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Role of a triangle singularity in the γ p → K+�(1405) reaction
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We show the effects of a triangle singularity mechanism for the γp → K+�(1405) reaction. The mechanism
has a N∗ resonance around 2030 MeV, which decays into K∗�. The K∗ decays to K+π , and the π� merge to
form the �(1405). This mechanism produces a peak around

√
s = 2110 MeV, and has its largest contribution

around cosθ = 0. The addition of this mechanism to other conventional ones leads to a good reproduction of
dσ/dcosθ and the integrated cross section around this energy, providing a solution to a problem encountered in
previous theoretical models.
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I. INTRODUCTION

Triangle singularities were discussed by Landau [1] and
affect physical processes driven by a Feynman diagram with
three intermediate states. The triangle singularities appear in a
particular situation, where all intermediate states are placed on
shell, and the particles move along the same direction. Even
then, the singularities appear in a situation in which a classical
analogy can be established where an original particle A decays
into two particles 1 and 2, particle 1 decays into an external
particle B and an internal particle 3, and finally particles 2
and 3 merge into an external particle C. The classical situation
requires that particle 3 move along the same direction and
faster than particle 2 to make up for the delay in its production.
This is the essence of the Coleman-Norton theorem when
applied to a triangle diagram [2]. A simple analytical formula
to impose these conditions is given in Ref. [3].

Although the study of these singularities dates from long
ago [1], it is only recently, with the observation of many
decay modes of particles by BESIII, Belle, Babar, LHCb
Collaborations, that clear examples of such singularities have
emerged. One of these examples is given in the η(1405) →
πa0(980) and η(1405) → πf0(980) decay in Ref. [4], studied
in Refs. [5–7], where an abnormal isospin violation in the
second reaction is observed which is traced to one such
singularity in which particles 1, 2, and 3 are K∗, K̄, and K ,
respectively, with the external particle B being a pion and
the K̄K fusing to give the external C particle, a0(980) or
f0(980). Another successful example was recently given in the

decay of the a1(1260) axial vector resonance into K∗K̄ , with
K∗ → Kπ and K̄K fusing to give the f0(980) state. It was
suggested in Ref. [8] and shown in Refs. [9,10] that the triangle
diagram corresponding to this process gave a peak around 1420
MeV, providing a natural interpretation of the experimental
observation by the COMPASS Collaboration [11], where this
peak was associated with a new resonance, the “a1(1420).”

Another recent issue that has stirred some discussion is
the possibility that the narrow peak seen in the J/ψp mass
distribution by the LHCb Collaboration [12,13], dubbed as
Pc(4450), could be induced by a triangle singularity where
the �b decays into �(1890) and χc1, the �(1890) decays to
K−p, and the χc1p → J/ψp [14,15]. A similar mechanism
[16] would also be responsible for the peak seen at the same
energy in the �b → J/ψπ−p reaction [17,18]. The fact that
the energy 4450 MeV corresponds to a triangle singularity
and to the threshold of χc1p → J/ψp enhances the peak
structure over other possible configurations. The issue has
been recently discussed in Ref. [3], where it was shown
that, should the quantum numbers of the peak correspond
to 3/2−, 5/2+, as currently suggested by the experimental
analysis, it would require p and d waves in χc1p, respectively,
weakening and broadening the peak structure to the point that
it cannot account for the experimentally observed narrow peak.
For other quantum numbers that require χc1p in an s wave, the
possibility that these singularities account for the experimental
peak would not be ruled out.

In the present work, we show one example of triangle
singularity that naturally explains the peak around
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√
s = 2110 MeV of the γp → K+�(1405) reaction

observed in Ref. [19], which has resisted a theoretical
interpretation so far.

Before the γp → K+�(1405) experiment was performed,
there was a prediction based on a basic contact mechanism in
Ref. [20]. The experiment was performed nine years later at
Spring8/Osaka in Ref. [21] and extended in Refs. [19,22].

The data of Refs. [19,22] were analyzed in Refs. [23–25]
without an explicit model for the reaction, parametrizing the
production of K+MB (MB standing for π� and K̄N ) and
letting the MB system interact in coupled channels, where the
two �(1405) states are generated. The works independently
show the need for two �(1405) states, one narrow around 1420
MeV and another one broad at around 1350–1380 MeV, as
predicted by all different works on the chiral unitary approach
[26–32].

Detailed models for the reaction have also been done
before the detailed results of Ref. [19]. In Ref. [33], estimates
were done for the reaction, emphasizing crossing symmetry
and duality, and the �(1405) was produced via u-channel
contributions. Very small (∼1 nb) and isotropic cross sections
are predicted in the model. In Ref. [34], along similar
lines, the K1(1270) exchange is included, producing angular
distributions. An effective Lagrangian model approach is done
in Ref. [35], where the t-channel K and K∗ exchanges are
considered in addition to the s-channel N exchange that is
found dominant. The cross sections obtained are rather small
compared to experiment, and there is no peak in the integrated
cross section around

√
s = 2110 MeV.

The most complete theoretical work is the one of
Ref. [36], based on the chiral unitary approach, keeping
the different diagrams where the photon can couple with
special regard for gauge invariance. The work is in line with
similar works done in related reactions, K−p → γ�(1405)
[37] and kaon photo- and electroproduction on the proton
[38]. The model considers the production of the MjBj

meson-baryon channels in γp → K+MjBj that couple to
π� upon final-state interaction, with MjBj ≡ K−p, K̄0n,
π0�,π0�0, ηn, η�0, π+�−, π−�+,K+�−,K0�0. The
model contains K and K∗ exchanges and requires the introduc-
tion of some phenomenological contact terms and the addition
of form factors, which are fitted to the data of Refs. [19,39].
A fair reproduction of the data is obtained, but it is textually
quoted in the work that “for the γp → K+π0�0 (the reaction
that filters isospin I = 0 in π�) at W = 2.0 GeV (with
W ≡ √

s), there is a sharp rise in the data at cosθ = 0, while a
rather smooth behavior is found in the calculated counterpart.”

