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Model selection for pion photoproduction

J. Landay,” M. Déring,>*! C. Fernandez-Ramirez,** B. Hu,' and R. Molina'
'The George Washington University, Washington, DC 20052, USA
2 Institute for Nuclear Studies (INS); Astronomy, Physics and Statistics Institute of Sciences (APSIS),
The George Washington University, Washington, DC 20052, USA
3Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
4Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México, Ciudad de México 04510, Mexico
(Received 25 October 2016; revised manuscript received 11 December 2016; published 12 January 2017)

Partial-wave analysis of meson and photon-induced reactions is needed to enable the comparison of many
theoretical approaches to data. In both energy-dependent and independent parametrizations of partial waves, the
selection of the model amplitude is crucial. Principles of the S matrix are implemented to a different degree in
different approaches; but a many times overlooked aspect concerns the selection of undetermined coefficients
and functional forms for fitting, leading to a minimal yet sufficient parametrization. We present an analysis of
low-energy neutral pion photoproduction using the least absolute shrinkage and selection operator (LASSO) in
combination with criteria from information theory and K -fold cross validation. These methods are not yet widely
known in the analysis of excited hadrons but will become relevant in the era of precision spectroscopy. The
principle is first illustrated with synthetic data; then, its feasibility for real data is demonstrated by analyzing the
latest available measurements of differential cross sections (do/d<2), photon-beam asymmetries (X), and target

asymmetry differential cross sections (dor/d = T do/d?) in the low-energy regime.
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I. INTRODUCTION

The understanding of the strong interaction in the hadronic
energy regime is an important unresolved issue that has
regained a lot of attention in previous years because of the
advances in detection techniques, accelerator technologies,
first principle quantum chromodynamics (QCD) analyses, and
S-matrix theory amplitude analysis techniques [1-6]. These
developments have lead to a broad effort to build and perform
experiments that are or will be collecting an unprecedented
amount of data on hadron reactions, e.g., BELLEII [7,8],
BESIII [9], CLAS12 [10], CMS [11], COMPASS [12],
ELSA [13,14], GlueX [15], J-PARC [16], KLOE2 [17],
LHCb [18], MAMI [19], and PANDA [20].

Partial-wave analysis of hadronic reactions is a prerequisite
for many theoretical approaches to access information from
the experimental data, especially if the comparison to hadron
resonances is the goal. Narrowing the focus to photoproduction
reactions, their decomposition into partial waves (multipoles)
is usually performed through an energy-dependent (ED)
parametrization of the amplitude. As long as data are not
abundant and precise enough, it is not yet possible to perform
a (truncated partial-wave) complete experiment [21,22] in the
resonance region. A parametrization in energy is needed for
the determination of resonances, or as a stabilizing starting
point for single-energy (SE) solutions in which energy-binned
data are fitted independently. For both ED and SE analyses, the
selection of fit parameters is a fundamental problem that we ad-
dress in this study for the case of neutral pion photoproduction
in the low energy region. We use this well-studied reaction
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as a benchmark for various techniques and as a template
for future works because of the well-established theoretical
framework and the availability of high-quality data which
allow an (almost) model-independent SE extraction [23,24].

In the analysis of photoproduction experiments, the
parametrization of the amplitude is chosen according to
the considered energy range. For low-energy neutral pion
photoproduction, Heavy baryon chiral perturbation theory
(HBChPT) [25-34] and relativistic baryon chiral perturbation
theory (RBChPT) [35] provide effective parametrizations.
Both deliver equally good descriptions of the latest experimen-
tal data up to £, 2~ 170 MeV in the laboratory frame [23,36].
Polynomial parametrizations which incorporate unitarity in
the S wave have also proved to be an excellent description of
the dataup to £, 2~ 185 MeV where the A(1232) contribution
begins to be relevant [23,37,38]. ChPT calculations including
isospin breaking have been performed in Refs. [39—41] and
the inclusion of the A(1232) resonance as an explicit degree
of freedom in RBChPT allows one to extend the agreement
between theory and data up to E, =~ 200 MeV [42,43]. The
RBChHPT calculation in [35] was extended to include also
electroproduction of charged pions [44].

In an explicit parametrization of partial waves one cannot
incorporate an infinite number (the series has to be truncated)
and we need to determine how many terms one needs to in-
corporate to provide an accurate, yet minimally parametrized,
description of the physics involved. In Refs. [37,45] it was
determined that in the low-energy neutral pion photoproduc-
tion region we need to incorporate up to D waves and that
higher partial waves can be safely dismissed. Although D
waves are not necessary to describe the experimental data,
not including them prevents the accurate extraction of the S
wave, which is small because it vanishes in the chiral limit
and provides insight into chiral symmetry breaking [46]. The

©2017 American Physical Society


https://doi.org/10.1103/PhysRevC.95.015203

J. LANDAY et al.

structure of the observables in terms of the multipoles can be
found in [37,47,48].

