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1Institute for Nuclear Studies and Department of Physics, The George Washington University, Washington, D.C. 20052, USA

2Institut für Kernphysik der Universität Mainz, Johann-Joachim-Becher-Weg 45, 55099 Mainz, Germany
3Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn, Nußallee 14-16, 53115 Bonn, Germany
4Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

(Received 21 November 2016; published 19 January 2017)

We compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave
analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail
how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated
partial-wave analysis (observables measured at a single energy and a number of angles).
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I. INTRODUCTION AND MOTIVATION

A model-independent determination of amplitudes from
experimental data is mathematically possible, ignoring ex-
perimental errors, if one measures a sufficient number of
observables at a given energy and angle. This has been done in
nucleon-nucleon scattering [1] and can be done [2,3], in princi-
ple, by using pseudoscalar-meson photoproduction data [4–6].

The complete experiment analysis (CEA) determines helic-
ity or transversity amplitudes only up to an overall phase. This
is a problem if one actually wants partial-wave amplitudes,
because the undetermined phase may be different at each
reconstructed energy and angle. In the analysis of pseudoscalar
photoproduction data, we do require multipole amplitudes
in order to search for resonance content, and this has led
to a renewed interest [7,8] in the properties of a truncated
partial-wave analysis (TPWA), as has been described by
Omelaenko [9] and Grushin [10].

The number of required observables is different for the CEA
and TPWA. The reason for this is obscured by the fact that
very different methods have been used to derive the necessary
conditions for a solution. Here, we have used several methods
to clarify the connections between the two approaches. The
first nontrivial example reveals many of these connections.

II. AMPLITUDES USED IN PSEUDOSCALAR-MESON
PHOTOPRODUCTION

Before comparing the CEA and TPWA approaches, we
review the notation used to analyze pseudoscalar photoproduc-
tion data. The multipoles and helicity amplitudes are related
by [11,12]

H1 = 1√
2

cos
θ

2
sin θ

∞∑
�=1

[E�+ − M�+ − E(�+1)−

−M(�+1)−](P
′′
� − P

′′
�+1), (1a)

H2 = 1√
2

cos
θ

2

∞∑
�=0

[(� + 2)E�+ + �M�+

+ �E(�+1)− − (� + 2)M(�+1)−](P
′
� − P

′
�+1), (1b)

H3 = 1√
2

sin
θ

2
sin θ

∞∑
�=1

[(E�+ − M�+ + E(�+1)−

+M(�+1)−](P
′′
� + P

′′
�+1), (1c)

H4 = 1√
2

sin
θ

2

∞∑
�=0

[(� + 2)E�+ + �M�+ − �E(�+1)−

+ (� + 2)M(�+1)−](P
′
� + P

′
�+1). (1d)

From these one can construct the transversity
amplitudes [3],

b1 = 1
2 [(H1 + H4) + i(H2 − H3)], (2a)

b2 = 1
2 [(H1 + H4) − i(H2 − H3)], (2b)

b3 = 1
2 [(H1 − H4) − i(H2 + H3)], (2c)

b4 = 1
2 [(H1 − H4) + i(H2 + H3)]. (2d)

In Table I, expressions for the observables of type S (cross
section and single polarization), BT (beam-target polariza-
tion), BR (beam-recoil polarization), and T R (target-recoil
polarization) are given in terms of both helicity and transversity
amplitudes.

Transversity amplitudes often simplify the discussion of
amplitude reconstruction, because the type-S observables
determine their moduli. Another simplification is the property

b2(θ ) = −b1(−θ ) and b4(θ ) = −b3(−θ ), (3)

which allows one to parametrize only two of the four
transversity amplitudes. The form introduced by Omelaenko,

b1 = ca2L

eiθ/2

(1 + x2)L

2L∏
i=1

(x − αi), (4a)

b3 = −ca2L

eiθ/2

(1 + x2)L

2L∏
i=1

(x − βi), (4b)

with x = tan(θ/2) and L being the upper limit for �, is
convenient for a truncated partial-wave analysis, because the
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TABLE I. Spin observables expressed in terms of helicity and transversity amplitudes. Helicity amplitudes follow Walker [11] and the
SAID convention [12]. The relations in Barker, Donnachie, and Storrow [3] are adopted for observables with the replacement N → H2, S1 →
H1, S2 → H4, D → H3. The transversity representation for Ȟ corrects a typographical error in Ref. [3]. I = (k/q)dσ/d�, with k and q being
the photon and pion center-of-mass momenta. The checked observables Ǒ are defined by Ǒ = IO.

