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Fourth dimension of the nucleon structure: Spacetime analysis of the timelike electromagnetic
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Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, via Branze 38, I-25123 Brescia, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, Pavia, Italy

Egle Tomasi-Gustafsson
IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France

(Received 7 November 2016; published 13 January 2017)

As is well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier
transform of static space distributions of electric charge and current. In particular, the electric form factor is simply
the Fourier transform of the charge distribution F (q) = ∫

ei �q·�rρ(r)d3r . We do not have an intuitive interpretation
of the same level of simplicity for the proton timelike form factor appearing in the reactions e+e− ↔ p̄p.
However, one may suggest that, in the center-of-mass frame, where qμxμ = qt , a timelike electric form factor
is the Fourier transform F (q) = ∫

eiqtR(t)dt of a function R(t) expressing how the electric properties of the
forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea and show
that the functions ρ(r) and R(t) can be formally written as the time and space integrals of a unique correlation
function depending on both time and space coordinates.

DOI: 10.1103/PhysRevC.95.015204

I. INTRODUCTION

A. Background

The reaction e+ + e− → p̄ + p and its time reverse p̄ +
p → e+ + e− have been used to extract the electromagnetic
form factors (FFs) of the proton in the timelike (TL) region.
Assuming that the interaction occurs through one-photon
exchange, the annihilation cross section is expressed in terms
of the FF moduli squared (see Ref. [1]; see also Refs. [2,3] for
recent reviews on TLFF).

The empirical knowledge and the theoretical understanding
of the TLFF are less advanced than for the spacelike (SL) case.
In particular, an experimental separation of the electric and the
magnetic FFs has not been possible in the TL region, because
of the available limited luminosity. The cross section σ of the
above reactions allows us to extract the squared modulus of a
single effective form factor Fp [4]:

|Fp|2 = 3βq2σ

2πα2
(
2 + 1

τ

) , (1)

where α = e2/(4π ), β = √
1 − 1/τ , τ = q2/(4M2), q2 is the

squared invariant mass of the colliding pair, and M is the
proton mass. The effect of the Coulomb singularity of the
cross section at the p̄p threshold is removed by the β factor:
β → 0 for q → 2M , so that βσ is finite and the effective form
factor is expected to be finite at the threshold.

This effective TLFF has been measured by several exper-
iments for q2 ranging from the threshold (2MN )2 to about
36 GeV2. The most recent and precise results from the
BaBar [5,6] and BESIII collaborations [7] are reported in
Fig. 1.

These data have been fit by some parametrizations. Here we
report four of them, to give an idea of the general trend followed
by the data and of the related ambiguities in extrapolations to

the large-q region. Details about these fits and the best-fit
parameters can be found in our previous works [9,10]. In the
experimental papers before the year 2006, the function

|Fscaling(q2)| = A
(q2)2 ln2(q2/�2)

, A = 40 GeV−4,

� = 0.45 GeV2 (2)

was frequently used [11,12]. The modification

|Fscaling+corr(q
2)| = A

(q2)2[ln2(q2/�2) + π2]
,

A = 72 GeV−4, � = 0.52 GeV2 (3)

was suggested [13,14] to avoid problems with ghost poles in
αs . In Ref. [15] a pure rational form was proposed, with two
poles of dynamical origin:

|FT 3(q2)| = A(
1 − q2/m2

1

)(
2 − q2/m2

2

) , A = 1.56,

m2
1 = 1.5 GeV2, m2

2 = 0.77 GeV2. (4)

The TLFF data from the BaBar Collaboration [5,6] extending
from the threshold to q2 ≈ 36 GeV2, are steeper than the
previous data and are well reproduced by the following rational
fit [16]:

|FBaBar(q
2)| = A(

1 + q2/m2
a

)
[1 − q2/0.71]2

,

A = 7.7 GeV−4, m2
a = 14.8 GeV2, (5)

where a q4 asymptotic trend is not visible, although the data
points at q > 4 GeV present too-large error bars to constrain
the large-q trend of a fit. For q < 4 GeV the data also show
oscillating 10% modulations around the previous fits. In our
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FIG. 1. Most recent data on the TL proton generalized FF as
a function of q2, from Refs. [5,6] (black open circles), Ref. [8] (red
triangles), together with the calculation from Eq. (2) (blue dash-dotted
line), Eq. (3) (red dashed line), Eq. (4) (green long-dashed line), and
Eq. (5) (black solid line).

works [9,10], we have fitted the BaBar data with

F (p) ≡ F0(p) + Fosc(p), (6)

where p = p(q) is the relative three-momentum of the final
hadron pair, F0(p) is any of the previous fits. Equations (2)–(5)
are expressed in terms of p(q), and the modulation term Fosc(p)
is parametrized as

Fosc(p) ≡ Ae−Bp cos(Cp + D). (7)

The precise values of the parameters depend on which of the
previous four fits is chosen as leading term F0. A list of best-fit
values for all these cases is presented in Ref. [10]. In all cases
D ≈ 0 and A has magnitude �0.1. This means that the first
oscillation is also a threshold enhancement, like those found
in e+e− → n̄n, e+e− → �̄�, and other production processes
of neutral baryon pairs [17–22].

These near-threshold phenomena should disappear at large
q2, so that the data and their fits may converge to the simple
quark counting rule: TLFF ∝1/q4, as predicted for the SLFF
asymptotic [23,24].