Beyond energies in which a systematic treatment is
possible, effective field theory approaches [49-57], K-
matrix parametrizations, or related approaches are used in
[58-60]. At high energies, Regge parametrizations are very
effective [61,62]. Formulations to provide amplitudes that
cover the entire energy region from threshold to the highest
energies are under development [63,64]. Yet, sometimes
partial waves are parametrized purely phenomenologically in
terms of functions that are in agreement with basic S-matrix
principles such as coupled-channel two-body unitarity, the
correct threshold behavior or Fermi-Watson’s theorem [65,66],
but that are otherwise left free to ensure a high degree of model
independence as in the SAID approach [58].

In general, new high-precision polarization data indeed lead
to more consistent multipole solutions among different analy-
sis groups although discrepancies remain [67]. A step towards
the goal of matching solutions was done recently. Providing the
necessary information for other groups to carry out correlated
Xz fits of 7 N partial waves, the statistical influence of elastic
pion-nucleon scattering was quantified [68]. This gives a
more statistical foundation for multireaction analyses by many
groups in the search for new excited baryons. Complementary
information from hadron beams could also lead to more
consistent solutions among the different partial-wave analysis
approaches [69]. Considerations of which observables and
which precision are necessary to discriminate models are also
a necessary step forward to find definite answers in baryon
spectroscopy [70].

The selection of fit parameters in most of these approaches
is important. If the amplitude is under-parametrized, the
quality of the data description is not satisfactory and the
quality of the extracted amplitudes is difficult to assess.
Overparametrization can result in limited predictability of
the amplitude outside the fitted data range and inflated
uncertainties. Furthermore, problems in the data themselves
(incompatibility of data, systematics, or even statistics) may
be interpreted as significant physics in overparameterized fits.

Most notably, in many approaches resonances are in-
troduced in the parametrization as explicit terms, that will
unavoidably improve the fit quality at the cost of potentially
false positive resonance signals [71]. To control this problem,
groups use mass scan techniques in which, ideally, a minimum
of the x? as a function of the resonance mass appears in
more than one analyzed channel [72]. In the SAID approach,
resonances appear dynamically generated, meaning that poles
in the amplitude can appear without manual intervention, if
required by data [58]. In Refs. [73,74], the most probable res-
onance content (Bayesian evidence) is determined considering
kaon photoproduction. Bayesian priors have also been used to
restrict the low-energy constants in effective field theories to
natural values and estimate the truncation errors [75,76].

If a flexible background with resonance terms on top of
it is provided, the task consists of minimizing the number of
resonances and only accepting them as physically significant
if the background cannot provide a satisfactory description.
The least absolute shrinkage and selection operator (LASSO)
[77-79] provides a tool to scan a plethora of different models,
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in particular multiple combinations of different resonances.
Manually, such a scan would be impossible because of the
large number of combinations, but the LASSO provides an
automatized, “blind-folded” technique [80].

Having the above-mentioned extensions for future work
in mind, we concentrate in this study on the question of
how to select the simplest amplitude for a real-life example
of photoproduction reactions. We choose low-energy neutral-
pion photoproduction, yp — 7% p, for which data of unprece-
dented precision exist from the same experimental setup at
MAMI [23,36], thus minimizing the potential impact from
conflicting data or systematic uncertainties. The differential
cross section do /dS2, photon beam asymmetry X, and target
polarization differential cross section doy/dQ2 =T do/dS2
are analyzed. The entire presentation is kept as pedagogical
as possible, even quoting textbook formulas for easier ref-
erence. The most relevant references on statistical analysis
are [78,79,81].