It is thus a common feature of all theoretical calculations
that they cannot get the peak seen in the integrated cross section
for γp → K+�(1405) around W = 2.1 GeV, corresponding
to Eγ = 1.9 GeV in the laboratory frame (see Fig. 16 of
Ref. [19]), which is associated with a large contribution in
the differential cross section around cosθ � 0.

In the present work we bring a novel idea, with a mechanism
not considered before, which produces an enhancement of the
cross section around W = 2.11 GeV, peaking at cosθ � 0. The
mechanism is tied to a triangle singularity that develops from a
vector-baryon (V B) state predicted in Refs. [40,41], coupling
strongly to K∗�. This state was supported experimentally

from the γp → K0�+ reaction close to the K∗� threshold
studied in Ref. [42]. The mechanism then proceeds as follows:
The V B state is formed from γp, then it decays into K∗�
and the K∗ decays into K+π , finally the π� merge into the
�(1405) state. This triangle diagram has a singularity around
W = 2.11 GeV and its structure makes it contribute mostly
around cosθ = 0. We shall show that the position, strength,
and width match with the experimental data and bring an
unexpected solution to a persistent problem encountered with
the use of conventional models.

II. FORMALISM

A. Baryon resonances from the vector-baryon interaction

In Ref. [40] the interaction of vector mesons with the octet
of baryons was studied. The interaction was found attractive
in many cases, to the point that some baryonic states emerged
as molecular states owing to this interaction. One of the states
observed, which is the one of relevance to the present work,
was a state with I = 1/2 and strangeness S = 0 and spin-parity
JP = 1/2− or 3/2− that peaks around 2000 MeV, with a width
around 100 MeV. The state couples to ρN, ωN, φN, K∗�,
and K∗�, but the largest coupling is to the latter channel. The
state qualifies as basically a K∗� molecular state, with K∗�
as the main decay channel. The width obtained is a lower
bound, because the state can also decay into pseudoscalar
baryon. The mixture of vector baryon and pseudoscalar baryon
was undertaken later in Ref. [43] in the light sector and
in Ref. [44] in the charm sector. The findings in Ref. [43]
indicated that the states of mostly vector-baryon nature were
not much modified regarding their masses by the mixture with
pseudoscalar baryons, but the widths become bigger.

The predicted state got a boost from the study of the γp →
K0�+ reaction close to the K∗� and K∗� thresholds, where
the cross section shows a sudden drop and the differential
cross section experiences a transition from a forward-peaked
distribution to a flat one [42]. This phenomenon was inter-
preted in Ref. [41] in terms of the N∗ state discussed above in
Ref. [40], and as a result the mass and width were determined
with more precision. It was found that MN∗ = 2030 MeV.
With this increased mass there is more phase space for
K∗� decay and the width, within the model of Ref. [40],
is � = 127 MeV. Yet, should one mix the vector-baryon
state with pseudoscalar baryons, the width would become
appreciably bigger. This is why this state was associated in
Ref. [40] to the N∗(2080)(3/2−) and N∗(2090)(1/2−) of the
former Particle Data Group (PDG) tables [45], which have
a width between 180–450 and 100–400 MeV, respectively.
We shall take, tentatively, � = 300 MeV but will discuss the
effects of other choices, and we shall refer to this state as the
N∗(2030) in what follows.

B. The mechanism for the γ p → K+�(1405) reaction

The mechanism that we study is given in Fig. 1. The photon
is converted into a vector meson, ρ0, ω, and φ, according
to the rules of the local hidden gauge approach [46–48]
(see also practical rules in Ref. [49]), which implements
automatically the vector meson dominance idea of Sakurai
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N∗(2030)

K∗(P − q)

Σ(q)

K(k)

π(P − q − k)

Λ(1405)

p

γ(pγ)

ρ, ω, φ

FIG. 1. Mechanism for the γp → K+�(1405) reaction involving
the formation of N∗(2030) and its decay to K∗�.

[50]. The ρN, ωN , and φN are some of the coupled channels
that generate the N∗(2030) and the couplings of this resonance
to all the coupled channels are evaluated in Ref. [40]. As
mentioned before, the largest coupling of the N∗(2030) is to
K∗�, so, in Fig. 1 the N∗(2030) is allowed to decay into K∗�.
The K∗ will decay into K+π and the π� can fuse to produce
the �(1405). This is the way we can produce K+�(1405) at
the end. There would be nothing special in this mechanism if
it were just one more perturbative diagram. However, it just
happens that the diagram develops a triangle singularity for a
γp center-of-mass energy of about 2110 MeV, which renders
this particular energy special and the effects of the singularity
show up clearly in the cross section around this energy.

There is no need to evaluate the amplitude for the
mechanism of Fig. 1 to know that there is a singularity at that
energy. For this, it is sufficient to apply the easy rule obtained
in Ref. [3],

qon
+ = qa

− , (1)

where qon
+ is the on-shell momentum of the � in the

center-of-mass frame of γp in the γp → K∗� transition,

qon
+ = λ1/2

(
s,m2

K∗ ,m2
�

)
2
√

s
, (2)

and qa
− is the � momentum for � and π in Fig. 1, being

on-shell simultaneously in the same frame in a special
kinematical region (to be specified below),

qa
− = γ ′(vE∗

2 − p∗
2), (3)

with

v = k

E�∗(k)
, γ ′ = 1√

1 − v2
= E�∗ (k)

m�∗
, (4)

E∗
2 = m2

�∗ + m2
� − m2

K∗

2m�∗
, p∗

2 = λ1/2
(
m2

�,m2
π ,m2

�

)
2m�∗

, (5)

where we define λ(x,y,z) = x2 + y2 + z2 − 2xy − 2yz −
2xz. One can see that p∗

2 and E∗
2 are the momentum and

energy of the � in the rest frame of the �(1405) for the
decay into π�, v the velocity of the �∗ in the γp original
rest frame, and γ ′ the Lorentz boost factor. The solution qa

−
corresponds to a situation where the � in the rest frame of the
�∗ goes in the direction of the momentum of the �∗ in the γp
center-of-mass frame. This makes the � momentum smaller
in the γp center-of-mass frame and allows the π emitted from

γ

V

FIG. 2. Diagram for γ -V conversion.

the K∗ → K+π decay to catch up with the �, which was
emitted earlier, to form the �∗ in a classical picture, according
to the Coleman-Norton theorem [2]. Applying Eq. (1) it is
easy to see that a singularity appears around

√
s = 2110 MeV,

corresponding to placing on shell simultaneously all three
particles in the triangle diagram in the case where 	q and 	k (see
momentum of Fig. 1) are parallel and go in opposite directions.
In other words the � and the �∗ go in the same direction
in the γp center-of-mass frame. This is called the parallel
solution and is the only one giving rise to the singularity.