This may be stated by using the same arguments of the
SL case; that is, by analyzing the dimensional structure of the
matrix element [23] or by assuming that, at large q, the process
is dominated by a perturbative QCD (PQCD) hard core [24],
or by using analytic continuation at large |q| from the SL to the
TL sector (applying the Phragmèn–Lindelöf theorem; see the
discussion in Ref. [16]). In all cases, the details of the soft part
of the p̄p creation or annihilation process do not play a role.
On the other hand, these features are expected to heavily affect
the finite-q deviations from the 1/q4 rule and to determine the
FF magnitude and phase. This has prompted several studies
of the nonperturbative aspects of the TLFF. Some effects of
bound-state gross features on PQCD calculations, leading
to pre-asymptotic differences between TLFF and SLFF,

were studied in Ref. [25], still within a largely perturbative
scheme.

Several detailed nonperturbative models for the nucleon
or meson TLFF have been proposed: some derive from a
unique analytic prediction valid both in the SL and in the TL
region; other ones are more specific. There are approaches
based on vector-meson dominance [26,27] and dispersion
relations [28,29]. They give precise quantitative predictions
for a large set of observables and have been applied [30,31]
to simulate the feasibility of high-precision experiments
including polarization observables and two-photon contribu-
tions [32,33].

In Ref. [34] a mixed approach to the pion TLFF is present,
where the vector dominance model is applied at the level of
photon-quark-antiquark vertex; but also a constituent quark
loop and quark-pion couplings are present. In addition, a large
number of poles is used, with parameters partly determined
by phenomenology and partly by a dynamic model. Later
on, nonvalence four-constituent states have been added [35].
The approach based on anti–de Sitter space (AdS) and QCD
correspondence used in Ref. [15], may be considered a
pole-based model [see previous Eq. (4)], although in this case
the poles are not a starting assumption but rather the arrival
point of a complex procedure.

A distinguishing feature of the model presented in Ref. [36]
is that it is built in spacetime instead of momentum space. A
large-q suppression of the ratio of the electric to the magnetic
FF in both the SL and TL sectors is suggested by a qualitative
picture where, in an intermediate stage of the hadron-formation
process, the reaction region is divided into a central region
that is neutral from the color and flavor points of view, and
a peripheral region where these properties are localized. At
increasing q this suppresses the overlap between the electric
charge of the proton-antiproton pair, and the 1/q-sized virtual
photon. The suppression does not necessarily apply to the
magnetic FF since a magnetic moment is not localized on the
physical currents producing it.

These models were targeted at the leading features of the
data shown in Fig. 1, the “regular” behavior reproduced by the
above fits (2)–(5). The oscillations of Eqs. (6)–(7), appearing
as a periodic modulation, were interpreted in Refs. [9,10] as
an interference phenomenon in spacetime, with competition
between processes involving well-separated regions with
different properties. In particular, regions closer to the γ ∗ − qq̄
vertex would present regeneration properties for the p̄p wave
function, while suppression of this state would occur in more
peripheral regions. Starting from a different point of view,
another fit to the oscillations of the TLFF was proposed by
Ref. [37] as a sum of independent structures like resonance
poles and intermediate-state thresholds. Interference in space-
time and poles in q could be alternative ways to describe a
similar mechanism: for the case of the pion TLFF, several
oscillations regularly spaced in q2 are predicted in the model
by Ref. [34]. Although they are due to the contribution of of
many resonance states, these oscillations present a regularity
pattern because of a unique dynamic model behind these
resonances.

The interpretation of the threshold enhancement is related to
the oscillation problem, since the threshold enhancement can
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be seen as the first oscillation, although it seems especially
evident in the TLFF of neutral baryons. The authors of
Ref. [38] suggest that it is due to proton-antiproton strong
interactions in low-energy conditions. A different explanation
was suggested by Ref. [39] in terms of local electric interac-
tions between quarks and antiquarks of the two baryons. This
is equivalent to a reciprocally induced electric polarization of
the interacting spin-1/2 hadrons. Although nonstandard, the
same mechanism has been used to explain the near-threshold
rise of the inelastic antineutron cross sections in Ref. [40] and
may find a justification in the calculation of a neutron electric
polarization induced by a strong external electric field due to
QED vacuum polarization terms [41].

B. Aim of the present work

Summarizing the previous discussion, the attempts to
reproduce the nonperturbative aspects of TLFF data introduce
complex and largely unexplored details of the hadron-pair
formation process. Translating a model for TLFF into a
spacetime picture of the hadron-pair-formation process is
not immediate, however, since relativistic amplitudes are
normally handled in momentum space, and the processes
involving pair creation or annihilation do not have an intuitive
nonrelativistic equivalent. The starting question of the present
work is how one can translate data fits or models of TLFF
into intuitive spacetime pictures of the forming or annihilating
proton-antiproton system, similarly to what happened for
SLFFs.

In the SL case, FFs in the Breit frame (q0 = 0, no energy
transfer) may be interpreted in a standard nonrelativistic way
as Fourier space transforms of stationary charge and current
distributions. The interpretation of the SLFF in terms of
charge-current distribution has transformed a mathematical
abstraction, that only experts of field theory may understand,
into something that has a tangible meaning for a much broader
audience.

The SLFF interpretation in terms of a charge density
cannot be extended to the TL case, since the photon timelike
momentum can test time distributions of events, but not
space distributions. In the center-of-mass (CM) frame of the
e+e− collision the photon has zero three-momentum (infinite
space wavelength) so any effect related to space separation of
electric charges is not detectable by it. Whatever is tested
by the virtual photon, it must be a function R(t) of the
time deriving from an average over all the three-space. But,
after a three-space average, the overall electric charge of
the forming hadron-antihadron pair is equal to zero at any
time. Of course, this concerns the “electric charge” in the
classical electrodynamical sense; that is, the source of an
electromagnetic field. If we interpret the concept of “charge”
as “photon-charge coupling,” we may think of R(t) as an
amplitude for creating charge-anticharge pairs at the time t .
So, “charge distribution” can be understood as “distribution in
time of γ ∗ → charge − anticharge vertices.”

