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Fluctuations and correlations of conserved charges are sensitive observables for studying the QCD phase
transition and critical point in high-energy heavy-ion collisions. We have studied the centrality and energy
dependence of mixed cumulants (up to fourth order) between net baryon and net strangeness in Au + Au
collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV from the ultrarelativistic quantum molecular

dynamics (UrQMD) model. To compare with other theoretical calculations, we normalize these mixed cumulants
by various order cumulants of net-strangeness distributions. We found that the results obtained from UrQMD
calculations are comparable with the results from lattice QCD at low temperature and hadron resonance gas
model. The ratios of mixed cumulants (RBS

11 ,RBS
13 ,RBS

22 ,RBS
31 ) from UrQMD calculations show weak centrality

dependence. However, the mixed-cumulant ratios RBS
11 and RBS

31 show strong increase at low energy, while the RBS
13

and RBS
22 are similar at different energies. Furthermore, we have also studied the correlations between different

hadron species and their contributions to the net-baryon and net-strangeness correlations. These model studies can
provide baselines for searching for the signals of QCD phase transition and critical point in heavy-ion collisions.

DOI: 10.1103/PhysRevC.95.014914

I. INTRODUCTION

Fluctuations and correlations of the conserved charges
have been proposed to be sensitive observables to study the
QCD phase transition and critical point (CP) in relativistic
heavy-ion collisions [1–4]. Theoretical calculations show
that fluctuations and correlations of conserved charges are
distinctly different in the hadronic and quark-gluon plasma
(QGP) phases [5]. In the deconfined state of quarks and
gluon, the elementary set of conserved charges is given by the
corresponding quark flavors: net upness (�u = u − u), net
downness (�d = d − d), and net strangeness (�s = s − s)
[6–9]. In hadronic state the conserved charges are net baryon
(B), net charge (Q), and net strangeness (S). Recently, Lattice
QCD calculations have shown that various order (up to fourth
order) net-strangeness (S) fluctuations and their correlations
with net charge (Q) and net baryon (B) are quite sensitive to
the quark-hadron phase transition [9].

In the years 2010–2014, Relativistic Heavy Ion Collider
(RHIC) has completed the first phase of the beam energy
scan (BES) program [10]. In this program the the collision
energies in Au + Au collisions were tuned to explore the
QCD phase structure at high baryon density [11–13]. The
STAR experiment at RHIC has collected Au + Au collision
data with

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and

200 GeV. One of the experimental motivations is to measure
the correlations between net baryon and net strangeness with
these experimental data collected to study the QCD phase
transition in heavy-ion collisions [14]. To provide baselines
for the correlation measurements to study the phase transition,
we have calculated these observables in Au + Au collisions
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at RHIC BES energies with the ultrarelativistic quantum
molecular dynamics (UrQMD) model and compared them to
the model results from lattice QCD and hadron resonance gas
model. In addition, given that at lower energies we expect to
see the effect of baryon stopping and associated production of
strangeness, we have also studied the contributions of various
hadron species to the baryon-strangeness correlations.

The paper is organized as follows. In the next section,
we briefly review fluctuations and correlations of conserved
charges in hadronic and quark-gluon plasma states and give
the corresponding results from hadronic resonance gas model
and lattice QCD. In Sec. III, we present the mixed-cumulant
ratios of net baryon and net strangeness and also discuss
the contribution of strange baryons to the baryon-strangeness
correlations in Au + Au collisions at RHIC BES energies
from the UrQMD model. Then, we give a brief summary in
Sec. IV. Finally, we present as an appendix the statistical error
calculations for various order mixed cumulants.

II. THE UrQMD MODEL

The UrQMD model [15,16] is based on a microscopic
transport theory where the phase-space description of the
reactions is considered. It treats the propagation of all
hadrons on classical trajectories in combination with stochastic
binary scattering, color string formation, and resonance decay.
It incorporates baryon-baryon, meson-baryon, and meson-
meson interactions; the collisional term includes more than 50
baryon species and 45 meson species. The model preserves
the conservation of electric charge, baryon number, and
strangeness number as expected for a QCD matter. It also
models the phenomena of baryon stopping, an essential feature
encountered in high-energy heavy-ion collisions at lower beam
energies. The model does not include quark-hadron phase
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transition or the QCD critical point. It can simulate heavy-
ion collisions in the energy range from SIS (SchwerIonen
Heavy-ion Synchrotron) to Relativistic Heavy Ion Collider
(RHIC) and even for the heavy-ion collisions at the Large
Hadron Collider (LHC) [17–19]. In this model, the space-time
evolution of the fireball is studied in terms of excitation
and fragmentation of color strings and formation and decay
of hadronic resonances. The comparison of the data (this
paper deals with B-S correlations) onto those obtained from
the UrQMD model will tell about the contribution from the
hadronic phase and its associated processes.