The evaluation of the amplitude in Fig. 1 is straightforward
and we follow the steps of Ref. [51]. In the

∫
d4q integral

that we have with three propagators one performs analytically
the q0 integration and the remaining

∫
d3 	q integration is done

numerically.
We need the Lagrangians [46,49]

LγV = −M2
V

e

g
Aμ〈V μQ〉, (6)

where MV is the mass of the vector mesons, g the coupling in
the local hidden gauge,

g = MV

2fπ

, (7)

with fπ the pion decay constant (fπ = 93 MeV), and e is
the electric charge of the electron (−|e|), with e2/4π = α, 〈 〉
is the trace of the SU(3) matrices, Vμ is the ordinary SU(3)
matrix for the vector mesons [49], and Q is the diagonal matrix
Q = diag(2,−1,−1)/3. The combination of the diagram of
Fig. 2 gives rise to the amplitude

−it̃ = i
e

g
CγV εl(γ ), (8)

with εl(γ ) the polarization vector of the photon which replaces
the vector polarization in the last vertex and has spatial
components, l = 1,2, because we work in the Coulomb gauge
where ε0 = 0 and 	ε · 	pγ = 0, where only the transverse photon
polarizations are operative. The coefficients CγV are given by

CγV ≡

⎧⎪⎪⎨
⎪⎪⎩

1√
2

ρ0,

1
3
√

2
ω,

− 1
3 φ.

(9)

The V B → V ′B ′ amplitude is given by

−itV B,V ′B ′ = −i
gN∗V BgN∗V ′B ′√
s − MN∗ + i �N∗

2

	ε(V ) · 	ε(V ′), (10)

and the couplings gN∗V B and gN∗V ′B ′ are tabulated in Ref. [40]
and given in isospin basis by

gN∗Nρ = −0.3 − 0.5i, gN∗Nω = −1.1 − 0.4i,
(11)

gN∗Nφ = 1.5 + 0.6i, gN∗K∗� = 3.9 + 0.2i.
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N∗

K∗+

Σ0

K+

π0

Λ(1405)

N∗

K∗0

Σ+

K+

π−

Λ(1405)
(a) (b)

FIG. 3. Two charge configurations to be considered.

The K∗ → Kπ vertex is also given by the local hidden
gauge approach via the Lagrangian

LV PP = −ig〈[P,∂μP ]V μ〉, (12)

with P the SU(3) matrix for the pseudoscalar mesons (see
Ref. [49]). Finally, we need the coupling of the �∗ to π�,
which is given in Ref. [27] (we shall come back to this point).

We also have to consider two charge configurations, which
are given in Fig. 3.

After proper isospin projections of the vertices, we finally
can write the total amplitude as

−itT =
∑
m

∑
i=ρ,ω,φ

i
e

g
CγVi

gN∗NVi

i√
s − MN∗ + i �N∗

2

× [	ε(γ ) · 	εK∗ ]
∫

d4q

(2π )4
(−i)g(m)

N∗,K∗�

× i

(P − q)2 − m2
K∗ + imK∗�K∗

× igεj (K∗)(k − P + q + k)jC(m)(−i)g(m)
�∗π�

× i

(P − q − k)2 − m2
π + iε

i2M�

q2 − M2
� + iε

, (13)

with

C(m) =
{ 1√

2
, π0,

1, π−,
(14)

g
(m)
�∗π� ≡ g�∗π�

{
− 1√

3
, π−�+,

− 1√
3
, π0�0,

g
(m)
N∗,K∗� ≡ gN∗,K∗�

{√
2
3 , K∗0�+,

1√
3
, K∗+�0.

(15)

We also make the approximation, as in Refs. [40,51] that
the three-momenta of the vector mesons are small compared
to their masses and, hence,∑

pol

εi(K
∗)εj (K∗) = δij , (16)

which is valid because we are focusing on the energies close
to the K∗� threshold.

We also have an integral of qj , with three propagators,
where the only nonintegrated vector is 	k. Thus,∫

d3qqj · · · = Akj ,

from where A = ∫
d3q

	k·	q
	k2 · · · .

Taking this into account we obtain

tT = eCγN∗CT g
(I=1/2)
N∗,K∗�g

(I=0)
�∗π�

1√
s − MN∗ + i �N∗

2

× [	ε(γ ) · 	k]i
∫

d4q

(2π )4

1

(P − q)2 − m2
K∗ + imK∗�K∗

× 1

(P − q − k)2 − m2
π + iε

2M�

q2 − M2
� + iε

×
(

2 + 	q · 	k
	k2

)
, (17)

where in CT we have combined the isospin factors and in CγN∗

the sum of contributions from ρ, ω, φ. Thus,

CT = − 1√
2
, CγN∗ =

∑
i=ρ,ω,φ

CγVi
gN∗NVi

. (18)

By performing the q0 integration analytically we finally get
an easy expression,

tT = eCγN∗CT g
(I=1/2)
N∗,K∗�g

(I=0)
�∗π�

× 1√
s − MN∗ + i �N∗

2

[	ε(γ ) · 	k]I

≡ B × [	ε(γ ) · 	k], (19)

which defines B, where I is the three-dimensional
integral [51]

I = 2M�

∫
d3q

(2π )3

1

8E�ωK∗ωπ

1

k0 − ωπ − ωK∗ + i �K∗
2

× 1

P 0 − ωK∗ − E� + i �K∗
2

1

P 0 + E� + ωπ − k0

× 1

P 0 − E� − ωπ − k0 + iε

(
2 + 	q · 	k

|	k|2
)

×{2P 0E� + 2k0ωπ − 2(E� + ωπ )(E� + ωπ + ωK∗ )},
(20)

with ωK∗ =
√

m2
K∗ + 	q2, E� =

√
M2

� + 	q2, and ωπ =√
m2

π + (	q + 	k)2. Although formally convergent, the integral
of I is regularized by a cutoff θ (� − |	q|), which appears in
the chiral unitary approach [52], with � = 630 MeV.