II. FORMALISM

A. Parametrization

An energy-dependent parametrization is formulated for
both real and imaginary parts of the three P waves, as well as
for the real parts of E( and the four D-wave multipoles,

i .
qf[o max ai wno _ m7-[0 1 (1)
m“‘1 10— ’

Tt =0 Mt

Re,Im M, =

where ¢,o is the center-of-mass momentum of the neutral

pion, w2, =m?2, +¢2,, and g; are the fit parameters. The

) =
quantityﬂ/\/l stands for the electric (E; 1) and magnetic (M +)
multipoles, or alternatively, the partial waves P;, P>, and P

for the P waves, related to each other by
Eiy = ¢(P1 + Py,
My = §(Pi — P, +2 Py),
Mi_ = }(Ps+ P, — Py). (2

The parametrization in energy consists of a factor providing
the correct threshold behavior and a Taylor expansion in
momentum squared around the neutral pion threshold. This
expansion is theoretically justified by ChPT calculations
[25-32]. In principle, it is preferable to use a set of polynomials
in energy that is orthogonal in the fitted energy window, which
reduces the correlations among parameters. However, in this
particular example we could not observe any improvement
when doing so.

Furthermore, in Eq. (1) for the real parts of the multipoles,
one has £ = L, while for the imaginary parts of the P-wave
multipoles, £ = 3L 4 1 =4 as can be obtained from Watson’s
theorem. We do not provide any imaginary parts for the D
waves because, on one hand, they are extremely small and, on
the other end, restricting them to be real fixes the overall-phase
ambiguity. Fit parameters are generically called a; throughout,
and we omit the indices specifying to which partial wave
(real or imaginary part) they belong. The same applies to
the cutoff ip.x. For the real parts of the P waves and D
waves, im,x = 4 while for the imaginary parts of the P wave,

015203-2



MODEL SELECTION FOR PION PHOTOPRODUCTION

imax = 0. Other factors in Eq. (1) serve to make all parameters
dimensionless and of natural size. For the S-wave multipole
Ey, areal-valued term of the form of Eq. (1) with ij,x = 4 is
supplemented by a term of the form,

i=2 2i
. qn+ a; qn+
AEy. =i— — , 3
0+ m2 Z 10— < ) ( )

7t =0 M+

to take into account the 7z *n threshold cusp. The term provides
an imaginary part above the "' threshold and contributes to
the real part of E(; below it. In total, there are iy,,x = 46 free
fit parameters. The number of available parameters is simply
chosen such that every multipole can be grossly overfitted.

B. Criteria from information theory

With this parametrization at hand, we turn to the LASSO
method to select the simplest model [77-79]. The penalized
X% is defined as follows:

X7 = x>0 + P, “
with
Imax
PR =1 lail. )
i=1
In practice, one scans an entire range of A, continuously
minimizing x7. From there, we turn to various criterions
from information theory to determine the optimal A. Note
that the power of four in Eq. (5) is simply chosen to provide
a more convenient graphical representation of these criteria in
the following plots. The three criteria that we use to find an
optimal X are the Akaike Information Criterion (AIC) [82,83],
a finite sample size corrected version of the AIC (AICc) [84],
and the Bayesian Information Criterion (BIC) [85]. The three
are defined as

AIC = 2k — 2log(L) = 2k + x>,

2k(k + 1)

n—k—1

BIC = klog(n) — 2log(L) = klog(n) + x> (6)

AICc = AIC +

where k is the number of parameters which changes dynam-
ically as a function of A, n is the number of data points,
and L is the likelihood. We define the number of degrees
of freedom (d.o.f.) for each fit as d.o.f. = n — k. For all three
of the criteria, the optimal value of A is given by the respective
minimum. This is because the AIC and the BIC take on small
values for models with low test error. Assuming a Gaussian
model, the BIC is proportional to the AIC, however, the BIC
tends to penalize models with more parameters because of the
factor log(n) which allows for a more distinct minimum to
be seen and a better indication of which model to use. For a
further comparison between the AIC, AICc, and the BIC, see
Refs. [78,79].

In Fig. 1 we show the different criteria as a function of
the penalty A in a simple simulation of fitting 22 synthetic
data generated from a low-order polynomial with a model that
includes that low-order polynomial as solution and also allows
for overfitting. One recognizes here a clear difference between
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FIG. 1. The AIC, AICc, and BIC criteria for a simple x? fit to 22
data (see text). All three methods exhibit the minimum at the same
value of X indicating the optimal, i.e., simplest model. The correction
term for a finite number of data in the AICc indeed produces a more
pronounced minimum than for the AIC. The discontinuities occur
every time a fit parameter is set to zero by LASSO.

the AIC and the AICc. The correction for the finite number of
data points indeed leads to a larger AICc at small A, providing
a better identification of the minimum than the AIC. In the
case of pion photoproduction considered later, the number of
data is so large, though, that the difference between AIC and
AICc becomes irrelevant.