Observable Helicity Transversity Type
representation representation
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2 (|H1|2 + |H2|2 + |H3|2 + |H4|2) 1
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Ǒz Im(H1H
∗
4 − H2H

∗
3 ) −Im(b1b

∗
4 + b2b

∗
3) BR
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Ľz
1
2 (|H1|2 − |H2|2 − |H3|2 + |H4|2) Re(b1b

∗
2 + b3b

∗
4)

ambiguities can be linked to the conjugation of the complex
roots of the above relations, with a constraint

2L∏
i=1

αi =
2L∏
i=1

βi. (5)

The quantities a2L and c above will be clarified in an explicit
example described in Sec. III below.

In a complete experiment analysis (CEA), one attempts to
determine the transversity or helicity amplitudes based on the
relations in Table I and at a particular energy and angle. Barker,
Donnachie, and Storrow [3] (BDS) showed how this could be
done with nine well-chosen observables. For example, the case
of I , P̌ , �̌, Ť , Ě, F̌ , Ǧ, Ľx , and Ľz was worked out explicitly
in Ref. [3]. More recently, a counterexample to this scheme
was noticed in Ref. [13], which led to the finding by Chiang
and Tabakin [2] that it was possible to perform a CEA with
one measurement less. In the case presented by BDS, Chiang
and Tabakin demonstrated a solution with only I , P̌ , �̌, Ť , F̌ ,
Ǧ, Ťx , and Ľx being required.

In a truncated partial-wave analysis (TPWA), the multipole
expansion of helicity or transversity amplitudes is cut off at
some upper limit L. Here one finds the amplitudes, for all
angles, at a particular energy. Omelaenko showed how this
can be done, eliminating the root-conjugation ambiguities
associated with the transversity amplitudes in Eq. (4), using
an L-dependent number of angular measurements of five
observables, such as I , P̌ , �̌, Ť , and F̌ . As the methods
of proof are very different, in the CEA and TPWA problems,
it is not obvious how these results can be compared. In the
following, we compare the CEA and TPWA results in such a
way that the differences can be more easily understood.

III. AMPLITUDE RECONSTRUCTION

A. Trivial case: L = 0

It is instructive to compare methods starting with the trivial
� = 0 case of a single E0+ multipole and build up to the
case studied by Omelaenko [9] including the E0+, M1−, E1+,
and M1+ multipoles. If only one complex amplitude (E0+)
is included, from Eq. (1) we see that there are two nonzero
helicity amplitudes (H2 and H4) which are related by a real
factor. Here, we may simply measure the cross section at a
single angle. While this gives only one real number, and the
amplitudes are complex, the fact that observables involve only
bilinear products of amplitudes, i.e., terms of the form A∗B,
prevents the measurement of any overall phase associated with
the amplitudes. This solves both the CEA and TPWA with the
same experimental input.

B. Simplest nontrivial case: J = 1/2

The first nontrivial case includes the E0+ and M1− mul-
tipoles, i.e., partial waves with J = 1/2. This combination
again produces two nonzero helicity amplitudes (H2 and H4).
In this case, however, the amplitudes are independent. The
corresponding transversity amplitudes are given by1

b1 = i√
2

(−eiθ/2E0+ + e−iθ/2M1−), (6)

1The corresponding expression in Ref. [9] differs by an overall
phase (−i) and a factor

√
2c which incorporates the kinematic factor

of Table I, here converting dσ/dt to I , into the definition of the
transversity amplitudes.
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TABLE II. Spin observables in terms of helicity amplitudes for a CEA and multipole amplitudes for a TPWA with J = 1/2. Here we have
used b3 = −b1 and b4 = −b2.