The differential cross section is given by

dσ

d�
= 1

64π2

2Mp2M�∗

s

|	k|
pγ

∑ ∑
|t |2. (21)
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Because we average over the photon polarizations, we have∑
pol

εi(γ )εj (γ ) = δij − pγi
pγj

	p2
γ

, (22)

and with the term obtained in Eq. (19) we have

∑ ∑
|tT |2 = 1

2
|B|2

[
	k2 − (	k · 	pγ )2

	p2
γ

]
, (23)

which goes as (sin θ )2, with θ the angle between the kaon
and the photon. The mechanism that we have produces a
peak around

√
s = 2110 MeV, peaking when cos θ = 0, as

a consequence of the photon being transversely polarized, a
most welcome feature to solve the two problems encountered
in the interpretation of the data.

C. The g�∗π� coupling with two �∗ resonances

Should there be just one �∗ resonance, we would take the
coupling g�∗π� in the formula of Eq. (19), but there are two
�(1405) states (see note in the PDG to that respect [53]). To
take this into account, we note that the �(1405) is observed
in the π� channel. Hence, when we say that we produce the
�(1405) it actually means that we observe the production of
π� and integrate over the phase space of this state. Thus,
what enters this evaluation is the π� → π� amplitude and
the integration over the final π� phase space. This amplitude
gets the coherent sum of the two �(1405) states. Should there
be just one resonance we would have

tπ�,π� = g2
�∗π�√

s − M�∗ + i��∗/2
. (24)

The coherent sum of the two resonances still has a clear peak
and can be roughly approximated by

tπ�,π� = g̃2
�∗π�√

s − M̃�∗ + i�̃�∗/2
. (25)

At the peak of the distribution we have

|tπ�,π�|2 = |g̃�∗π�|4
(�̃�∗/2)2

, (26)

and by using the input from Ref. [23] we obtain

�̃�∗ = 65 MeV, |g̃�∗π�|2 = 3.25. (27)

Because this amplitude is dominated by the first pole around
1380 MeV, we take this modulus and the phase from the
coupling to that state [27] and we settle for the effective
coupling

g̃�∗π� = −1.54 − 0.93i.

D. Other terms in the γ p → K+�(1405) amplitude

We do not want to make an elaborate model for the process,
but will introduce three terms, corresponding to physical
mechanisms, but with some flexibility in the parameters, such
that one has a general structure for what we call “background”
terms in the region of the peak. The first one is the K exchange
depicted in Fig. 4.

p

γ
K+

Λ(1405)

K−

FIG. 4. Diagram of K exchange.

Using the same Lagrangians described in prior sections, we
find

−itγK+K− = ie(pK+ − pK− )j εj (γ ) (28)

and in the Coulomb gauge, which we use to comply with gauge
invariance, we find

−itK = ie 2g�∗K−p

1

(pγ − k)2 − m2
K

	ε(γ ) · 	k. (29)

Once again we follow the same procedure as before to
take into account the two �(1405) states. Because the �∗ is
observed in π�, now the relevant amplitude is K−p → π�,
which is dominated by the second pole around 1420 MeV.
Now we have

tK̄N,π� = g̃�∗K̄N g̃�∗π�√
s − M̃�∗ + i �̃�∗

2

, (30)

and using the results of Ref. [23], we get

�̃�∗ = 40 MeV, |g̃�∗K̄N |2 = 3.1. (31)

By giving this coupling the phase of the coupling of the second
pole, and taking the isospin Clebsch-Gordan coefficient for the
K−p component, we get

g̃�∗K−p ≈ 1√
2

(−1.65 + 0.62i). (32)

Another mechanism which was used in Ref. [20] was the
contact term reflected in the diagrams of Fig. 5, which was
used at lower photon energies.

The contact term for the diagram of Fig. 5(a) is given
by [20]

t = −2i
(	σ × 	pγ ) · 	ε(γ )

2Mp

e

4f 2
π

(33)

and for the diagram of Fig. 5(b) by

tc = −2i
(	σ × 	pγ ) · 	ε(γ )

2Mp

e

4f 2
π

GK−pg̃�∗K−p, (34)

γ

p p

K+

K−
γ

p Λ(1405)p

K+

K−

(a) (b)

FIG. 5. (a) Contact term for the γp → K+K−p reaction. (b)
Diagram leading to the formation of the K+�∗ in the final state.
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p

γ
K+

Λ(1405)

K∗−

FIG. 6. Diagram for K∗ exchange.

where GK−p is the loop function for the intermediate K−p
state [52]. The intermediate states with neutral mesons do not
contribute to this mechanism and there is cancellation between
the channels π−�+ and π+�−.

Finally, we also consider K∗ exchange as depicted in
Fig. 6.

In this case, we do not have a theoretical coupling for
K∗p → �∗, but the structure is of the 	σ · 	ε (K∗) type. The
γK∗K vertex is of anomalous type involving a Lagrangian of
the type

εμναβ∂μεν(γ )∂αεβ(K∗). (35)

Altogether we get a term of the type

tK∗ = (	σ × 	pγ ) · 	ε(γ )
1

(pγ − k)2 − m2
K∗

. (36)

The propagators in the K and K∗ exchanges peak at forward
angle.