C. Cross validation

Another method to find a model with minimal parametriza-
tion yet with accurate description of data is cross valida-
tion [77-79]. In short, data are randomly divided into a training
set and a validation set. For a given A, the penalized x7 of the
training set is minimized and the x{ of the validation set
is determined from that fit (without refitting). While x7 is
clearly a monotonously increasing function of A, the situation
is different for x7. For very large A, x{ is large as well,
because the data are under-fitted. However, as A decreases a
point is reached below which X% is overfitted, i.e., nonphysical
structures such as statistical fluctuations in the training set are
described. These fluctuations are different in the validation
set, such that the validation x2 becomes larger again as A
decreases further. The minimum in x{ is then regarded as the
sweet spot for A, i.e., the point where the fit optimally describes
the data without describing fluctuations.

The method was recently applied in [86] for the determina-
tion of parton distribution functions. Another example is given
in [87]. There, the task consisted of effectively smoothing
a function that is subject to oscillations from unphysical
finite-volume effects. In that example, the unphysical effect
was not given by fluctuations which demonstrates that LASSO
in combination with cross validation is a method with broader
range of applicability than needed here.

The minimum of X‘z/ itself carries uncertainties. In practical
terms it is numerically demanding to carry out the above-
mentioned separation of training and validation sets for all
possible combinations of data. An approximate method is
given by K-fold cross validation in which the (uncorrelated)
data are randomly divided in a few (here five) partitions. In
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five different cross validation runs, four of the five partitions
serve as a training set while the fifth serves as a validation set.
The different outcomes are used to estimate the uncertainty
of xZ at each A. One can then further constrain the search
for the simplest model by selecting the Aop > Amin that is
compatible within errors with the minimum of x} at A =
Amin- In practice, this means to search for the Aoy at which
X (hopt) = X (Amin) + A where A is the uncertainty of x at
A = Amin. This is referred to as the 1-o rule [88,89].

D. Bootstrap and non-Gaussian uncertainties

Although it is common knowledge, we briefly mention the
bootstrap technique to keep the presentation as pedagogical as
possible, and we specify the way bootstrapping is implemented
in this study. For a very similar procedure, see Refs. [6,90].
Once a model is selected, the propagation of uncertainties
from data to results can be carried out using bootstrap.
Here, the results are given by the multipoles and the cusp
parameter at threshold By (see Sec. IIIB 1 for discussion).
This resampling technique allows one to trace nonlinear
uncertainties and is, thus, in principle, superior to methods
using the covariance matrix. Here, we repeatedly perform
complete random resamplings of all data points according to
their uncertainties and then refit each resampled data set. From
each set of the resulting fit parameters, the multipoles and the
cusp parameter fy are evaluated.

If the resulting distribution, e.g., of a multipole at fixed
energy W, is Gaussian one can just estimate the variance
and determine the final uncertainty by its square root. If the
distribution is very skewed it is more meaningful to determine
the 68% confidence level (CL) interval by cutting off the 16%
largest and 16% smallest values.

This leads to a related comment concerning the fitting
of the beam asymmetry X that is one of the considered
observables in this study. Usually, the statistical uncertainty in
polarization observables provided by experiment is treated as
Gaussian in partial wave analysis, as if it originated from the
measurement of a cross section in the limit of many counts.
However, these observables O are ratios of the difference
of positive Poisson distributions divided by their sum, i.e.,
they are restricted to |O| < 1. Thus, strictly speaking, those
uncertainties cannot be regarded as Gaussian and maximizing
the likelihood cannot be achieved by minimizing the x2. The
bias is maximal for |O| = 1. The size of the beam asymmetry
Y is far from this limit at the low energies considered in this
study and we neglect the bias here.

III. RESULTS
A. LASSO in a benchmark model

For a controlled test of the discussed methods, and before
dealing with experimental data, we test our ideas with synthetic
data. In doing so we proceed in the following way:

(1) We generate synthetic data from a given set of multi-
poles and study to which precision and accuracy we can
reconstruct that known set. To that end we first build a
benchmark model (3 model) which is areduced version
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FIG. 2. LASSO, information criteria, and cross validation for the
B model. (a) Total xZ(X) = x2(1) + P(X) with penalty P (orange
points) and x?(A) from data alone (blue points). (b) The x2/d.o.f.
with the number of parameters dynamically updated for each X.
(c) Absolute value of the parameters a; as a function of A in a loga-
rithmic scale. The red lines indicate the finally chosen parameters; the
gray lines show the unnecessary parameters. (d) AICc, AIC, and BIC.
(e) The cross-validation x‘z,. See text for further explanations.
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of the one described by Eqs. (1) and (3). We build it
setting all the a; to zero except for ay and a; for the real
parts of every S and P wave in Eq. (1) and ag in Eq. (3),
totaling nine parameters, i.e., two for each P-wave
multipole and three for the S wave. All the imaginary
parts of the P waves are consequently set to zero. No
D waves are included. If we include the D waves from
the Born terms of photoproduction, this model would
correspond to the one used in [23,24,36,38] to analyze
the experimental data. In this way, we keep the 3 model
as realistic as possible. The synthetic data are generated
around that solution at the same energies and scattering
angles as the real data and with the same error bars.