Observable CEA (helicity) CEA (transversity) TPWA Type

I 1
2 (|H2|2 + |H4|2) |b1|2 + |b2|2 (|E0+|2 + |M1−|2) − 2 cos θRe(E0+M∗

1−)
�̌ 0 0 0 S

Ť 0 0 0
P̌ −Im(H2H

∗
4 ) |b1|2 − |b2|2 2 sin θ Im(E0+M∗

1−)

Ǧ 0 0 0
Ȟ Im(H2H

∗
4 ) −|b1|2 + |b2|2 −2 sin θ Im(E0+M∗

1−) BT

Ě 1
2 (|H2|2 + |H4|2) |b1|2 + |b2|2 (|E0+|2 + |M1−|2) − 2 cos θRe(E0+M∗

1−)
F̌ 0 0 0

Ǒx 0 0 0
Ǒz 0 0 0 BR

Čx −Re(H2H
∗
4 ) −2Imb1b

∗
2 sin θ (|E0+|2 − |M1−|2)

Čz
1
2 (−|H2|2 + |H4|2) 2Reb1b

∗
2 2Re(E0+M∗

1−) − cos θ (|E0+|2 + |M∗
1−|2)

Ťx 0 0 0
Ťz 0 0 0 T R

Ľx Re(H2H
∗
4 ) 2Imb1b

∗
2 − sin θ (|E0+|2 − |M1−|2)

Ľz
1
2 (−|H2|2 + |H4|2) 2Reb1b

∗
2 2Re(E0+M∗

1−) − cos θ (|E0+|2 + |M∗
1−|2)

with b3 = −b1, and with (b2,b4) given by Eq. (3). In
Table II,we give the observables both in terms of the helicity
and transversity amplitudes (CEA) and the two included
multipoles (TPWA).

Here the CEA requires four measurements at a given energy
and angle. For example, I , P̌ , plus either the beam-recoil sets
(Čx and Čz) or the target recoil (Ľx and Ľz). The TPWA
requires one fewer observable, a possible choice being I , P̌ ,
and Čx or Ľx , compensated by a second angular measurement
of the cross section.

For both the CEA and TPWA, closed expressions for the
solution of the inverse problem can be obtained in this special
case J = 1/2. It is instructive to work them out explicitly. For
the quantities I , P̌ , and Čx in the TPWA, it is possible to
parametrize the angular dependence given in Table II as

I = σ0 + σ1 cos θ, P̌ = P0 sin θ, Čx = Cx0 sin θ, (7)

where each coefficient carries the energy dependence of the
multipoles. It is clear that to extract values for σ0, σ1, P0, and
Cx0, both spin asymmetries and the cross section are needed
at the same angle, with an additional angular measurement
required for the cross section.

Having obtained the four coefficients, the zeroth-order
quantities of I and Čx can be directly solved for the moduli of
the multipoles (cf. Table II),

|E0+| =
√

σ0 + Cx0

2
, |M1−| =

√
σ0 − Cx0

2
. (8)

The relative phase φE,M ≡ φE − φM between the multipoles
E0+ and M1− is obtainable via the remaining two coefficients,
both containing information on the real and imaginary parts
of the bilinear product E0+M∗

1−. The additional angular
measurement for the cross section fixes the real part,

Re(E0+M∗
1−) = |E0+||M1−|Re(eiφE,M ) = − 1

2σ1, (9)

while the imaginary part can be extracted from the single
measurement of P̌ ,

Im(E0+M∗
1−) = |E0+||M1−|Im(eiφE,M ) = 1

2P0. (10)

Together, these define the exponential of the relative phase,
provided that none of the moduli vanish,

eiφE,M = −σ1 + iP0√
σ0 + Cx0

√
σ0 − Cx0

. (11)

This function can be inverted uniquely on the interval [0,2π ).
Therefore, no quadrant ambiguity remains. The multipoles
have been extracted up to an overall phase.

