0.530 102.14

For a given EOS, the Tolmann-Oppenheimer-Volkov (TOV)
equations [55] must be integrated from the boundary con-
ditions P (0) = Pc, and M(0) = 0, where Pc and M(0) are
the pressure and mass of the star at r = 0 and the value of
r(= R), where the pressure vanish defines the surface of the
star. Thus, at each central density we can uniquely determine
a mass M and a radius R of the static neutron and hyperon
stars using the four chosen EOSs. The estimated results for
the maximum mass as a function of radius compared with the
highly precise measurements of two massive (∼2M�) neutron
stars [30,31], and the extraction of stellar radii from x-ray
observation [48] are shown in Figs. 2(a) and 2(b). From recent
observations [30,31], it is clearly illustrated that the maximum
mass predicted by any theoretical models should reach the limit
∼2.0M�, which is consistent with our present prediction from
the G2 equation of state of a nucleonic matter compact star with
mass 1.99M� and radius 11.25 km. From x-ray observations,
Steiner et al. [48] predicted that the most-probable neutron
star radii lie in the range 11–12 km with neutron star masses
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FIG. 2. The mass-radius profile for the force parameters like
G2 [24], FSUGold2 [47], FSUGold [27], and NL3 [37] used. The solid
circles (rph = R) and triangles (r � R) represent the observational
constraints [48], where rph is the photospheric radius. The vertical
shaded region corresponds to the recent observation [30,31].

∼1.4M� and predicted the EOS is relatively soft in the density
range 1–3 times the nuclear saturation density. As explained
earlier, stiff EOS-like NL3 predicts a larger stellar radius
13.23 km and a maximum mass 2.81 M�. Though FSUGold
and FSUGold2 are from the same RMF model with similar
terms in the Lagrangian, their results for a neutron star are quite
different with FSUGold2 suggesting a larger and heavier NS
with mass 2.12M� and radius 12.12 km compared to the mass
and radius (1.75M� and 10.76 km) of the FSUGold. Because
in FSUGold2 EOS at high densities, the impact comes from the
quartic vector coupling constant ζ0 and also the large values
of the slope parameter L = 112.8 ± 16.1 MeV (see Table I)
tend to predict the neutron star with large radius [56]. From
the observational point of view, there are large uncertainties
in the determination of the radius of the star [57–59], which
is a hindrance to get a precise knowledge on the composition
of the star atmosphere. One can see that the G2 parameter is
able to reproduce the recent observation of 2.0M� NS. But
the presence of hyperon matter under β equilibrium softens
the EOS, because they are more massive than nucleons and
when they start to fill their Fermi sea slowly replacing the
highest energy nucleons. Hence, the maximum mass of NS
is reduced by ∼0.5 unit solar mass due to the high baryon
density. For example, the stiffer NL3 equation of state gives
the maximum NS mass ∼2.81M� and the presence of hyperon
matter reduces the mass to ∼2.25M� as shown in Fig. 2(b).
These results give us warning that most of the present sets
of hyperon couplings are unable to reproduce the recently
observed mass of neutron star like PSR J1614-2230 with
mass M = 1.97 ± 0.04M� [30] and the PSR J0348+0432
with M = 2.01 ± 0.04M� [31]. Probably, this suggests to us
to modify the coupling constants and get the equations of
state properly, so that one can explain all the mass-radius
observations to date. Further, one can see that in Fig. 2(b) the
mass-radius curve of G2, FSUGold, FSUGold2 with hyperon
lies in the range of the predicted equation of state between the
rph = R and rph � R cases is the high density behavior [48].