PHYSICAL REVIEW C 95, 015203 (2017)

(2) These synthetic data are then analyzed with the full

46-parameter model as defined in the previous section,
minimizing the penalized x7 = x> + P for different A
according to Eq. (4).

In Fig. 2(a) the total X% and the contribution from
data alone (x?) is indicated. The difference is given
by the penalty P. Both curves rise as A increases, and
therefore, as discussed, one needs additional criteria to
determine the optimal value, or range of values, for A.
In Fig. 2(b) the x2 per degree of freedom x?2/d.o.f. is
shown. It exhibits a minimum at around A = 3 which
already provides an initial impression about where to
look for the simplest model. Yet, note that a simple
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FIG. 3. S- and P-wave partial waves from the fits to the 3 model (D waves are not shown because the result obtained was identically
zero as expected). The blue lines show the 13 model used to generate synthetic data (benchmark solution). The orange lines and bands show
the unconstrained 46-parameter fit with zero penalty A = 0. The brown lines show the fit at optimal A = 3. Removing the parameters that are
effectively zero and refitting produces the final result indicated with red lines and uncertainty bands. The vertical lines at W = 1120 MeV
indicate the upper limit of fitted data. Note that for Im P;, all but the unconstrained (orange) results for > = 0, are identically zero. Also in other
cases the curves lie on top of each other such that only the blue line is visible. Uncertainties are computed using bootstrap.
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Pearson’s x2 test at 90% lower CL would rule out
all fits up to A & 4 as overfits, such that it is difficult
to justify the use of the y?/d.o.f. itself as a tool to
determine the optimal value for A.

The A dependence of the fit parameters a; is shown in
Fig. 2(c). We have chosen here a logarithmic scale; on
a linear scale, it becomes obvious that the parameters
effectively approach zero once the penalization is
large enough. Yet, the picture shows that, sometimes,
parameters that had died out can in principle reappear
atlarger values of 1. Figure 2(c) suggests thatfor A > 3
many parameters are effectively zero and the optimal
value for A is expected in that region. Anticipating
the final result, the figure shows effectively nonzero
parameters in red while effectively zero parameters
are shown in gray. The horizontal line indicates the
cutoff below which a parameter is counted as zero. It
is remarkable to observe the parameters drop by three
orders of magnitude because it means that LASSO is
also capable of disentangling the extreme correlations
between parameters present at A = 0, as the unnaturally
large parameter values at A = 0 indicate.

As Fig. 2(d) shows, the AIC(c) and BIC criteria
confirm this picture quantitatively, with all three con-
sidered criteria exhibiting a minimum at the same
A =3. The BIC shows the cleanest signal as the
region to the left of the minimum shows the steepest
slope. The cross-validation xZ shown in Fig. 2(e),
obtained through fivefold validation [78,79], exhibits
a broad, shallow minimum from X & 2.5 through A ~
3.5 which does not very well determine the optimal A.
To have an impression of what the simplest allowed
model according to the 1-o rule [78,79] could be,
we can continue the upper end of the error bar, at
the optimal A = 3 found before, horizontally until it
intersects with the central value of X‘z/ at A = 3.8. This
indicates the simplest model compatible with cross
validation within errors. Combining the findings from
the AIC(c), BIC, and cross validation, vertical lines at
A =3 and A = 3.8 enclose a region of optimal A. If
we return now to Fig. 2(c), it becomes apparent that in
that region the number of effective nonzero parameters
indeed does not change, meaning that the precise value
of A to choose the simplest model does not matter as
long as it is within that range.

(3) Although trivial, the last step consists of setting all
parameters that have been ruled out by LASSO to
exactly zero and refit the model with the remaining
parameters to the synthetic data. In summary, the
LASSO reduces a model with 46 parameters to a
simpler one with 10 parameters, remarkably close to
the true number of parameters (9).