The CEA proceeds in a mathematically exactly analogous
way. The observables I , P̌ , Čx , and Čz yield the moduli and
relative phase φ1,2 ≡ φb1 − φb2 of the transversity amplitudes
by using exactly the same calculation (cf. Table II):

|b1| =
√

I + P̌

2
, |b2| =

√
I − P̌

2
, (12)

eiφ1,2 = Čz − iČx√
I + P̌

√
I − P̌

. (13)

A crucial difference, however, lies in the kinematical regions
over which the CEA and TPWA operate. For a fixed energy,
the CEA extracts amplitudes from observables at exactly the
same angle and it is completely blind to what may happen at
neighboring angles. The TPWA uses the angular distributions
of the observables which, in the present case of I (θ ), is linear
in cos θ . One seemingly obtains a reduction from four to three
observables, but this is bought at the price of having to measure
angular distributions which become, for the higher truncation
orders, increasingly complicated.

The difference in the nature of these analyses also becomes
obvious in considering the end results they yield. The CEA
returns transversity amplitudes only at a single angle, up to
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an energy- and angle-dependent overall phase; cf. Eqs. (12)
and (13). However, from the result of the TPWA, the moduli
(8), and relative phase (11) of multipoles, it is possible to
infer transversity amplitudes at all angles, this time up to an
energy-dependent phase.

C. Unique features of J = 1/2 case

It is useful to compare the special case of J = 1/2 with
more general results for the CEA and TPWA in Refs. [2]
and [9]. In Ref. [2], a complete set of eight experiments,
explicitly derived and compared with the corresponding BDS
case (requiring nine experiments) is (I , �̌, P̌ , Ť , Ǧ, F̌ , Ľx , Ťx).
Here, with a truncation to J = 1/2, this set becomes (I , 0, P̌ ,
0, 0, 0, Ľx , 0), which does not contain sufficient information, as
can be seen directly from Table II. However, the older BDS set,
which exchanges Ťx for Ě and Ľz, does constitute a complete
experiment. This failure of a set of eight experiments is due
to the number of zero quantities in Table II. The effect can be
seen in constraint equation (4.10) employed in the derivation
of Ref. [2]. Many Fierz identities listed in Ref. [2] similarly
revert to zero-equals-zero relations in this special case.

Similarly, the TPWA conditions for a complete set [9],
derived for a case including the E0+, M1−, E1+, and M1+
multipoles, do not directly reduce to the result given here if the
E1+ and M1+ multipoles are simply set to zero. In Refs. [7,9],
a complete set is given as (I , P̌ , �̌, Ť , Ǧ), which again is
insufficient in this special case.

To understand how a truncation to J = 1/2 changes the
result, it is instructive to repeat Omelaenko’s analysis [9],
which leads to the general parametrizations of Eqs. (4a) and
(4b) under the constraint in Eq. (5) for all L � 1.

Expressing cos θ and sin θ in terms of x = tan(θ/2), one
can write

eiθ = (1 + ix)2

1 + x2
. (14)

Starting from the expression for b1 in terms of multipoles given
in Eq. (6), we have

b1 = i√
2

(−eiθ/2E0+ + e−iθ/2M1−)

= ieiθ/2

√
2

(
− E0+ + 1 − x2 − 2ix

(1 + x2)
M1−

)

= −i√
2

eiθ/2

(1 + x2)
(E0+ + M1−)

×
(

x2 + 2iM1−
E0+ + M1−

x + E0+ − M1−
E0+ + M1−

)

≡ −i√
2

eiθ/2

(1 + x2)
a2(x2 + â1x + â0). (15)

Note that the coefficients a2, â1, and â0, defining the amplitude
in the last step, are fully equivalent to the multipoles.
Decomposing the polynomial into a product of linear factors
defined by two complex roots α1 and α2, the Omelaenko

decomposition of the amplitude b1 is obtained as

b1 = −i√
2
a2e

iθ/2

∏2
i=1(x − αi)

1 + x2
. (16)

The expression for the only remaining nonredundant amplitude
b2, for J = 1/2, is obtained by invoking the symmetry in
Eq. (3),

b2(θ ) = −b1(−θ ) = i√
2
a2e

−iθ/2

∏2
i=1(x + αi)

1 + x2
. (17)

Therefore, for J = 1/2 there are only two α roots, no β roots
and the constraint (5) no longer appears.