C. Various tidal Love numbers of compact stars

When a spherical star is placed in a static external
quadrupolar tidal field Eij then the star will be deformed and
quadrupole deformation will be the leading order perturbation.
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Such a deformation is defined as the ratio of the mass
quadrupole moment of a star Qij to the external tidal field Eij :

λ = −Qij

Eij

. (14)

Specifically, the observable of the tidal deformability
parameter λ depends on the EOS via both the neutron star
(NS) radius and a dimensionless quantity k2, called the Love
number and is given by the relation

λ = 2
3k2R

5, (15)

and the dimensionless tidal-deformability (�) is related with
the compactness parameter C = M/R as

� = 2k2

3C5
, (16)

where R is the radius of the (spherical) star in isolation. Now,
we have to get k2 for the calculation of the deformability
parameter λ, which is the key quantity of deformation due to
the gravitational attraction of the binary stars with each other.
This force of attraction becomes more and more important
in the course of time, because of the reduction of the orbital
distance between them. The orbital distance between the

binary decreases as the companion star emits gravitational
radiation. As a result, the binary accelerates and finally merges
with each other and possibly turns to a black hole. Thus, the
estimation of the leading order quadrupole electric tidal Love
number k2 along with other higher order Love numbers k3 and
k4 is very important for the detection of gravitational wave.

To estimate the Love numbers kl (l = 2, 3, 4), along with
the evaluation of the TOV equations, we have to compute y =
yl(R) with initial boundary condition y(0) = l from the fol-
lowing first-order differential equation iteratively [5,6,18,60]:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0 (17)

with

F (r) = r − 4πr3[E(r) − P (r)]

r − 2M(r)
, (18)

Q(r) =
4πr

(
5E(r) + 9P (r) + E(r)+P (r)

∂P (r)/∂E(r) − l(l+1)
4πr2

)
r − 2M(r)

− 4

[
M(r) + 4πr3P (r)

r2(1 − 2M(r)/r)

]2

. (19)

Once we know the value of y = yl(R), the electric tidal Love
numbers kl are found from the following expression [60]:

k2 = 8

5
(1 − 2C)2C5[2C(y2 − 1) − y2 + 2]

{
2C(4(y2 + 1)C4 + (6y2 − 4)C3 + (26 − 22y2)C2 + 3(5y2 − 8)C − 3y2 + 6)

− 3(1 − 2C)2(2C(y2 − 1) − y2 + 2) log
( 1

1 − 2C

)}−1
, (20)

k3 = 8

7
(1 − 2C)2C7[2(y3 − 1)C2 − 3(y3 − 2)C + y3 − 3]

{
2C[4(y3 + 1)C5 + 2(9y3 − 2)C4 − 20(7y3 − 9)C3

+ 5(37y3 − 72)C2 − 45(2y3 − 5)C + 15(y3 − 3)]−15(1 − 2C)2(2(y3−1)C2 − 3(y3−2)C + y3 − 3) log
( 1

1−2C

)}−1
,

(21)

and

k4 = 32

147
(1 − 2C)2C9[12(y4 − 1)C3 − 34(y4 − 2)C2 + 28(y4 − 3)C − 7(y4 − 4)]

{
2C[8(y4 + 1)C6

+ (68y4 − 8)C5 + (1284 − 996y4)C4 + 40(55y4 − 116)C3 + (5360 − 1910y4)C2 + 105(7y4 − 24)C − 105(y4 − 4)]

− 15(1 − 2C)2[12(y4 − 1)C3 − 34(y4 − 2)C2 + 28(y4 − 3)C − 7(y4 − 4)] log
( 1

1 − 2C

)}−1
. (22)

As we have emphasized earlier, the dimensionless Love
number kl (l = 2, 3, 4) is an important quantity to mea-
sure the internal structure of the constituent body. These
quantities directly enter into the gravitational wave phase
of an inspiraling binary neutron star (BNS) and extract the
information of the EOS. Notice that Eqs. (20)–(22) contain
an overall factor (1 − 2C)2, which tends to zero when the
compactness approaches the compactness of the black hole,
i.e., CBH = 1/2 [61]. Also, it is to be pointed out that with
the presence of multiplication order factor C with (1 − 2C)2

in the expression of kl that the value of the Love number of a
black hole simply becomes zero, i.e., kBH

l = 0.