In the following, we examine in depth this idea, formalize
the relation between R(t) and the static space charge density
ρ(r) that is measured in the SLFF, and present some examples
inspired by the phenomenology.

time

time time
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FIG. 2. Feynman diagrams for reactions (8) labeled as SL in
the figure, (9) TL+, and (10) TL−. In the one-photon exchange
approximation, electromagnetic FFs are functions characterizing the
vertex coupling the virtual photon to the hadron current (thick dashed
line in the figure).

II. GENERAL DEFINITIONS

The relevant reactions for the extraction of SL and TL FFs
are

SL : e± + p → e± + p, (8)

T L+ : e+ + e− → p̄ + p, (9)

T L− : p̄ + p → e+ + e−. (10)

They are related by crossing symmetry and illustrated in Fig. 2.
Reaction (8) allows for measuring the FF in the spacelike
(SL) kinematical region, corresponding to a virtual photon
four-momentum qμ with �q 2 > q2

0 . Reactions (9) and (10)
allow for exploring the timelike (TL) FFs; more precisely,
the processes (9) and (10) are labeled T L+ and T L−,
respectively.

We assume one-photon exchange, so in the following
“form factor” is meant as a factor renormalizing the hadron-
virtual photon vertex, as in Fig. 3. Factorizing out the
lepton part of the process and the virtual photon propagation,
we will only consider the three-leg amplitude A(q,PA,PB)
describing the subprocesses of the reactions introduced
above:

SL : γ ∗(qμ) + p(pμ) → p(p′
μ), (11)

T L+ : γ ∗(qμ) → p(p′
μ) + p̄(p̄μ

′), (12)

T L− : p(pμ) + p̄(p̄μ) → γ ∗(q ′
μ). (13)

The four-momenta qμ, P
μ
A , P

μ
B appearing as formal arguments

of A(q,PA,PB ) are all incoming as in Fig. 3, so that the differ-
ent reactions are distinguished by the expression of q, PA, and
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FIG. 3. Subdiagram participating in the three reactions (14)–(16).
Since they may be considered physical channels of the same reaction,
all of them may be described by the same diagram and by the
same amplitude by changing the values of the components of the
four-momenta PA, PB, q, exploiting crossing symmetry. Formally,
we consider these momenta as all entering. So, q coincides with
the physical four-momentum of the virtual photon in the channel
T L+ where a p̄p pair is created, while q = −q ′, where q ′ is the
physical four-momentum of the virtual photon, in the reverse channel
T L− where a virtual photon is produced by p̄p annihilation. Similar
considerations apply to PA and PB [see Eqs. (14)–(16) for the
correspondence between the formal arguments of the amplitude and
the physical momenta].

PB in terms of the physical momenta q, q ′, p, p′, p̄, p̄′ (that
have a positive time component if they are timelike):

γ ∗ + p → p′ (SL : |q0| < |�q |), PA = p, PB = −p′,

(14)

γ ∗ → p̄ + p (T L+ : |q0| > |�q |,q0 > 0), PA = −p′,

PB = −p̄′, (15)

p̄ + p → γ ∗ (T L− : |q0| > |�q |,q0 < 0), PA = p,

PB = p̄, q = −q ′, (16)

whereas, in the TL region, two reciprocally inverse reactions
are possible, corresponding to p̄p annihilation into (or creation
from) a lepton-antilepton pair.

It is important not to confuse the four-momenta PA,PB , as
formal arguments of A, with their physical values ±p, ± p̄,
etc. The analytic continuation of A(q,PA,PB ) requires that this
amplitude is described in terms of the same arguments in all
the reaction channels and in the unphysical regions (so, q0 < 0
in one of the two annihilation channels, and it is, in general,
a complex variable). Being A(q,PA,PB) invariant, it actually
depends on q, PA, and PB via their invariant products only,
so these three four-vectors contain redundant information.
However, in the following, we keep the formal dependence
of A on them.

Here we distinguish between “resolvable” and “unresolv-
able” particles. A resolvable particle participates in a process
with its internal structure, while an unresolvable particle is

treated as a massive elementary particle. Both levels are present
in the FF analysis. As an unresolvable particle, the photon-
hadron current interaction takes place in a single-vertex
four-point Xμ. The FF takes into account that, at a resolvable
level the photon-hadron interaction involves several variables
X

μ
1 ,X

μ
2 , . . . associated with the internal hadron constituents.

From now on we omit the tensor indexes and just write
X,X1, etc.

Assuming a muon as a template for an unresolvable proton,
the vertex matrix element for γ (q) + μ(p) → μ(p′) is (using
ūγ 0 = u+)

Apoint SL(q,p,p′) = 〈μ′|Aν(X)J ν(X)|μ〉

= e

∫
d4X eiqXe−ip′XeipXeνū(p′)γ νu(p)

(17)

= e

∫
d4XeiqXe−ip′XeipX[e0u

+(p′)u(p)

− �e ū(p′) �γ u(p)] (18)

= δ4(q + p − p′)[Tpoint charge(q,p,p′)

− Tpoint current(q,p,p′)]. (19)

Exploiting that the amplitudes of the processes (15) and (16)
are analytic continuations of the amplitude of Eq. (14), we can
write Eq. (19) in a form where it describes all these processes:

Apoint(q,PA,PB ) ≡ δ4(q + PA + PB)[Tpoint charge(q,PA,PB )

− Tpoint current(q,PA,PB)], (20)

where, assigning to q, PA, PB the values listed in Eqs. (14)–
(16), we obtain the amplitudes for the corresponding reactions.