In view of the already-obtained results (8) and (11),
the observable Čx will have to be tested for its response
to discrete ambiguity transformations. The full Omelaenko
decomposition of this observable becomes

Čx = −2Imb1b
∗
2 = |a2|2

(1 + x2)2
Im

[
eiθ

2∏
i=1

(x − αi)(x + α∗
i )

]
.

(18)

The decompositions of amplitudes bi in terms of roots α1 and
α2 given by Eqs. (16) and (17) facilitate a study of the discrete
ambiguities of the quantities I and P̌ (as well as Ě and Ȟ ),
since they are just linear combinations of the squared moduli
|b1|2 and |b2|2 (see Table II). The ambiguities are obtained by
the complex conjugation of subsets of roots, as stated below
Eq. (4).

Note that the multipoles E0+ and M1−, with an undeter-
mined overall phase that can be arbitrarily fixed, correspond
to three real numbers. For the variables (a2,α1,α2) of the
Omelaenko decomposition, where the phase of a2 cannot be
determined, one counts five real degrees of freedom. The
general constraint equation (5), which is true for an expansion
in � for all L � 1, is missing here. So, there must be another
way in which the effective number of real degrees of freedom
is reduced from five to three.

One can learn more by considering the equations which re-
late the Omelaenko roots (α1,α2) to the multipoles (E0+,M1−).
Utilizing the notation of Eqs. (15) and (16), we have

â1 ≡ −(α1 + α2) = 2iM1−
E0+ + M1−

,

(19)
â0 ≡ α1α2 = E0+ − M1−

E0+ + M1−
.

These relations lead to a quadratic equation with two solutions
given by the roots

α
(I)
1 = i

E0+ − M1−
E0+ + M1−

, α
(I)
2 = −i and α

(II)
1 = −i,

α
(II)
2 = i

E0+ − M1−
E0+ + M1−

. (20)

Both solutions remove the overcounting mentioned above.
Two real degrees of freedom are always removed since one of
the roots has a fixed value. Only one of the two roots depends
on the multipoles.

015206-4



AMPLITUDE RECONSTRUCTION FROM COMPLETE . . . PHYSICAL REVIEW C 95, 015206 (2017)

Solutions I and II of Eq. (20) are not distinct, because
both are equivalent by a simple relabeling of the roots. Taking
solution I, for which α2 is fixed to −i, only one discrete
ambiguity remains in the Omelaenko formulation for J = 1/2,
represented by the transformation α1 → α∗

1 ,
Using solution I, the full Omelaenko decomposition of Čx ,

Eq. (18), simplifies significantly. Again writing the exponential
eiθ in terms of x = tan(θ/2) [see Eq. (14)], we have the identity

eiθ (x − α2)(x + α∗
2 ) = (1 + ix)2

1 + x2
(x + i)2 = −(1 + x2).

(21)
The expression for Čx , in terms of the only nonredundant
Omelaenko root, α1, then becomes

Čx = −|a2|2
1 + x2

Im[(x − α1)(x + α∗
1 )]. (22)

For the discrete symmetry, α1 → α∗
1 , we see that expression

(22) changes sign, Čx → −Čx , once the ambiguity transfor-
mation is applied. Furthermore, Čx generally only remains
invariant at the angles θ = 0 and θ = π , where it vanishes by
definition (see Table II).

Another interesting special case is found if one requires
the transformation α1 → α∗

1 to produce no ambiguity, which
can only be fulfilled for a real root. Once this condition is
evaluated for the explicit form of α1 in terms of multipoles,
given in Eq. (20), one finds that α∗

1 = α1 is equivalent to
|E0+| = |M1−|.