1. Discussion

In Fig. 3, the different steps in the model selection process
are illustrated. The blue lines show the partial waves used to
generate the synthetic data and provide, thus, the benchmark
solution (B model) to be reproduced. The overfit at A = 0 is
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indicated with the orange lines and bands. All uncertainty
bands have been obtained by bootstrap as explained in
Sec. I D. Clearly, at the cost of fitting fluctuations, the bench-
mark solution is missed, even within the large uncertainties.
Note that this is a 46-parameter fit to altogether 1373 data
points, meaning that from these numbers it is per se not obvious
that we have an overfit. However, the x 2 of this fit (2 = 1232)
is below the lower 95% confidence limit of Pearson’s x?2 test
at x> = 1243, indicating overfitting.

We stress here the well-known defect of the rule-of-thumb,
that a x2/d.o.f. 1 indicates a good fit. For a few points,
a x2/d.of. significantly larger than one might be perfectly
acceptable, while a x?/d.o.f. = 1.1 for a fit to 10 000 data
points is very bad. Pearson’s x 2 test gives here a better answer
with respect to under-fitting.

Finally, the 46-parameter fit has also greatly reduced
predictability. Here, we have only included data up to a cutoff
of W < 1120 MeV as indicated with the vertical lines in the
figure. As expected, beyond that value, the fit shows large
oscillations and an uncontrolled increase of the uncertainties
(orange bands).

The fit at A = 3 is shown with the brown lines in Fig. 3
(as discussed before, we could have taken any value up to
A = 3.8). Removing all parameters that are effectively zero
and refitting the remaining 10 parameters, the final solution is
indicated with the red lines and uncertainty bands. It remark-
ably well reproduces the benchmark solution (blue lines) and
even produces reasonable and well-constrained partial waves
beyond the range of fitted data (indicated with vertical lines).

The one additional parameter of the 10-parameter fit,
compared to the benchmark solution (nine parameters), is
given by a; in Eq. (3). Yet, as Fig. 3 shows, the benchmark
solution for Im Ey, is somewhat well reproduced. At higher
energies, the benchmark solution is just slightly outside the red
narrow uncertainty band indicating the 68% confidence region.

It is also remarkable that in the simplest model LASSO is
capable of setting all D waves to zero, which are finite in the
overparametrized model (A = 0) but absent in the benchmark
solution. Furthermore, the imaginary parts of all P waves are
found to vanish (cf. Fig. 3), in agreement with the benchmark
solution.
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FIG. 4. Different goodness-of-fit criteria as a function of the
penalty parameter A.
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One should note that in the fit to photoproduction data
there is an overall-phase problem that is usually solved by
fixing the phase of one multipole. Here, the full 46-parameter
model indeed contains only real D waves while the phase of
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Fig. 2 but for the situation with actual data from experiment.
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all other multipoles are undetermined. Yet, those D waves are
very small (at A = 0) such that the overall phase problem is in
fact not very well fixed. Part of the wide error bands for the
A = 0 case can, thus, be attributed to a somewhat uncontrolled
variation of the overall phase, leading to a large reshuffling
between real and imaginary parts and causing the very poorly
determined multipoles.

Finally, one can discuss other goodness-of-fit criteria
beyond Pearson’s x? test. For example, it is common to find a
best fit by combining the x? test—that is, somewhat restrictive
to underfitting but more tolerant to overfitting—with the F test
that determines, for nested models, if a more complex model
leads to a significant improvement. For that, the x’s of two
models with k (model 1) and m + k (model 2) parameters
fitted to n data points are compared. If the true values of the m
extra parameters of the more complex model vanish, it can be
shown that

_ (d=x3)/k
X3/ —m—k)

is F(k,n —m — k) distributed [91]. For the explicit form of
the F distribution, see, e.g., Ref. [81]. A value of y beyond a
chosen CL limit thus indicates that the more complex model 2
is significantly better than the simpler model 1 (which cannot
be judged from the x? values alone). Here, we find that y
obtained from the 46-parameter fit and the optimal (simplest)
10-parameter fit is y = 1.64 which is below the 90% CL
interval ending at y = 2.63, indicating that the overfit is indeed
not significantly better than the simplest fit.
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FIG. 6. S- and P-wave partial waves from the analysis of real
data. Labeling of the curves and uncertainty bands as in Fig. 3. The
simplest model is indicated with the red lines and bands. The blue
circles show the single-energy solution of [23] for the real parts of
S- and P-wave partial waves. The green triangles indicate the single-
energy extraction of Im Ey, from [36]. Uncertainties are computed
using bootstrap.
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Other common goodness-of-fit-criteria are the Shapiro-
Wilk [92], Anderson-Darling [93,94], and the Kolmogorov-
Smirnov [94-96] tests. They provide means to compare a sam-
pled probability distribution against a theoretically expected
one. In particular, they can be used to test fit residuals against
their expected normal N[0, 1] distribution. This applies also for
weighted data as considered here as long as the fit residuals are
divided by the respective experimental (statistical) uncertainty.
In particular, these tests are by construction more sensitive than
Pearson’s X2 test because, on one hand, they are sensitive to
the sign of the fit residual and not only its square, and, more
importantly, they test the entire distribution instead of only the
bulk property given by the sum of individual x2. The p values
of the three tests are shown in Fig. 4 as a function of A.