FFs may be introduced as scalar functions that multiply the
previous terms, or linear combinations of these terms:

A(q,PA,PB) ≡ Acharge(q,PA,PB ) − Acurrent(q,PA,PB) (21)

≡ δ4(q + PA + PB)[Tpoint charge(q,PA,PB)F (q)

−Tpoint current(q,PA,PB )G(q)], (22)

where now this amplitude describes processes involving proton
and antiproton instead of muons. The scalar FFs F (q) and G(q)
depend on qμ via the scalar q2 ≡ qμqμ only. Alternatively, one
may rewrite the hadron four-current in the Gordon form, insert
F1 and F2 and next combine them into GE and GM . How-
ever, the adopted procedure is simpler, since it immediately
highlights the term that is proportional to the charge-density
operator u+(p′)u(p). We will not work on the other component
in the following. In the relevant reference frames (the Breit
frame for the SL case and the center of mass system for the
TL case) F (q) coincides with the electric form factor GE .
In an arbitrary frame, F (q) is a linear combination of GE

and GM .
Our further analysis only considers the form factor F (q)

associated with the charge term. So our starting equation is

Acharge(q,PA,PB ) ≡ δ4(q+PA+PB)Tpoint charge(q,PA,PB)F (q).

(23)
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III. FOURIER TRANSFORM OF FORM FACTOR,
SPACELIKE-BREIT, AND TIMELIKE–CENTER-OF-MASS
CASES, TIME DENSITY OF PHOTON-QUARK COUPLING

Following a suggestion from Ref. [36], the key tool of our
investigation is the four-dimensional Fourier transform

F (q) =
∫

d4xeiqxF (x). (24)

In the SL case, and in the Breit frame where qμ = (0,�q ),

FSL,Breit(q) =
∫

d3 �xe−i �q·�x
∫

dtF (t,�x) ≡
∫

d3 �xe−i �q·�xρ(|�x|),
(25)

yρ(|�x|) =
∫

dtF (t,�x). (26)

where ρ(|�x|) may be read as a static charge density. Here it
appears as a time average over the Fourier transform F (x) =
F (t,�x).

In the TL case, and in the CM frame (�q = 0),

FTL,CM(q) =
∫

dteiqt

∫
d3 �xF (t,�x) ≡

∫
dteiqtR(t), (27)

R(t) =
∫

d3 �xF (t,�x). (28)

It is evident that it is difficult, in absence of a model for
the underlying F (x) (that depends on both �x and t), to find
a simple relation between ρ(�x) and R(t), since they represent
projections of the same distribution onto orthogonal subspaces.

IV. GENERAL PROPERTIES OF F(x)

Since we have required F (q) to depend on the four-vector
qμ via q2 only, F (x) is constrained to have the form:

�x2 > t2 : Fout LC(xμ) = f (xμxμ), (29)

t2 > �x2 : Fin LC(xμ) = f+(xμxμ)θ (t) + f−(xμxμ)θ (−t),

(30)

where we distinguish the “in-light-cone” and the “out-of-
light-cone” components of F (x). For Fout LC(xμ), a t → −t
asymmetry is forbidden by the requirement that symmetry
properties of a scalar amplitude do not depend on the reference
frame (a positive t can be made negative by a proper Lorentz
boost). Since a proper Lorentz boost cannot mix future and past
light cones, the same constraint is not present on Fin LC(xμ),
which may be rewritten as

Fin LC(xμ) = 1/2[f+ + f−] + 1/2[f+ − f−][θ (t) − θ (−t)].

(31)

The last term is important since it leads to an imaginary part
of F (q) even if F (x) is real.

The f+ − f− term implies asymmetries between the reac-
tions γ ∗ → p̄ + p and p̄ + p → γ ∗, supposedly associated

with final- or initial-state interactions. These asymmetries
are constrained by the time-reversal requirement that |F (q)|
is not changed by q0 → −q0 (proton-antiproton annihila-
tion instead of creation), so the differences affect only
phases.

In absence of a physical model, there is no mathematical
reason to prevent the TL form factor F (q) from receiving
contributions from the SL regions of xμ and vice versa for the
SL form factor. A simple example may confirm this: in the
(1 + 1) spacetime (t,z) we may take F (t,z) = δ(z2 − t2 − 1);
that is, zero in the TL region z2 � t2 including its borders. In
the CM frame R(t) ≡ ∫

dzF (t,z) = (1 + t2)−1/2. For real t ,
R(t) admits a nonzero, real, and regular (although analytically
nontrivial) Fourier transform F (q).

On the contrary, within a physical model where relativistic
causality is implemented, the TL domains of x are related to
the TL domains of q. To demonstrate this, we need to discuss
some of the physical content of F (x). Up to now, F (x) has
just been introduced as the Fourier transform of a form factor.
We now rewrite Eq. (23), assuming a model where the virtual
photon conversion into a proton-antiproton pair begins with
the photon conversion into a quark-antiquark pair, and all the
other steps of the process follow causally from this initial
event.

The amplitude describing how a free (anti)proton with
momentum p splits into a Fock state of N constituents is

ψ(X1,X2, . . . ,XN ) ≡ eipX�(x1,x2, . . . ,xN ), (32)

where the four-factor Xi is the spacetime position of the
ith constituent, X is a linear combination of all the Xi ,
expressing the spacetime position of the proton as a whole
(the unresolved proton) and the four-coordinates xi are internal
four-coordinates relative to X:

X =
∑

wiXi, i = 1,, (33)

xi ≡ Xi − X, (34)∑
wixi = 0, (35)

where wi are weights that depend on dynamics (for example,
on the longitudinal fractions or on the mass) within a given
model.