Figure 3 shows the tidal Love numbers kl (l = 2, 3, 4) as a
function ofcompactness parameter C for the neutron star with
four selected EOSs. The result of kl suddenly decreases with
increasing compactness (C = 0.06–0.25). For each EOS, the
value of k2 appears to be a maximum between C = 0.06–0.07.
However, we are mainly interested in the neutron star masses at
∼1.4M�. Because of the tidal interactions in the neutron star
binary, the shape of the star acquires quadrupole, octupole,
hexadecapole, and other higher-order deformations. The value
of the Love numbers for corresponding shapes are shown in
Table II. The values of kl decrease gradually with an increase
of multipole moments. Thus, the quadrupole deformability
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FIG. 3. The tidal Love numbers k2,k3,k4 as a function of the mass
of the four selected EOSs of the neutron star.

has maximum effects on the binary star merger. Similarly, in
Fig. 4, the dimensionless Love number kl is shown as a function
of compactness for the hyperon star. With the inclusion of
hyperons, the effect of the core is negligible due to the softness
of the EOSs. The values of kl are different for a typical neutron-
hyperon star with 1.4 M� for various sets listed in the lower
portion of Table II. The radius and respective mass-radius
ratio are also given in Table II. The table also reflects that
the Love numbers decrease slightly or remain unchanged with
the addition of a hyperon in the neutron star. The neutron star
surface or solid crust is not responsible for any tidal effects, but
instead it is the matter mainly in the outer core that gives the
largest contribution to the tidal Love numbers. It is relatively
unaffected by changing the composition of the core and leave
it at that. Thus it instigates the calculation for the surficial Love
number hl for both neutron and hyperon star binary.

Next, we calculate the surficial Love number hl which
describes the deformation of the body’s surface in a multipole
expansion. Recently, Damour and Nagar [61] have given the
surficial Love number (also known as shape Love number) hl
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FIG. 4. Same as Fig. 3 but for hyperon star.
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FIG. 5. Surficial Love number hl as a function of compactness C

of a neutron star, for selected values of l.

for the coordinate displacement δR of the body’s surface under
the external tidal force. Alternatively, Landry and Poisson [19]
have proposed the definition of the Newtonian Love number
in terms of a curvature perturbation δR instead of a surface
displacement δR. For a perfect fluid, the relation between the
surficial Love number hl and tidal Love number kl is given as

hl = �1 + 2�2kl, (23)

�1 = l + 1

l − 1
(1 − C)F (−l, − l, − 2l; 2C)

− 2

l − 1
F (−l, − l − 1, − 2l; 2C),

�2 = l

l + 2
(1 − C)F (l + 1,l + 1,2l + 2; 2C)

+ 2

l + 2
F (l + 1,l,2l + 2; 2C), (24)

where F (a,b,c; z) is the hypergeometric function. Figure 5
shows the results of surficial Love number hl of a neutron star
as a function of compactness parameter C. Unlike the initially
increasing and then decreasing trend of the tidal Love number
kl , the surficial Love number hl decreases almost exponentially
with the compactness parameter. At the minimum value of
the compactness parameter, the maximum value of the shape
Love number of each multipole moment approaches 1. Thus,
we zero in on to the Newtonian relation, i.e., hl = 1 + 2kl .
Again one can compute from Table II that the surficial Love
number hl decreases ∼20% from one moment to another. For
example, h2 = 0.9775 and h3 = 0.6519 and h4 = 0.5074 for
NL3 parameter sets.

Furthermore, we also calculate the “magnetic” tidal Love
number jl . Here, we give only the quadrupolar case (l = 2),
which is expressed as

j2 = {96C5(2C − 1)(y2 − 3)}{5(2C(12(y2 + 1)C4

+ 2(y2 − 3)C3 + 2(y2 − 3)C2+3(y2 − 3)C − 3y2 + 9)

+ 3(2C − 1)(y2 − 3) log(1 − 2C))}−1. (25)
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After inserting the value of y2 in Eq. (25), we compute the
magnetic tidal Love number j2 in a hydrostatic equilibrium
condition for a nonrotating neutron star. This gives important
information about the internal structure [18] without changing
the tidal Love number k2. At C = 0.01, the magnetic Love
number j2 is nearly 0.4. In both cases (with and without
hyperons), j2 is maximum within the compactness 0.06 to
0.07 for all the four EOSs (see Fig. 6). Then the value of j2

decreases sharply with an increase of compactness. The NL3
parameter set gives a maximum j2 in both systems, while the
rest of the three sets predict a comparable j2.