We note that∑ ∑
[(	σ × 	pγ ) · 	ε(γ )]2 = 	p 2

γ (37)

and there is no interference between the 	σ terms and the non-	σ
terms.

We shall conduct a fit to the data, dσ/dcosθ , multiplying
the different terms by a factor to incorporate other terms not
accounted for explicitly with a similar structure. Thus, we
write for the total amplitude

t = atT + btK + ctc + dtK∗ , (38)

where a, b, c, and d will be free parameters.
We have seen that in the contribution of tT for the triangle

singularity, there are many ingredients, several couplings, and
approximations done, such that we allow the fit to choose a
value of a = 1, but not too different, and so can we say the
same about the b coefficient.

Finally, in some option, we shall also introduce a form
factor for K and K∗ exchanges,

F (q) = �2

�2 + 	q 2
, (39)

with 	q the momentum of the K or K∗ boosted to the rest frame
of the �∗.

III. RESULTS

In the first place we calculate the integrated cross section
with just the triangle mechanism, the amplitude tT of Eq. (19).
The results are shown in Fig. 7. The two curves correspond to
tT of the text (solid line) and the same adding a form factor

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 1.9  1.95 2  2.05  2.1  2.15  2.2  2.25  2.3

σ
(μ

b)

√s (GeV)

TS
TS-FF

FIG. 7. Results for σ obtained with the triangle diagram ampli-
tude tT . Solid line for tT of the text. Dashed line, two form factors
of the type �2/(�2 + 	q 2) have been implemented in addition, with
� = 0.8 GeV.

�2/(�2 + 	q 2) for each of the vertices N∗ → K∗� and K∗ →
Kπ . It is interesting to observe that the shape is reasonably
similar to the experimental one (see Fig. 16 of Ref. [19]) around√

s = 2110 MeV and the strength is also very similar to the
experimental one (0.6 μb at the peak). Of course, we know
that not all of the strength comes from this mechanism, but the
results obtained indicate that this is an important contribution
not to be missed. As indicated in the preceding section, the
many couplings involved and some approximation done to
evaluate the mechanism give us reason to accept that moderate
changes in the strength should be in order. These changes will
be accommodated by changing the coefficient a of Eq. (38) in
the fit to the data. The coefficient a will be applied to the result
with tT of the text without form factor.

In Fig. 8, we show a fit to dσ/dcosθ for three ener-
gies around

√
s = 2100 MeV, which are 2000, 2100, and

2200 MeV. The experimental data are averaged over a span
of 100 MeV around the centroid, and we do the same. We also
show the results for

√
s = 2300 MeV, but these data are outside

the range of interest to us and we do not include them in the fit.
The agreement with the data obtained is rather good (for the
energies fitted), when one considers that there are appreciable
differences between dσ/dcosθ for π+�−, π−�+, π0�0, and
all of them are summed up in the data of the figures. Our results
for the data of the last energy, which have not been fitted, are
bigger than those of experiment but of the right order.

What is relevant for us is that the fit returns the co-
efficients a = 0.6, b = 1.5 − 0.8i, c = 0.3, d = 11.7.1 This
means that the fit requires an acceptable fraction of the

1Note that the a and b terms of Eq. (38) have the same structure and
do not interfere with the c and d terms. It suffices for generality to
take one of the two coefficients complex, and we have chosen b. The
same can be said about c and d , and we take d real, for the largest
term of the two. The term with c has a small strength and the fit is
compatible with c real.
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FIG. 8. The results of the fit to the differential cross section
data (

√
s = 2000,2100,2200 MeV [19]) for the γp → K+�(1405)

reaction. TS, triangle singularity; K∗, K∗ exchange; K, K exchange;
C, contact term; solid line, total.

triangle singularity contribution. It is also interesting to see
that the triangle singularity contribution is small for the√

s = 2000 MeV band, quite large for the
√

s = 2100 MeV
band, as expected, and smaller in the

√
s = 2200 MeV band.

For
√

s = 2300 MeV, it becomes again very small. The
contribution of the contact term is small and we do not discuss
it further. One can see that the K-exchange term gives a
large contribution and is responsible for the large strength
at

√
s = 2300 MeV. Should we implement form factors in the

mechanism, its contribution would be smaller, and we do that
in a new step. It is also interesting to see that the contribution
of the K∗ exchange has become moderate. In Fig. 9, we also
show the integrated cross section over angle and compare it
with the data. We see that the agreement is fair for the three
energies where we fitted dσ/dcosθ .

We should stress that the agreement found for dσ/dcosθ
is not trivial because there are interferences between the
K exchange and the triangle diagram. At energies

√
s =

2300 MeV and beyond, the cross sections with this simplified
model grow up but stabilize around 0.8 μb. However, this
is a regime that we are not interested in, which definitely
would need improvements, but what matters for our purpose
is that the contribution of the triangle singularity becomes
negligible.

In Fig. 10, we conduct another fit, introducing now
the form factor in the K and K∗ exchanges. The
fit gives us now a = 0.6, b = 1.9 + 0.2i, c = −0.8, and

0
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 1.4  1.6  1.8 2  2.2  2.4
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(μ
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Eγ (GeV)

Total
TS
No TS
K*
K
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CLAS

FIG. 9. The predicted integral cross section for the γp →
K+�(1405) reaction.

d = 17.6. The contribution of the K exchange is now smaller
and is compensated by a larger contribution of K∗, still
moderate.

The angle-integrated cross section in this latter case is
shown in Fig. 11. The cross section of the

√
s = 2300 MeV

band is now better than before, and for higher energies
the cross section stabilizes around 0.6 μb. Yet, the most
important point is that the strength of the triangle singularity
needed in the fit is the same as before, with the coefficient
a = 0.6.
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FIG. 10. Same as Fig. 8, but with the form factor in K and K∗

exchanges.
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FIG. 11. Same as Fig. 9, but with the form factor in K and K∗

exchanges.