� is a fully relativistic amplitude, where each four-
coordinate has an independent time dependence. X is not the
hadron CM in the nonrelativistic sense, since in Eq. (33) the
positions of the partons are taken at different times. But, if
the hadron current is not interacting with the environment,
a four-coordinate X must exist that makes the factorization
of Eq. (32) possible, because the eipX term expresses the
spacetime translation invariance of the (anti)proton as a whole,
that is at an unresolvable level.

Let us first assume that, in the state of N constituents, one
quark only is charged. Its coordinate is x1. Let ψ ′ and �′ refer
to the final antiproton, and ψ+ and �+ to the final proton.
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So we may rewrite Eq. (23) for the process γ ∗ → p̄p as

ATL,charge = Rpoint,charge(q,p,p̄)e1

∫
dX1dX2 · · · eiiqX1ψ+(X1,X2, . . .)ψ

′(X1,X2, . . .) (36)

= Rpoint,charge(q,p,p̄)e1

∫
dXe[i(q−p−p̄)X]

∫
dx1e

iqx1

∫
dx2 · · · δ4

( ∑
wixi

)
�+(x1,x2, . . .)�

′(x1,x2, . . .) (37)

≡ Rpoint,charge(q,p,p̄) δ4(q − p − p̄)
∫

d4x1e
iqx1F (x1), x ≡ x1. (38)

Here x1 is the four-point where the first quark-antiquark pair
is created, while x2 (or x3, or other four-coordinates) could be
the position where another quark-antiquark pair is created, not
directly by the photon. A chain of processes leading from the
pair created in x1 to a second pair created in x2 must exist.
A standard PQCD example is a gluon radiated from the first
quark that generates a second pair, as in Fig. 4. The amplitude
for processes like this may be absorbed inside �′(x1,x2, . . .) or
�+(x1,x2, . . .), or appear as a separate function describing the
hard part of the process. Further functions may be introduced
to consider later rescattering between the forming hadrons.
This is not essential in the following, so the only functions we
report explicitly are the hadron-splitting functions.

With more than one charged quark in a Fock state of N
constituents, F (q) is at first order a sum over all the amplitudes
where the photon directly interacts with one of these charges,
so that in one amplitude x = x1, in another one x = x2, and
so on. In addition, we must sum over Fock configurations
involving different numbers of constituent partons or even
intermediate state hadrons.

These details concern the model one is applying, but in
any case the structure suggested by Eqs. (33) and (38) will be

p p p p

γ*
γ*

1X

2X

X

q q

g

FIG. 4. Left image shows one of the possible chains of events that
at resolved level lead to proton-antiproton formation from a virtual
photon. In this figure the proton is schematized in a simplified form,
as composed by a charged quark plus a neutral compact diquark. So
γ → p̄p requires at least two pair-creation vertices, in the four-points
X1 and X2. Right image shows the same process at an unresolved level
of analysis. Only one vertex is present in the four-point X, where
the p̄p pair is directly created by the photon. The relation between
X, X1, and X2 is determined by Eq. (33), which in this simple case
will be of the form X = w1X1 + w2X2. The corresponding geometry
is represented in Fig. 5.

present. We will find a four-coordinate X representing the point
where the photon creates the unresolved proton-antiproton
pair. This coordinate leads to the momentum-conserving δ4

function, and has no other role. Indeed, eiqμXμ

being the wave
function of the photon, all the spacetime points are perfectly
equivalent for this creation. The coordinate separation and
the introduction of relative coordinates in Eq. (34) imply that
the form factor is calculated by implicitly assuming that the
unresolved proton-antiproton pair is created at the origin.

At the resolved level, in the diagram where the ith quark-
antiquark pair is the active pair directly created by the photon,
the argument x of the form factor is the four-position xi of this
pair creation with respect to the origin.

Let us again consider for simplicity the case where only the
quark-antiquark pair “1” is charged. R(t) is an integral of the
form

∫
d3 �x ∫

d4x2 · · · . In a model for e+e− → p̄p where all
the events x2, x3, ... are causally consequent to the first pair
creation in x = x1, all the four-points x2, x3, ... must be in the
future light cone of x, and t = t1 is the most negative of all the
involved times t1,t2, . . . ,tN . Because the origin is an average
of all the xi with positive coefficients wi , the origin is in the
future light cone of x ≡ x1. So t is negative, and x = (t,�x) is
in the past light cone of the origin, see Fig. 5. In the reverse
process p̄p → γ ∗, the same logic implies t > 0, and x is in
the future light cone of the origin.

The previous Eqs. (36)–(38) could be repeated for the
SLFF. In this case, however, x would not lie in the (past or
future) light cone of the origin. This means that, although
�+(x1,x2, . . .) may represent a final proton with the same
four-momentum in both the SL and the TL cases, the identity
between �+

SL(x1,x2, . . .) and �+
T L(x1,x2, . . .) must be meant

in the analytic-continuation sense. Measures in the SL sector
produce a knowledge on �(. . .) that requires an extrapolation,
to be applied to the TL sector. The same must apply
to F (x).

V. EXAMPLES

The simplest examples approximate the proton as “single
charged active quark plus neutral spectator diquark.” As
indicated above, let the origin X = (0,0,0,0) be the four-point
where the unresolved p̄p pair is created. Let (t1,�x1) be the
point where the initial active quark-antiquark pair is created,
and (t2,�x2) be the point where the spectator-antispectator pair
is created. Then, following Eq. (34), we have

x ≡ x1 = (x1 − x2)w, w > 0. (39)

015204-6



FOURTH DIMENSION OF THE NUCLEON STRUCTURE: . . . PHYSICAL REVIEW C 95, 015204 (2017)

time

space

X

1X

2X

time

space

2x

1x

0

FIG. 5. Absolute (left image) and relative (right image) coordi-
nates for the chain of events leading to p̄p formation from a virtual
photon as shown in Fig. 4. (left) According to Eqs. (33), X1, X, and
X2 lie along a straight line, which is represented as a thick dashed line
in the figure. This line does not correspond to any physical particle;
we just use it to highlight the relative position of the three points.
The continuous thin straight lines at 45◦ and 135◦ represent the light
cone of X. (right) The same geometry as the left image, but using the
relative four-coordinates x1 and x2 introduced in Eqs. (34). With this
transformation, X becomes the origin. The four-coordinate x that is
argument of the spacetime form factor F (x) coincides with x1, the
four-point where the photon creates the first quark-antiquark pair.