D. Tidal deformability and cut-off frequency of compact star

From Eq. (15), it is known that the tidal deformability
λ is a function of the linear tidal Love number k2 and
the fifth power of the radius R5 of the compact star. For
this purpose, we solve numerically Eqs. (12)–(20) using the
initial boundary condition. To examine the results of tidal
deformability with and without hyperons, we have shown the
λ − C plot in Fig. 7, where we have considered a single
neutron star under the influence of an external tidal field
with an adiabatic approximation using the four equations of
state. In this case, the orbital evaluation time scale is much
larger than the time scale needed to assume the star as a
stationary configuration. From the very beginning, we mark
an infinitely large λ corresponding to a small compactness,
i.e., C ∼ 0.02. Further, the λ value falls to a minima that rises
again resulting in a hump-like pattern for each EOS. It is
noteworthy that in Fig. 7(b) by introducing the NL3 case with
hyperon, there is a remarkable but mere deviation in λ value,
i.e., 7.527 g cm2 s2 (without hyperon λ = 7.466 g cm2 s2).
Since, the tidal deformability λ is a surface phenomenon, it
is very much getting affected by the radius of the star in
both normal neutron star and hyperon star. Thus, the tidal
deformability λ becomes highly sensitive on the radius R
even though k2 is small. We estimate the radii to be within
12.236–14.422 km for a neutron star of mass 1.4M� and the
range is 13.690–14.430 km for neutron-hyperon star for all the
four stiff or soft equations of state (see Table II).
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FIG. 7. The tidal deformability λ as a function of the compactness
C for the four EOS with and without hyperon.

Figure 8 shows the tidal deformability for both neutron
and hyperon stars. We have a large radii for a smaller stellar
mass of ∼0.1M� in both cases. At this value of mass and
radius, the tidal deformability λ becomes maximum, because
for a large radius with smaller mass, the force of attraction
within the star is weak and when another star comes closer,
the gravitational pull overrides a maximum at the surface part
of the star. This phenomenon is true for both neutron as well
as hyperon stars [5,6]. Then, suddenly the tidal deformability
decreases and again increases as shown in the figure making
a broad peak at around M = 0.7–0.8M� and then decreases
smoothly with an increase in the mass of the star. Since, the
tidal deformability depends a lot on both the mass and radius
of a neutron star, it is imperative to measure the radius of
the star precisely, as the mass is already measured with very
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FIG. 8. Tidal deformability λ of a single neutron star as a function
of the neutron-star mass for a range of EOSs. The estimate of
uncertainties in measuring λ for equal mass binaries at a distance
of D = 100 Mpc is shown for the advanced LIGO detector in shaded
area. (b) Same as (a), but for hyperon star.
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good precession. Recently, Steiner et al. predicted the most
extreme limit for the tidal deformabilities between 0.6 and 6 ×
1036 g cm2 s2 for 1.4M� with 95% confidence. This range can
be constrained on high dense matter of any measurements [62].
Mostly, the binaries masses are about 1.4M�, so in particular
we are interested in studying the phenomena within this mass
range and the results are summarized in Table II. Comparing
the results, we notice that the tidal deformability λ is quite
sensitive to the EOS. It is more for stiffer EOS, because of the
high-density behavior of the symmetry energy [63].

Finally, we calculate the weighted tidal deformability of the
binary neutron star of mass m1 and m2 and it approximately
is [5,6]

λ̃ = 1

26

[
m1 + 12m2

m1
λ1 + m2 + 12m1

m2
λ2

]
, (26)

and the root mean square (rms) measurement uncertainty �λ̃
can be calculated following the approximate formula [5,6]:

�λ̃ ≈ α

(
M

M�

)2.5(
m2

m1

)0.1(
fcut

Hz

)−2.2(
D

100 Mpc

)
, (27)

where α = 1.0 × 1042 g cm2 s2 is the tidal deformability
for a single advanced LIGO detector and fcut (fend) cutoff
frequency [12] for the end stage of the inspiral binary neutron
stars. D denotes the luminosity distance from the source to
observer.