We have conducted other fits; one of them includes fitting
the data in the band of

√
s = 2300 MeV. One gets a better

agreement at higher energies at the expense of a somewhat
worse agreement in the band of

√
s = 2000 MeV. Another fit

is done assuming a smaller width for the N∗(2030), of the
order of 200 MeV. The important outcome from all these fits is
that the strength of the triangle singularity needed remains the
same. All these results confirm the relevance of the triangle
mechanism with a strength compatible with the calculated one
within the estimated uncertainties.

One could take more background terms to have a more
complete model. However, before doing that, it is instructive to
see what has been done in different models in the literature on
the subject. In Ref. [35], the authors take K and K∗ exchanges,
as in the present case, but in addition, they have an s-channel
term with the nucleon pole and a u term with the �∗ pole.
The model produces a cross section that raises from threshold
and falls down monotonically beyond Eγ = 1.6 GeV. In the
region around Eγ = 1.8–1.9 GeV, the cross section is smooth,
independent of the choice of parameters that they use, and
the cross section is limited between 0.1 and 0.2 μb, short
of the experimental results shown in Fig. 9. The works of
Refs. [23–25] do not use an explicit amplitude and parametrize
the strength of the γN → meson + baryon vertex, prior to the
final-state interaction of the meson-baryon pairs that generates
the �(1405). The strength of these primary vertices is chosen
for each energy, and hence the origin of the peak in the cross
section cannot be traced down with this approach. In the most
detailed model of Ref. [36], other terms are taken, apart from K
and K∗ exchanges, and several contact terms are introduced
by hand which are fitted for each energy. Once again with
this strategy, one cannot assess the origin of the peak in the
cross section. Even then, it is clarifying the fact that with all
this freedom still the angular dependence in the region of the
peak could not be reproduced. What we have done here is to
evaluate a new and unavoidable contribution stemming from a
triangle singularity. Within the accepted small uncertainties in
its strength, we see that it plays an important role in providing
both the peak in the cross section and the angular dependence,

something that other models incorporating more terms in the
amplitudes than we have considered, fail to reproduce.

IV. CONCLUSIONS

We have performed a study of the contribution of a triangle
diagram to the γp → K+�(1405) reaction. The mechanism
consists of the formation of the resonance N∗(2030), predicted
theoretically within the local hidden gauge approach to vector-
baryon interaction, and supported by results of γp → K0�+
done at the K∗� and K∗� thresholds. This resonance couples
strongly to K∗� and produces a singularity via the triangle
mechanism, where the N∗(2030) decays into K∗�, the K∗
decays to K+π and the π� merge to form the �(1405). The
peak of the singularity shows up around

√
s = 2110 MeV and

the mechanism also has its largest strength around cosθ = 0.
This is precisely the region of energies and the angles where
conventional models failed to reproduce the experimental data.
We have shown that adding a few basic mechanisms to the
triangle one, and with a strength for this latter mechanism
compatible with theoretical uncertainties, we find a good
agreement for dσ/dcosθ and the integrated cross section
around the experimental peak at

√
s = 2110 MeV. By looking

into different models in the literature, we see that explicit
models incorporating more background terms than we have
considered here fail to produce the peak in the cross section. We
also trace back the apparent good agreement of other models
with the fact that free parameters are adjusted for each energy,
and even then they fail to provide a good angular dependence in
the region of the peak. The mechanism described here provides
a microscopical explanation of both the peak around Eγ = 1.8
GeV and the angular dependence around this energy region.

ACKNOWLEDGMENTS

We would like to thank R. Schumacher for useful comments
and for pointing out some details on the data. One of us, E.O.,
wishes to acknowledge support from the Chinese Academy of
Science in the Program of Visiting Professorship for Senior
International Scientists (Grant No. 2013T2J0012). This work
is partly supported by the National Natural Science Foundation
of China under Grants No. 11565007, No. 11547307, No.
11475227 and No. 11505158. It is also supported by the Youth
Innovation Promotion Association CAS (Grant No. 2016367),
by DFG and NSFC through funds provided to the Sino-German
CRC 110 “Symmetries and the Emergence of Structure in
QCD” (NSFC Grant No. 11621131001), by the Chinese
Academy of Sciences (Grant No. QYZDB-SSW-SYS013),
by the Thousand Talents Plan for Young Professionals,
by the China Postdoctoral Science Foundation (Grant No.
2015M582197), and the Postdoctoral Research Sponsorship
in Henan Province (Grant No. 2015023). This work is also
partly supported by the Spanish Ministerio de Economia y
Competitividad and European FEDER funds under Contracts
No. FIS2011-28853-C02-01, No. FIS2011- 28853-C02-02,
No. FIS2014-57026-REDT, No. FIS2014-51948-C2- 1-P, No.
and FIS2014-51948-C2-2-P and the Generalitat Valenciana in
the program Prometeo II-2014/068.

015205-8



ROLE OF A TRIANGLE SINGULARITY IN THE . . . PHYSICAL REVIEW C 95, 015205 (2017)

[1] L. D. Landau, Nucl. Phys. 13, 181 (1959).
[2] S. Coleman and R. E. Norton, Nuovo Cimento 38, 438 (1965).
[3] M. Bayar, F. Aceti, F. K. Guo, and E. Oset, Phys. Rev. D 94,

074039 (2016).
[4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 108,

182001 (2012).
[5] J. J. Wu, X. H. Liu, Q. Zhao, and B. S. Zou, Phys. Rev. Lett.

108, 081803 (2012).
[6] X. G. Wu, J. J. Wu, Q. Zhao, and B. S. Zou, Phys. Rev. D 87,

014023 (2013).
[7] F. Aceti, W. H. Liang, E. Oset, J. J. Wu, and B. S. Zou, Phys.

Rev. D 86, 114007 (2012).
[8] X. H. Liu, M. Oka, and Q. Zhao, Phys. Lett. B 753, 297 (2016).
[9] M. Mikhasenko, B. Ketzer, and A. Sarantsev, Phys. Rev. D 91,

094015 (2015).
[10] F. Aceti, L. R. Dai, and E. Oset, Phys. Rev. D 94, 096015 (2016).
[11] C. Adolph et al. (COMPASS Collaboration), Phys. Rev. Lett.