For example, in the symmetric case we have x1 = −x2

and x = (x1 − x2)/2. In general, w may depend on parton
masses and dynamics. Here the only relevant things are the
following:

Causality implies that t1 < t2, and since the weight coef-
ficient w is positive the origin is somewhere on the straight
line joining x1 and x2. Since x2 is in the future light cone
of x1, the origin is in the future light cone of x = x1,
and t < 0.

In the initial examples we violate time-reversal symmetry
assuming that F (x) is nonzero only for negative times (that
describes proton-antiproton creation but not annihilation).
Next we add the reverse-process piece.

A. Case 1: Homogeneous distribution for positive times

We assume that, after the initial quark-antiquark creation,
the creation of the complete proton-antiproton system is
possible at any time with equal probability if this happens
inside the future light-cone of the first event. We do not know
how this probability is spatially distributed, but the integral
over all space is time independent and we fix it to 1 at any
given time. Since the unresolved p̄p pair is created for t = 0,
the condition “q̄q pair created before p̄p pair” just means
t < 0:

R(t) = θ (−t), (40)

F (q) =
∫

eiqt θ (−t) = π

ε − iq
, (41)

with infinitesimal ε.

B. Case 2: Exponential damping

Common sense suggests that either the spectator pair
and the complete proton-antiproton system are created soon
after the active pair, or the process will lead to independent
fragmentation of the initial quark and antiquark. So it is more
realistic to generalize Eq. (40) to

R(t) = θ (−t)e−a|t |, (42)

which suppresses the probability of the creation of an exclusive
hadron pair for |t | � 1/a. This leads to

F (q) = π

a − iq
= aπ

a2 + q2
+ i

qπ

a2 + q2
, (43)

where the difference with respect to the previous case is that
a is finite.

C. Case 3: Monopole-like shape

As observed in a previous section, F (x) must be nonzero
both in the future and in the past light cone to describe both
p̄p creation and annihilation. These terms should be time
symmetric, apart from a possible phase difference. We sum
two terms like the previous one, corresponding to positive
and negative t . Taking them with the same phase, we get a
monopole-like distribution, with the correct asymptotic of the
form factor of a two-constituent hadron:

R(t) = θ (t)e−at + θ (−t)eat = e−a|t |, (44)

F (q)/π = 1

a − iq
+ 1

a + iq
= 2a

a2 + q2
. (45)

The 1/a parameter has the meaning of a formation time. In
this simple two-constituent model of the proton, we have two
meaningful pair-creation vertices at times T1 and T2. This
implies one relative time t , that according to Eqs. (33) and (35)
has the magnitude of t1 − t2 [for example, in a symmetric
model t = (t1 − t2)/2]. For |t | � 1/a, R(t) is very small. This
means that either the second pair is formed within 1/a, or the
initial pair will produce two separate hadron showers.

When q ≈ some quarkonium mass, the scale of this time
may expand to the time life of a resonance: the initial
pair may form a long-lived state, and the second pair has
more time to be formed. This is discussed in detail below.
As it is, Eq. (45) corresponds to a zero-mass resonance of
width a.

The above monopole form with its R(t) counterpart
contains two properties of general character: (a) a correct
1/q2 asymptotic for the formation of a hadron pair when each
hadron is formed by two constituents, (b) the presence of a
time cutoff 1/a, meaning that the formation of the full hadron
pair and of the first quark-antiquark pair cannot be too far in
time.

D. Case 4: Resonance-like, space, and time parameters

Equation (45) may be written as

F (q)/π = i

(
1

q + ia
− 1

q − ia

)
. (46)
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The simplest way to have poles with nonzero mass is to
substitute q → q − M , leading to a Lorentzian (not Breit–
Wigner) resonance shape:

F (q)/π = i

(
1

q − M + ia
− 1

q − M − ia

)

∝ 1

(q − M)2 + a2
. (47)

This shape describes, for example, the stationary response of
a classical damped oscillator to an external periodic force. By
Fourier transform we get

R(t) ∝ eiMte−a|t |. (48)

Since a Fourier transform is a sum with homogeneous weight
over all the frequencies, the previous R(t) is the response of a
classic damped oscillator to an instantaneous external force of
the form δ(t) [Eqs. (47) and (48) are the frequency and time
Green’s functions of that problem] .

Although a classical oscillator presents several similarities
with some quantum systems, it has not the problem of the
negative-energy solutions of the relativistic wave equation.
We should recall that here q means q0 (the time component of
the four-vector qμ) and not (q2)1/2, so it may be negative (we
are in the CM frame where �q = 0). Because of the relativistic
particle-antiparticle symmetry, to each pole with q0 = M +
ia corresponds a pole with q0 = −(M + ia) that describes
the corresponding negative-energy states. With only positive
Re(q0) poles, we are back to the situation of the first two
examples of this section, where F (q) describes the p̄p creation
process, but not the annihilation one. Indeed, by closing the
integration path on the upper or lower half of the complex plane
the Fourier transform returns us an R(t) containing θ (±t).
The two poles must be exactly opposite, so that the situation
is unchanged if the physical photon energy q ′

0 = −q0 of the
p̄p annihilation channel is used instead of q0 to describe the
amplitude.