The Omelaenko decomposition of Čx , as well as the explicit
form of this quantity written in terms of multipoles (see
Table II), shows that, in this particular case, Čx vanishes for
all angles. Here, while the sign information associated with
Čx may be missing, it is not required because the discrete
symmetry, which is resolved precisely by this sign, no longer
exists. Also, Eqs. (8) and (11) imply that, in this special
case, i.e., |E0+| = |M1−| or equivalently Cx0 = 0, the moduli
of both multipoles, as well as the relative phase φE,M , are
determined by I and P̌ alone. This case is, however, the only
situation where a solution of the inverse problem is possible
with just two observables.

In summary, both the explicit inversion of the TPWA,
Eqs. (8) and (11), and the study of the discrete ambiguities,
according to Omelaenko’s method, yield consistent results
for J = 1/2. This has been exemplified by the solvability of
the example set I , P̌ , and Čx . The case J = 1/2 is special
because it allows all three analyses: the CEA, TPWA, and
ambiguity study, to be performed by using simple algebra.
For the higher orders L � 1, Chiang and Tabakin [2] have
published a solution for the CEA which holds apart from the
special case discussed above.

An algebraic inversion of the TPWA, i.e., the extraction of
the bilinear products of multipoles by an effective linearization
of the problem, followed by a simple evaluation of moduli and
relative phases, does not appear to be possible for L � 1. The
only principle that carries through to the higher orders is the
study of discrete ambiguities [7,9], using the expressions in
Eqs. (4a), (4b), and (5).

In this way, complete sets of observables can still be
proposed. However, the actual completeness of such sets

should, in any case, be checked by a full solution of the inverse
problem which, for the higher truncation orders, can only be
done numerically.

D. Counting observables

In examining the J = 1/2 case, it was found that a formal
solution was possible with only P̌ , Čx , and Čz (three rather
than four quantities), measured at one angle, if one used the
overall phase freedom to make one amplitude real and positive.
This result could be understood by refining how the counting
of observables is done. If a measurement, done with a fixed
beam, target and detector setup, produces an “observable,”
then the measurement of a polarization asymmetry (spin
up versus spin down) is actually two observables. These
two measurements can then be combined to form both the
asymmetry and the cross section. Once the cross section is
known, a second asymmetry can, in principle, be determined
from only one of the two possible (such as spins parallel versus
antiparallel) measurements. Thus, the set (P̌ , Čx , Čz) requires
2 + 1 + 1 = 4 measurements, compared with the set (I , P̌ ,
Čx , Čz), requiring 1 + 1 + 1 + 1 = 4 measurements.

IV. COMPARING CEA AND TPWA BEYOND J = 1/2

In Table III, the examples discussed in detail above
are generalized to higher angular-momentum cutoffs. The
examples with one, two, and three multipoles show that, in
the CEA and TPWA approaches, the number of measurements
is the same. In cases where a TPWA is possible with all
measurements at a single energy and angle, the results are
directly related. Note that in the case of three multipoles, only
three of the helicity or transversity amplitudes are independent.
This is also true for the standard set of four multipoles (E0+,
M1−, E1+, M1+) as can be most easily seen if, instead, one
writes out the CGLN amplitudes,

F1(θ ) = E0+ + 3(M1+ + E1+)cosθ, (23a)

F2(θ ) = 2M1+ + M1−, (23b)

F3(θ ) = 3(E1+ − M1+), (23c)

F4(θ ) = 0. (23d)

With F4 = 0, only three independent amplitudes can be
extracted in a CEA. Consequently, also only three linear
combinations of multipoles can be obtained in an experiment
at a single angle.

Extending the expansion of observables, given in Eq. (8),
to higher orders in cos θ up to the highest powers for a given
L, we have

I = σ0 + σ1 cos θ + σ2 cos2 θ + · · · + σ2L cos2L θ, (24a)

�̌ = sin2 θ (�0 + · · · + �2L−2 cos2L−2 θ ), (24b)

Ť = sin θ (T0 + T1 cos θ + · · · + T2L−1 cos2L−1 θ ), (24c)

P̌ = sin θ (P0 + P1 cos θ + · · · + P2L−1 cos2L−1 θ ). (24d)
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The remaining double-polarization observables (Ě, Čx , Ǒx ,
Ťz, Ľx) behave like I , (F̌ , Ȟ , Ǒz, Ťx) like Ť , Ǧ like �̌, while
Čz and Ľz exhibit the highest powers up to cos2L+1 θ .