The weighted tidal deformability for neutron and hyperon
stars and their corresponding masses as cut-off frequency fcut

are shown in Fig. 9. The cut-off frequency is a stopping
criterion to estimate when the tidal model no longer describes
the binary. Here, we take the cut-off to be approximately when
the two neutron stars come into contact, estimated as in Eq. (36)
of Ref. [12]. Specifically, we use fcut = 2f

N(R1+R2)
orb. , where

f
N(R1+R2)
orb. is the Newtonian orbital frequency corresponding

to the orbital separation where two unperturbed neutron stars

with radii R1 and R2 would touch. In Fig. 9(a), 9(c), it shows
the variation of mass of the binary as a function of cut-off
frequency fcut. Here, we considered m1 = m2, i.e., both the
masses of the binary are equal. Initially, the masses of the stars
0.2M� remain almost constant up to fcut ≈ 400 Hz. Then
the mass increases nearly exponentially up to a maximum
mass of ≈ 1.75–2.81M� (for NS) and ≈ 1.33–2.25M� (for
hyperon star) and then decreases. By this time, the cut-off
frequency fcut attains quite a large value. When the individual
mass of the binary is 1.4M�, the NL3 set weighted tidal
deformability achieves the cut-off frequency fcut ≈ 1256.7 Hz
as the minimum contrary to the fcut ≈ 1608.0 Hz of FSUGold
at the same mass of the single NS. It is also clear from
the figure that the weighted tidal deformabilities of the NS
for the four models are 7.466, 3.668, 5.229, and 2.418
for NL3, G2, FSUGold2, and FSUGold, respectively, with
the corresponding frequency 1256.7, 1440.9, 1332.4, and
1608.0 Hz.

Using the cut-off frequency, we calculate the uncertainty
in the measurement of the tidal deformability (�λ̃) obtained
from these four EOSs for an equal-mass binary star inspiral
at 100 Mpc from aLIGO detector (shaded region in Fig. 8).
The uncertainty in the lower mass region (0.4–1.0M�) of the
NS �λ̃ is smaller. Similar results are found in the case of the
hyperon star also. Interestingly, the error (�λ̃) increases with
an increase in the mass of the binary for all the EOSs. From
Table II, by comparing the �λ̃ obtained from all the EOSs, we
find that predicted errors are greater than the measured value
for a star of mass 1.4M�.

IV. SUMMARY AND CONCLUSIONS

In summary, four different models have been extensively
applied which are obtained from an effective field theory
motivated relativistic mean field formalism. This effective
interaction model satisfies the nuclear saturation properties
and reproduce the bulk properties of finite nuclei with a very
good accuracy. We used these four forces of interaction and
calculate the equations of state for neutron and hyperon star
matter. It is noteworthy that each term of the interaction has its
own meaning and has specific character. The inclusion of extra
terms (nucleons replaced by baryons octet) in the Lagrangian
contribute to soften the EOS and the matter becomes less
compressible. Hence, there is a decrease in the maximum mass
by ∼0.5M� than the pure neutron star.

We have extended our calculations to various tidal re-
sponses both for electric-types (even-parity) and magnetic-
types (odd-parity) of neutron and hyperon stars in the influence
of an external gravitational tidal field. The Love numbers are
directly connected with surficial Love number hl associated
with the surface properties of the stars. Subsequently, we study
the quadrupolar tidal deformability λ of normal neutron star
and hyperon star using a different set of equation of state. These
tidal deformabilities particularly depend on the quadrupole
Love number k2 and radius (R) of the isolated star. Although
the maximum value of k2 is not very sensitive to the EOS for
neutron and hyperon stars lying in the range k2 ≈ 0.144–0.170
and 0.143–0.194 for neutron and hyperon stars, respectively,
but it is very much sensitive to the radius of the star.
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We find that aLIGO can constrain on the existence of
hyperon star, i.e., the inner core of the NS has hyperons,
but detecting them can be much harder. However, it should
be able to constrain the neutron star deformability to λ �
10 × 1036 g cm2 s2 for a binary of 1.4M� neutron stars at a
distance 100 Mpc from the detector. In the future, we expect
that aLIGO should be able to measure λ even for neutron stars
masses up to 2.0M� and consequently constrain the stiffness
of the equations of state. It is worth mentioning that the present
calculations are based on the extrapolation of the formula �λ̃

given in Refs. [5,64,65]. Here, the systematic uncertainties in
the model that was used to obtain the measurability estimates
are neglected.
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