For all considered values of A the p values are high; usually,
fits with p > 0.05 are considered acceptable. For small values
of A the tests score high although one is in the region of
overfitting. In the region of optimal A between A =~ 3 and

A & 4, the p values are also consistently p > 0.4; however,
there is no clear trend that would allow one to use these criteria
themselves to find an optimal value for X.

B. LASSO for real data

For the reaction yp — 7°p, precise low-energy data for the
differential cross section do/d €2 and photon beam asymmetry
3. are available from MAMI [23]; for earlier measure-
ments see Refs. [97-100]. The target polarization differential
cross section dor/dS2 was measured recently at MAMI as
well [36]. At energies beyond those considered here, these
observables have also been remeasured with unprecedented
precision [101,102]. Electroproduction of ° mesons close to
threshold was recently measured by CLAS [103]. We analyze
here the data from [23,36] for do/d€2, X, and do7 /d2 from
the ¥ p threshold up to W = 1120 MeV.
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For the analysis of real data, we have slightly reduced the
model space used for the B model. Before, the D waves were
kept real to fix the overall-phase ambiguity. However, this is not
effective at low energies where D waves are extremely small
as discussed. Then, for complex S and P waves, the ambiguity
reappears at low energies. We have therefore set all imaginary
parts of the P waves to zero. For the D waves themselves, we
have kept them fixed at the real values given by the Born terms
of photoproduction. This is the same procedure as in [23]. In
total, the number of available parameters is 23. Note that none
of these changes have to do with the model selection methods
discussed here. The former are additional constraints imposed
from other considerations, because we aim at a result that is
comparable with the analysis of [23].

Performing the LASSO scan as in the case of the B model,
in combination with the information theory criteria and cross
validation, we obtain the results shown in Fig. 5. The fit
is compatible with Pearson’s x? test for any A shown. The
comparison of Fig. 5 with Fig. 2 shows quite similar features.
Again, the BIC delivers the most pronounced minimum,
or minimal plateau. We choose an optimal A = 2.8 which
coincides with the minimum of the BIC which is also the
last point of the plateau. For the cross validation x there is
no minimum at all in this case. Only an upper bound for A
can be determined by proceeding as before for the B model,

i.e., continuing the upper end of the error bar at A = 2.8 to the
right as indicated (in analogy to the 1-o rule). This leads to
a maximal value of A = 3.4 that is compatible within errors.
As Fig. 5(c) shows, a parameter rises briefly above the cutoff
threshold for values of 2.8 < A < 3.4. We do not see this
as a problem but rather as a feature of the LASSO method
demonstrating that the method indeed scans a large class of
models, and even rehabilitates parameters that were found to
be zero for smaller A. From the discussion it becomes clear
that in this case it is not possible to fix the precise number
of parameters without doubts; yet, we have seen before for
the B model that it is possible to determine that number
approximately. Overall, the number of model parameters is
reduced from 23 to 13 (in the B model from 46 to 10).

1. Discussion

The partial waves are shown in Fig. 6. They share similar
properties as observed for the B model in Fig. 3.

For the unconstrained, A = 0 case with 23 parameters,
the uncertainty band in the region of fitted data is much
narrower than in the A =0 case for the B model. This
may be partly explained by the smaller maximal number
of parameters available; another reason is the discussed
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FIG. 9. Polarized differential cross section o7 = do/d2 T. Data from [36]. See Fig. 7 for further description.

overall-phase ambiguity which is avoided here by allowing

only for real P-wave multipoles.