Table III gives examples of measurement sets involving
from one to a generalized number of 4L multipoles using one
or more angles in the TPWA. Set 1 is the trivial case and set 2
with J = 1/2 has already been discussed in detail. Besides the
J = 1/2 TPWA set with the minimal number of three observ-
ables, but more than one angle, a solution also exists at one
angle with four observables, which is fully equivalent to the
CEA. In a set with three S, P wave multipoles, E0+,E1+,M1−,
three amplitudes are linearly independent, e.g., F1, F2, F3, and
both CEA and TPWA are again equivalent. Also, with TPWA
at more than one angle, the number of observables can be
reduced. Taking the full angular distribution, a minimal set of
three polarization observables is already complete.

The next logical set is the full set four of S- and P -wave
multipoles, E0+, M1−, E1+, and M1+, but this yields a
surprising result. As already discussed, from Eq. (23) only
three amplitudes are linearly independent, leading to a CEA,
which is not sufficient to resolve all four multipoles. This
is only possible by using the angular distribution of the
observables, in the minimal case by measurements at a second
angle. At this point, it is very interesting to note that solutions
with only four observables are also possible [14]. Here we
give the set of observables (I , �̌, F̌ , Ȟ ), providing a solution
with no recoil measurements required. This is a very surprising
result because it goes beyond the studies of Omelaenko [7,9],
where unique solutions were found only with five or more
observables.

A simple set with four multipoles and four independent
amplitudes is set five of Table III with E0+, E1+, M1−, and
E2−. In this case also F4 = −3E2− is finite. For this set an
equivalent set of eight observables yields unique solutions for
a CEA, with four transversity amplitudes, and a TPWA, at
a single angle, with four multipoles. However, taking into
account the angular distribution, the number of necessary
observables can be reduced to only three: I , �̌, and Ť , where
no recoil measurement would be needed.

Truncating the multipole series in the total spin J (instead
of angular momentum L) leads to set six with limit J = 3/2.
This set contains six multipoles, and a CEA at one angle is
certainly no longer sufficient to determine all of them. The
last set seven of Table III is the full set of eight multipoles for
L = 2 and can be generalized for any higher L. Here also the
CEA is no longer related to the TPWA.

The Omelaenko method [7,9] can be applied to any given L.
This method proves, in general, a unique solution is possible
with five observables measured over the full angular range, i.e.,
at sufficient angles to determine the cos θ or alternatively the
Legendre coefficients. These are four observables from group
S, the unpolarized cross section, and the three single-spin
polarizations, plus one more double-polarization observable
from any other group, except Ě and Ȟ . The fifth observable is
needed to resolve, first of all, the double ambiguity. The new
solution with only four observables [14], which was found to
provide a solution for set 4, has been found to solve set 7 as
well, and can most likely be generalized for any higher L.

However, as discussed in Refs. [7,9], an increasing number
of 42L accidental ambiguities can occur, which leads to

TABLE III. Examples of measurements at a single energy for CEA and TPWA. The number of different measurements (n), different
observables (m), and different angles (k) needed for a complete analysis are given as n(m)k. Entries with † do not allow the comparison CEA
↔ TPWA. For cases with only one angle, the CEA and TPWA are equivalent. The number of necessary distinct angular measurements is given
in brackets.