115, 082001 (2015).
[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,

072001 (2015).
[13] R. Aaij et al. (LHCb Collaboration), Chin. Phys. C 40, 011001

(2016).
[14] F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Phys. Rev.

D 92, 071502(R) (2015).
[15] X. H. Liu, Q. Wang, and Q. Zhao, Phys. Lett. B 757, 231 (2016).
[16] F. K. Guo, U.-G. Meißner, J. Nieves, and Z. Yang, Eur. Phys. J.

A 52, 318 (2016).
[17] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 117,

082003 (2016).
[18] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 07

(2014) 103.
[19] K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 88, 045201

(2013); Addendum: 88, 049902 (2013).
[20] J. C. Nacher, E. Oset, H. Toki, and A. Ramos, Phys. Lett. B 455,

55 (1999).
[21] M. Niiyama et al., Phys. Rev. C 78, 035202 (2008).
[22] R. A. Schumacher and K. Moriya, Nucl. Phys. A 914, 51

(2013).
[23] L. Roca and E. Oset, Phys. Rev. C 87, 055201 (2013).
[24] L. Roca and E. Oset, Phys. Rev. C 88, 055206 (2013).
[25] M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).
[26] J. A. Oller and U.-G. Meißner, Phys. Lett. B 500, 263 (2001).
[27] D. Jido, J. A. Oller, E. Oset, A. Ramos, and U.-G. Meißner,

Nucl. Phys. A 725, 181 (2003).

[28] C. Garcı́a-Recio, J. Nieves, E. R. Arriola, and M. J. Vicente
Vacas, Phys. Rev. D 67, 076009 (2003).

[29] T. Hyodo, S. I. Nam, D. Jido, and A. Hosaka, Phys. Rev. C 68,
018201 (2003).

[30] B. Borasoy, R. Nissler, and W. Weise, Eur. Phys. J. A 25, 79
(2005).

[31] B. Borasoy, U.-G. Meißner, and R. Nissler, Phys. Rev. C 74,
055201 (2006).

[32] Y. Ikeda, T. Hyodo, and W. Weise, Nucl. Phys. A 881, 98 (2012).
[33] R. A. Williams, C. R. Ji, and S. R. Cotanch, Phys. Rev. C 43,

452 (1991).
[34] T. K. Choi, K. S. Kim, and B. G. Yu, arXiv:0911.0083 [nucl-th].
[35] S. I. Nam, J. H. Park, A. Hosaka, and H. C. Kim, J. Korean Phys.

Soc. 59, 2676 (2011).
[36] S. X. Nakamura and D. Jido, PTEP 2014, 023D01 (2014).
[37] J. C. Nacher, E. Oset, H. Toki, and A. Ramos, Phys. Lett. B 461,

299 (1999).
[38] B. Borasoy, P. C. Bruns, U.-G. Meißner, and R. Nissler, Eur.

Phys. J. A 34, 161 (2007).
[39] K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206

(2013).
[40] E. Oset and A. Ramos, Eur. Phys. J. A 44, 445 (2010).
[41] A. Ramos and E. Oset, Phys. Lett. B 727, 287 (2013).
[42] R. Ewald et al. (CBELSA/TAPS Collaboration), Phys. Lett. B

713, 180 (2012).
[43] E. J. Garzon and E. Oset, Eur. Phys. J. A 48, 5 (2012).
[44] T. Uchino, W. H. Liang, and E. Oset, Eur. Phys. J. A 52, 43

(2016).
[45] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[46] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida,

Phys. Rev. Lett. 54, 1215 (1985).
[47] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217

(1988).
[48] U.-G. Meißner, Phys. Rep. 161, 213 (1988).
[49] H. Nagahiro, L. Roca, A. Hosaka, and E. Oset, Phys. Rev. D 79,

014015 (2009).
[50] J. J. Sakurai, Currents and Mesons (University of Chicago Press,

Chicago, 1969).
[51] F. Aceti, J. M. Dias, and E. Oset, Eur. Phys. J. A 51, 48 (2015).
[52] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
[53] U.-G. Meißner and T. Hyodo, Pole Structure of the �(1405)

Region, in C. Patrignani et al. (Particle Data Group), Chin. Phys.
C 40, 100001 (2016).