For the intermediate range of energies, the solutions and

uncertainty bands are sometimes difficult to distinguish in
Fig. 6. A closer inspection reveals that the uncertainty bands
of the 23-parameter fit are still wider than the ones of the 13-
parameter simplest model. We also observe largely widened
error bands for the unconstrained fit at very low energies
and beyond the fitted region (vertical bands) indicating the
reduced predictability of the A = 0 fit. The simplest model
(red lines and bands) shows good qualitative agreement with
the SE solution from [23] for the real parts of the partial waves,

although they do not coincide perfectly. There are differences
such that here we allow for a variation of the cusp parameter at
threshold, 8y = ag m;i in Eq. (3), which was held fixed in [23]
and, second, we include here the new dor /d2 data from [36].
The optimal (simplest) solution is also very close to the result
of [49] (not shown here) that includes isospin breaking in
a similar way as implemented here, fulfills Fermi-Watson’s
theorem, and extends up to the resonance region.

The imaginary part of Eg; of the simplest model agrees
well with the SE extraction performed in [36] (green data
points) as Fig. 6 shows. For the cusp parameter at threshold
we obtain By = (2.41 £0.05) x 1073 m;i This agrees with
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the value from [36]: By = (2.2 & 0.2[stat.] & 0.6[syst.]) x
1073 m;i Note, however, the very different size of the
statistical uncertainty which comes here from a global fit to
all data while in [36] it was obtained from a two-parameter
fit to the SE solutions shown in Fig. 6 with the green
triangles. Note that the systematic uncertainties of Sy are
estimated to be 0.6 in the above units [36] which is larger
than the statistical ones. This shows that systematic effects
are not negligible, but we have refrained from analyzing these
effects here because the focus of this paper is different. It
should be mentioned that the values for By found here and
in [36] are smaller than the value of 8y = 3.35 x 103 m;i
obtained in ChPT calculations [40,41] using pionic atoms
data.

In Figs. 7, 8, and 9, the experimental data and the best
fit result are shown, corresponding to the 13-parameter fit
indicated with the red lines in Fig. 6. The description of the
data is consistently good. In particular, the inclusion of the new
dor/d2 data does not have much influence in the multipoles
other than reducing their uncertainties.

As a concluding remark it should be mentioned that the
AIC and BIC compare the relative quality of models and
are, thus, also applicable in situations in which no good fit
in absolute terms can be achieved (e.g., when the achievable
x? is too large for all models). This robustness is a relevant
aspect in the analysis of photoproduction data, especially for
excited baryons at higher energies. There, data from different
experiments are sometimes plagued by underestimated sys-
tematic uncertainties or even contradictory (for the selection
of consistent data sets see, e.g., Refs. [104,105]). Then, no
good x? might be achieved and one has to proceed using
relative comparisons of models as proposed here.

IV. CONCLUSIONS

The LASSO provides a tool to scan large classes of models
through the ability to set fit parameters to zero. Together
with criteria from information theory and cross validation,
it is possible to select a simplest model with a minimum
of fit parameters. Here, we concentrate on single-meson
photoproduction. The methods are, however, not restricted
to this case and also applicable, e.g., in the context of
excited meson production experiments as recently discussed
by Guegan, Hardin, Stevens, and Williams [80].

In the example of pion photoproduction at low energies,
we show that the LASSO in combination with additional
criteria decreases the uncertainties of extracted multipoles

PHYSICAL REVIEW C 95, 015203 (2017)

and increases predictability, as expected. First, a benchmark
model (B model) was considered to show these properties.
The overall-phase problem was not entirely fixed in that
model. Still, LASSO showed capable of simplifying this
partially ill-defined problem, reducing an initial number of
46 fit parameters to 10 and recovering the known benchmark
solution with remarkable accuracy and precision. In particular,
properties of the benchmark solution such as vanishing
imaginary parts of the P waves and absence of D waves could
be detected. The considered criteria for the determination of
the optimal penalty A—AIC, AICc, and BIC—consistently
exhibit minima at the same value of L. The 1-o rule in cross
validation also defines a whole range of A to be considered
as optimal, and indeed in that range the number of relevant
parameters stays constant.

When moving on to the analysis of real data, similar obser-
vations could be made. The simplest model shows remarkable
agreement with single-energy extractions of multipoles from
other studies. Additionally, these techniques provide more
stable and reliable extrapolations of the models for energies
above and below the fitted region. This feature can be exploited
to determine physical observables at threshold, e.g., the
discussed cusp parameter fy. In addition to their usefulness in
the analysis of experimental data, the proposed methods could
also be applied in the analysis of lattice QCD eigenvalues
because the infinite-volume extrapolation of coupled-channel
systems on the lattice necessarily requires an expansion of the
amplitude in energy [106], similar to what was discussed here.
The discussed techniques also promise for a systematic and
automatic work flow in the analysis of the excited baryon and
meson spectra, providing a perspective towards finding more
conclusive answers in hadron spectroscopy.
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