Set Included partial waves CEA TPWA Complete sets for TPWA

1 L = 0 (E0+) 1(1) 1(1)1 I [1]

2 J = 1/2 (E0+,M1−) 4(4) 4(4)1 I [1],P̌ [1],Čx[1],Čz[1]
4(3)2 I [2],P̌ [1],Čx[1]

3 L = 0,1 (E0+,M1−,E1+) 6(6) 6(6)1 I [1],�̌[1],Ť [1],P̌ [1],F̌ [1],Ǧ[1]
6(4)2 I [2],�̌[1],Ť [2],P̌ [1]
6(3)3 I [3],�̌[1],Ť [2]

4 L = 0,1 (E0+,M1−,E1+,M1+) † TPWA at one angle not possible
full set of four S- and P -wave multipoles 8(5)2 I [2],�̌[1],Ť [2],P̌ [2],F̌ [1]

8(4)3 I [3],�̌[1],F̌ [2],Ȟ [2]

5 L = 0,1,2 (E0+,M1−,E1+,E2−) 8(8) 8(8)1 I [1],�̌[1],Ť [1],P̌ [1],F̌ [1],Ǧ[1],Čx[1],Ǒx[1]
8(4)2 I [2],�̌[2],Ť [2],P̌ [2]
8(3)3 I [3],�̌[2],Ť [3]

6 J � 3/2 (E0+,M1−,E1+,M1+,E2−,M2−) † TPWA at one or two angles not possible
12(5)3 I [3],�̌[2],Ť [3],P̌ [2],F̌ [2]
12(4)4 I [4],�̌[2],F̌ [3],Ȟ [3]

7 L = 0,1,2 (E0+, . . . ,M2+) † TPWA at one or two angles not possible
full set of eight S-,P -,D-wave multipoles 16(6)3 I [3],�̌[3],Ť [3],P̌ [3],F̌ [3],Ǧ[1]

16(5)4 I [4],�̌[3],Ť [3],P̌ [3],F̌ [3]
16(4)5 I [5],�̌[3],F̌ [4],Ȟ [4]
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enormous numerical problems for L > 2. This problem can
partly be solved by extending the set of observables. However,
the accidental ambiguities depend on the dynamics of the
underlying models and the physics involved, and unique
solutions cannot be guaranteed in many cases, so elaborate
numerical methods need to be applied. Since experimental
data contain sizable statistical errors, and in most cases
also systematic errors, a unique solution by this method
will become increasingly difficult for larger L. Therefore, in
practice, higher partial waves have to be fixed by models or if
possible by theoretical constraints such as unitarity, analyticity,
and fixed-t dispersion relations.

Instead of doing model applications, the results of Table III
have been obtained in a more general numerical simulation
procedure. The underlying multipoles numbering from two
to eight were randomly chosen as complex numbers with
integer values for their real and imaginary parts. From these
multipoles, all observables and their coefficients were calcu-
lated and the inverse solution was searched with numerical
minimization techniques by using a random search with the
help of Mathematica. Sets 1 to 6 were quickly obtained
but set 7, for L = 2, required a significant increase in
computation time. Nevertheless, the uniqueness of the solution
in terms of the squared numerical deviation is found to be of
order 10−20.

V. CONCLUSIONS

We have explored the CEA and TPWA, applying a number
of approaches, in order to compare the information required for
a complete solution. The connection is seen most easily in the
first nontrivial case, J = 1/2, involving the interference of two

multipoles or helicity and transversity amplitudes. The reduced
number of observable types for a TPWA is compensated by
additional angular measurements. From a physical standpoint,
the appearance of θ -dependent factors in Eq. (6) is due to
rotational symmetry, as contained in the rotation matrices used
to construct the helicity amplitudes [11,15].

This matching of information required to determine either
the multipoles or helicity and transversity amplitudes holds
only when the number of independent helicity and transversity
amplitudes, for a CEA, is the same as the number of multipoles
used in their construction. The number of angular measure-
ments for a TPWA grows with increasing angular-momentum
cutoff, as described in Refs. [7,9]. With greater-than-four
multipole amplitudes included, the TPWA and CEA problems
are fundamentally different and the information required for a
solution is not comparable.

Our pedagogical study of the simple J = 1/2 case, gen-
eralized to higher angular-momentum cutoffs, has revealed
further solutions of the TPWA problem addressed by Ome-
laenko [9], which require only four well-selected polarization
observables. These will be examined in detail in a future
presentation [14].
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