A Breit–Wigner (BW) probability distribution contains all
the four poles q0 = ±(M ± ia). The corresponding amplitude
is

F±(q) ∝ 1

(q2 − M2) ± iMa
, (49)

where we may imagine several combinations of F±(q) com-
posing a form factor. For example

F (q) ∝ F+(q) + F−(q) (50)

corresponds to

R(t) ∝ cos(Mt)e−a|t |, (51)

and gives F (q) = O(1/q2) at large q, as expected for the
two-constituent hadron we are working with.

F+(q) and F−(q) contain, respectively, one pole from the
the p̄p creation and one pole from the p̄p annihilation process.
With arguments similar to those following Eq. (48), we may
say that Eq. (51) sums two contributions, which may be
highlighted by writing (see Fig. 6)

R(t) ≡ Rcreation(t)θ (−t) + Rann(t)θ (t). (52)

t (fm/c)
-3 -2 -1 0 1 2 3

R
(t

)

-0.2

0

0.2

0.4

0.6

0.8

1

advanced (t > 0)retarded (t < 0)

proton-antiproton 
annihilation

proton-antiproton
creation

FIG. 6. R(t) = cos(Mt)e−a|t |, with M = 1 GeV, a = 0.4 GeV, as
in Eq. (51). The retarded (p̄p creation) and advanced (annihilation)
contributions of Eq. (52) are distinguished.

One of the two pieces describes the process in the p̄p creation
channel, and it has the same form as the retarded response of a
classical bound and damped oscillating system to a δ(t)-shaped
external perturbation. The other one has the same meaning, in
the p̄p annihilation channel. Analytically, it may be also read
as an unphysical advanced response in the creation process.

We know that the tail of a resonance may be much
more complicated than this, and pole-based models of
FFs [26,28,42] are more sophisticated than the above Lorentz
and BW examples. However, the BW example contains the
basics to remark a few points. First, two dimensional and
scaling-violating parameters appear, corresponding to the pole
mass and width. For obvious reasons, in the SL analytic
continuation q2 → −q2 the leading parameter expressing how
a charge distribution decreases with the distance is the pole
mass. In the TL case this mass is associated with the frequency
of the oscillation in time of the underlying photon-quark-
antiquark coupling. The parameter that tells us how fast is
the decrease in time of the probability of the formation of
the hadron pair is the pole width. Taking into account that
fast-decaying hadron resonances have mass ∼1 GeV, and
standard width in the range 0.1–1 GeV, we expect for R(t) a
shape as in Fig. 6, with a small number of visible oscillations.
If the pole had zero width the oscillation would continue
forever, as in the first example of this section where a was
infinitesimal leading to R(t) = θ (t). This would not prevent
us from having a finite charge radius in the SL measurement
given by 〈r〉 ∼ 1/M . The SLFF would appear as a monopole
1/(|q2| + M2).

E. Case 5: Several spectators; dipole and asymptotic 1/q2(n−1)

behavior

A nucleon is made of three constituents in its basic valence
state, possibly more in temporary fluctuations. Because of
the valence structure, for the nucleon FF we expect a 1/q4

law at large q, and more in general a 1/q2(n−1) law if
the produced hadrons are made of n compact constituents.
Since this behavior does not depend on the relative wave
function or interaction of these constituents, we would like
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to identify a mechanism that leads to the correct asymptotic
form, whichever these details may be.

We may use the Fourier transform property of convolutions:

F1(q)F2(q) = F[R1(t) ∗ R2(t)], (53)

where F[·] is a Fourier transform and

[R1(t) ∗ R2(t)] ≡
∫

dτR1(τ )R2(t − τ ). (54)

So a function like

F (q) ∝ 1

(a2 + q2)(b2 + q2)
, (55)

which presents the required asymptotic trend, is the Fourier
transform of

R(t) =
∫

dτe−a|t−τ |e−b|τ |. (56)

This contains the required statistical properties. In a three-
constituent Fock state the proton has two internal (four-
dimensional) degrees of freedom. One of the two convoluted
terms has the same role and meaning it had in the previous
two-constituent case and is associated with the degree of
freedom that is directly probed by the virtual photon. The other
term represents a decaying correlation between the active and
a spectator degree of freedom. Being dominated by simple
valence configurations, the large-q behavior will derive from a
sum of three terms like Eq. (56). In each term one of the three
valence quarks plays the role of active quark.

In Fig. 7 we show an example of convolution with R1(t)
and R2(t) of resonance type [see Eq. (51)]. The final shape
depends (even at qualitative level) on the parameters of the
convoluting R1 and R2, but some rules are simple: If the
decay times of R1 and R2 are different, R1 ∗ R2 coincides
at large |t | with the one between R1 and R2 with the longer
lifetime. R1 ∗ R2 may decay for two reasons: (a) because the
oscillations of cos(M1t) and cos(M2t) acquire opposite phase
[for t ≈ π/(M1 − M2)], and (b) because t > 1/along, where
“long” refers to the longer-life pole. So the decay time of the
convolution is determined by the largest between |M1 − M2|

t (fm/c)
-3 -2 -1 0 1 2 3

R
(t

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 7. Dotted line shows R1(t) = cos(M1t)e−a|t |, with M =
1 GeV, a = 0.4 GeV. Thick-soft double-dotted line shows R2(t) =
cos(M2t)e−b|t |, with M2 = 0.6 GeV, b = 0.1 GeV. Continuous line
shows convolution [R1(t) ∗ R2(t)] = ∫

dτR1(τ )R2(t − τ ) according
to Eq. (54).