015205-9

https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1007/BF02750472
https://doi.org/10.1007/BF02750472
https://doi.org/10.1007/BF02750472
https://doi.org/10.1007/BF02750472
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevLett.108.081803
https://doi.org/10.1103/PhysRevLett.108.081803
https://doi.org/10.1103/PhysRevLett.108.081803
https://doi.org/10.1103/PhysRevLett.108.081803
https://doi.org/10.1103/PhysRevD.87.014023
https://doi.org/10.1103/PhysRevD.87.014023
https://doi.org/10.1103/PhysRevD.87.014023
https://doi.org/10.1103/PhysRevD.87.014023
https://doi.org/10.1103/PhysRevD.86.114007
https://doi.org/10.1103/PhysRevD.86.114007
https://doi.org/10.1103/PhysRevD.86.114007
https://doi.org/10.1103/PhysRevD.86.114007
https://doi.org/10.1016/j.physletb.2015.12.027
https://doi.org/10.1016/j.physletb.2015.12.027
https://doi.org/10.1016/j.physletb.2015.12.027
https://doi.org/10.1016/j.physletb.2015.12.027
https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevD.94.096015
https://doi.org/10.1103/PhysRevD.94.096015
https://doi.org/10.1103/PhysRevD.94.096015
https://doi.org/10.1103/PhysRevD.94.096015
https://doi.org/10.1103/PhysRevLett.115.082001
https://doi.org/10.1103/PhysRevLett.115.082001
https://doi.org/10.1103/PhysRevLett.115.082001
https://doi.org/10.1103/PhysRevLett.115.082001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1088/1674-1137/40/1/011001
https://doi.org/10.1088/1674-1137/40/1/011001
https://doi.org/10.1088/1674-1137/40/1/011001
https://doi.org/10.1088/1674-1137/40/1/011001
https://doi.org/10.1103/PhysRevD.92.071502
https://doi.org/10.1103/PhysRevD.92.071502
https://doi.org/10.1103/PhysRevD.92.071502
https://doi.org/10.1103/PhysRevD.92.071502
https://doi.org/10.1016/j.physletb.2016.03.089
https://doi.org/10.1016/j.physletb.2016.03.089
https://doi.org/10.1016/j.physletb.2016.03.089
https://doi.org/10.1016/j.physletb.2016.03.089
https://doi.org/10.1140/epja/i2016-16318-4
https://doi.org/10.1140/epja/i2016-16318-4
https://doi.org/10.1140/epja/i2016-16318-4
https://doi.org/10.1140/epja/i2016-16318-4
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1007/JHEP07(2014)103
https://doi.org/10.1007/JHEP07(2014)103
https://doi.org/10.1007/JHEP07(2014)103
https://doi.org/10.1007/JHEP07(2014)103
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.045201
https://doi.org/10.1103/PhysRevC.88.049902
https://doi.org/10.1103/PhysRevC.88.049902
https://doi.org/10.1103/PhysRevC.88.049902
https://doi.org/10.1016/S0370-2693(99)00380-9
https://doi.org/10.1016/S0370-2693(99)00380-9
https://doi.org/10.1016/S0370-2693(99)00380-9
https://doi.org/10.1016/S0370-2693(99)00380-9
https://doi.org/10.1103/PhysRevC.78.035202
https://doi.org/10.1103/PhysRevC.78.035202
https://doi.org/10.1103/PhysRevC.78.035202
https://doi.org/10.1103/PhysRevC.78.035202
https://doi.org/10.1016/j.nuclphysa.2013.03.003
https://doi.org/10.1016/j.nuclphysa.2013.03.003
https://doi.org/10.1016/j.nuclphysa.2013.03.003
https://doi.org/10.1016/j.nuclphysa.2013.03.003
https://doi.org/10.1103/PhysRevC.87.055201
https://doi.org/10.1103/PhysRevC.87.055201
https://doi.org/10.1103/PhysRevC.87.055201
https://doi.org/10.1103/PhysRevC.87.055201
https://doi.org/10.1103/PhysRevC.88.055206
https://doi.org/10.1103/PhysRevC.88.055206
https://doi.org/10.1103/PhysRevC.88.055206
https://doi.org/10.1103/PhysRevC.88.055206
https://doi.org/10.1140/epja/i2015-15030-3
https://doi.org/10.1140/epja/i2015-15030-3
https://doi.org/10.1140/epja/i2015-15030-3
https://doi.org/10.1140/epja/i2015-15030-3
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0375-9474(03)01598-7
https://doi.org/10.1016/S0375-9474(03)01598-7
https://doi.org/10.1016/S0375-9474(03)01598-7
https://doi.org/10.1016/S0375-9474(03)01598-7
https://doi.org/10.1103/PhysRevD.67.076009
https://doi.org/10.1103/PhysRevD.67.076009
https://doi.org/10.1103/PhysRevD.67.076009
https://doi.org/10.1103/PhysRevD.67.076009
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.1103/PhysRevC.74.055201
https://doi.org/10.1103/PhysRevC.74.055201
https://doi.org/10.1103/PhysRevC.74.055201
https://doi.org/10.1103/PhysRevC.74.055201
https://doi.org/10.1016/j.nuclphysa.2012.01.029
https://doi.org/10.1016/j.nuclphysa.2012.01.029
https://doi.org/10.1016/j.nuclphysa.2012.01.029
https://doi.org/10.1016/j.nuclphysa.2012.01.029
https://doi.org/10.1103/PhysRevC.43.452
https://doi.org/10.1103/PhysRevC.43.452
https://doi.org/10.1103/PhysRevC.43.452
https://doi.org/10.1103/PhysRevC.43.452
http://arxiv.org/abs/arXiv:0911.0083
https://doi.org/10.3938/jkps.59.2676
https://doi.org/10.3938/jkps.59.2676
https://doi.org/10.3938/jkps.59.2676
https://doi.org/10.3938/jkps.59.2676
https://doi.org/10.1093/ptep/ptt121
https://doi.org/10.1093/ptep/ptt121
https://doi.org/10.1093/ptep/ptt121
https://doi.org/10.1093/ptep/ptt121
https://doi.org/10.1016/S0370-2693(99)00834-5
https://doi.org/10.1016/S0370-2693(99)00834-5
https://doi.org/10.1016/S0370-2693(99)00834-5
https://doi.org/10.1016/S0370-2693(99)00834-5
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1103/PhysRevC.87.035206
https://doi.org/10.1103/PhysRevC.87.035206
https://doi.org/10.1103/PhysRevC.87.035206
https://doi.org/10.1103/PhysRevC.87.035206
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2012.05.066
https://doi.org/10.1016/j.physletb.2012.05.066
https://doi.org/10.1016/j.physletb.2012.05.066
https://doi.org/10.1016/j.physletb.2012.05.066
https://doi.org/10.1140/epja/i2012-12005-x
https://doi.org/10.1140/epja/i2012-12005-x
https://doi.org/10.1140/epja/i2012-12005-x
https://doi.org/10.1140/epja/i2012-12005-x
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1016/j.physletb.2008.07.018
https://doi.org/10.1016/j.physletb.2008.07.018
https://doi.org/10.1016/j.physletb.2008.07.018
https://doi.org/10.1016/j.physletb.2008.07.018
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1103/PhysRevD.79.014015
https://doi.org/10.1103/PhysRevD.79.014015
https://doi.org/10.1103/PhysRevD.79.014015
https://doi.org/10.1103/PhysRevD.79.014015
https://doi.org/10.1140/epja/i2015-15048-5
https://doi.org/10.1140/epja/i2015-15048-5
https://doi.org/10.1140/epja/i2015-15048-5
https://doi.org/10.1140/epja/i2015-15048-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001