)τ(1R

)τ(t-2R

(t)δ

(t)2*R1R

1F
2F

FIG. 8. Sequence of oscillators corresponding to the response
function of Fig. 7. In equilibrium both the black masses overlap with
the gray circle. They can move horizontally under the action of elastic
forces F1 and F2, graphically represented as springs, or of external
forces. When any of these masses is subject to an instantaneous
external impulse ∝δ(t − t0) at the time t0, its later displacement
from the equilibrium position is described by the Green response
function Ri(t − t0). A short impulse by an external force δ(t) at
t = 0 causes the displacement R1(τ ) of the first mass at the later
time τ . The displacement of the first mass acts as an external force
on the second mass and may be decomposed into short impulses:
R1(τ ) = ∫

dτ ′R1(τ ′)δ(τ − τ ′). Since each short impulse at the time
τ produces a response R2(t − τ ) of the second mass, the resulting
displacement of the second mass is

∫
dτR2(t − τ )R1(τ ).

and the width of the longer-life pole. If the process is dominated
by standard hadron poles such as ρ, ω, the decay time is
of magnitude 1/(200 MeV) ∼ 1 fm. Narrow large-mass poles
could lead to much more unpredictable effects. Since the poles
entering the convolution are poles of quark-antiquark states,
they can also be poles of the full proton-antiproton system.

The dynamical meaning of the convolution in Fig. 7 is
described in Fig. 8. As observed after Eqs. (48) and (52),
R(t), when derived from a Lorentz or Breit–Wigner form,
corresponds to the response of a classical damped oscillator
to a δ(t) external perturbation. The convolution structures of
Eq. (54) describe the response of a chain of two oscillators,
where one end of the chain is directly under the strain of the
virtual photon.

In subasymptotic conditions more degrees of freedom could
play a role. These terms would imply a longer chain of
convolutions. For example, with four constituents we would
have

R(t) = [[R1(t) ∗ R2(t)] ∗ R3(t)], (57)

leading to a form factor that empirically could appear as a
product of monopoles,

F (q) ∝ 1

(q2 ± a2)(q2 ± b2)(q2 ± c2)
, (58)

where the sign (in the TL channel) is negative if the mass
is larger than the width of a pole, positive in the opposite
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case. A three-pole structure would be found in a process like
e+e− → p̄nπ+ → p̄p where three quark-antiquark creation
vertices x1, x2, x3 are needed to create the intermediate state.
For example, the data from the BaBar Collaboration [5,6]
are well fit by Eq. (5), which has the subasymptotic form
F (q) ∝ 1/(q2 + a2)(q2 − b2)2.

F. Case 6. Oscillating modulations, and delayed or advanced
terms

If we have the sum of two contributions of equal shape,

R(t) = R0(t) + aR0(t − b), a � 1, (59)

F (q) = F0(q)[1 + aeibq ], (60)

because of a known property of the Fourier transforms:
F[G(t − b)] = eiqbF[G(t)].

We expect a similar phenomenon if the second distribution
is not exactly identical to the first one, but is similar.
For example, R0(t) could have a peak in T , and R1(t)
a similar peak in T − b. This would lead to a periodic
modulation.

The oscillating modulation discussed in Refs. [9,10],
however, shows a periodic pattern with respect to the final-
state hadron relative momentum, rather than to q. So, that
phenomenon requires a more complex explanation, where the
role of the final-state kinematics is more explicit.

VI. CONCLUSIONS

We explore a scheme where the TL hadron FF is interpreted
as an amplitude for the distribution in time of the quark-
antiquark pair creation vertex. This is the timelike counterpart
of the known interpretation of the spacelike form factor as the
Fourier transform of a classical charge distribution.

Exploiting analytic continuity between the physical reac-
tions where both FFs are measured, these are considered to

be the analytic continuation of a unique function F (q). For
real values of the components of qμ, F (q) is assumed to be
the four-dimensional Fourier transform of a unique function
F (x), which is F (q) ≡ ∫

eiqμxμ

F (x).
Giving to qμ the spacelike and timelike components

(0,�q ) and (q,0), we get FSL(q) = ∫
d3 �xρ(�x), and FTL(q) =∫

dtR(t), where ρ(�x) = ∫
dtF (x), and R(t) = ∫

d3 �xF (x). So
the distributions that are tested by the virtual photon wave
are projections onto orthogonal one-dimensional and three-
dimensional spaces of the same underlying function F (x).

We next explore the main properties of the function F (x).
The contributions to the timelike form factor appearing in
the reactions of proton-antiproton creation and annihilation
originate from those x that lie in the future and past light
cones of the origin. The former contributes to the e+e− → p̄p
reaction, the latter to the reverse process. A phase asymmetry
between the values of F (x) in the two light cones is allowed by
general invariance rules. This in principle permits an imaginary
part to be present in F (q) even if F (x) is real.

Next we have presented some simple examples for pos-
sible R(t) functions with consequent form factors. These
were not models, but rather the simplest possible functions
presenting realistic phenomenological features: a dimensional
parameter associated with the hadron-pair formation time, the
expected large-q power-counting behavior, and interference
phenomena.

In conclusion, the present interpretation of FFs in the
timelike region highlights the spacetime meaning of these
fundamental quantities and relates the static charge-density
features with the time evolution properties of the hadron-pair
formation.

This interpretation will help understanding high-precision
data expected to come from future measurements. Experi-
mental programs at all existing and planned hadron facilities
are ongoing or foreseen; for example, at Mainz (Germany),
Jefferson Laboratory (USA) in the SL region, and, in the TL
region, at VEPPII (Russia), BESIII at BEPC2 (China), and at
the future antiproton facility PANDA at the GSI Facility for
Antiproton and Ion Research (Germany).
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