III. OBSERVABLES

In statistics, the generating function of mixed cumulants for
random variables, X1, X2, ..., Xn(n > 2) are defined as

G(t1,t2, . . . ,tn) = log
〈
e
∑n

i=1(tj Xj )
〉
. (1)

Then, the mixed cumulants of random variables X1, X2, . . . ,
Xn(n > 2) can be expressed as [20]

C(X1,X2, . . . ,Xn)

=
∑
π

(|π | − 1)!(−1)(|π |−1)
∏
C∈π

E

(∏
i∈C

Xi

)

=
∑
π

(|π | − 1)!(−1)(|π |−1)
∏

C∈π,|C|�2

E

(∏
i∈C

δXi

)
, (2)

where π runs through the list of all partitions of 1,2, . . . ,n,
C runs through the list of all blocks of partitions π , |π | is the
number of parts in the partition, and |C| is the number of parts
in the block C.

In mixed-cumulants analysis, we use B and S to represent
the net-baryon number and net-strangeness in one event,
respectively. The average values over whole event ensemble
are denoted by 〈B〉 and 〈S〉, respectively. The deviation of B
and S from their mean value are expressed by δB = B − 〈B〉
and δS = S − 〈S〉, respectively. Thus, according to Eq. (2), the
various order mixed cumulants of event-by-event distributions
of the two random variables B and S are defined as

C(S,S) = CS
2 = 〈(δS)2〉, (3)

C(B,S) = CBS
11 = 〈δBδS〉, (4)

C(S,S,S,S) = CS
4 = 〈(δS)4〉 − 3〈(δS)2〉, (5)

C(B,S,S,S) = CBS
13 = 〈δB(δS)3〉 − 3〈δBδS〉〈(δS)2〉, (6)

C(B,B,S,S) = CBS
22 = 〈(δB)2(δS)2〉 − 2〈(δBδS)2〉

− 〈(δB)2〉〈(δS)2〉, (7)

C(B,B,B,S) = CBS
31 = 〈(δB)3δS〉 − 3〈δBδS〉〈(δB)2〉. (8)

Once we have the definition of mixed cumulants, the
ratio of mixed cumulants can be calculated. A system in
thermal equilibrium (for a grand-canonical ensemble) can be
characterized by its pressure [22]. The dimensionless pressure

of a hadron resonance gas is expressed through the logarithm
of the QCD partition function [23],

P

T 4
= 1

V T 3
ln[Z(V,T ,μB,μS,μQ)]

= 1

2π

∑
i∈X

gi

(
mi

T

)2

K2

(
mi

T

)

× cosh(Biμ̂B + Qiμ̂Q + Siμ̂S), (9)

where gi is the degeneracy factor for hadrons of mass mi ,
and μ̂q ≡ μq

T
, where q = Bi , Si , and Qi denote the net-baryon

number, net strangeness, and the net charge, respectively, and
μB , μS , and μQ are the corresponding chemical potentials. For
simplicity, we have set the electric charge chemical potential
μ̂Q = 0. These dimensionless fluctuations and correlations of
conserved charges (net-baryon number B, net strangeness S)
are formally equivalent to the Taylor expansion coefficients of
the pressure with the respective chemical potentials [24–26],

χBS
mn (T , �μ) = ∂ (m+n)[P (μ̂B,μ̂S)/T 4]

∂μ̂m
Bμ̂n

S

∣∣∣∣
μB=μS=0

, (10)

where μ̂B = μB

T
and μ̂S = μS

T
are the dimensionless baryon

and strangeness chemical potentials, χBS
0n ≡ χS

n and χBS
m0 ≡

χB
m . They are also called generalized susceptibilities. All these

derivatives are evaluated at μB = μS = 0; the expectation
values of all net charge numbers vanish (i.e., 〈B〉 = 〈S〉 = 0)
[27]. Theoretically, the mixed cumulants of these conserved
quantities are connected to the corresponding susceptibilities
by

CBS
mn = V T 3χBS

mn (T , �μ), (11)

where the V and T denote, respectively, the volume and
temperature of the system.

If above the transition temperature the quarks can be well
described by uncorrelated quasiparticles, then any object that
carries strangeness necessarily is a strange quark, which carries
a baryon number in proportion to strangeness, Bs = − 1

3Ss

[28]. Also, from Eq. (10), we can derive

χBS
mn

χS
m+n

= (−1)n

3m
, (12)

where m,n > 0 and m + n = 2,4. Thus, one expects baryon
number and strangeness to be correlated more strongly in a
quark-gluon plasma than in a hadron gas. The hot medium
created in relativistic heavy-ion collisions is an expanding
system; the spatial volume is changing with time evolution.
To cancel the effect of the spatial volume dependence to first

order, the ratios χBS
11

χS
2

, χBS
13

χS
4

, χBS
22

χS
4

, and χBS
31

χS
4

are constructed. To

quantify this and make these ratios to be unity for a system
where the relevant degree of freedom is quarks, we introduce
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the following normalized ratios in Eqs. (13)–(16):

RBS
11 = −3

CBS
11

CS
2

= −3
〈BS〉 − 〈B〉〈S〉

〈S2〉 − 〈S〉2
, (13)

RBS
13 = −3

CBS
13

CS
4

= −3
〈BS3〉 − 3〈BS2〉〈S〉 − 3〈BS〉(〈S2〉 − 2〈S〉2) + 6〈B〉〈S〉(〈S2〉 − 〈S〉2) − 〈B〉〈S3〉

〈S4〉 − 4〈S3〉〈S〉 − 3〈S2〉2 + 12〈S2〉〈S〉2 − 6〈S〉4
, (14)

RBS
22 = 9

CBS
22

CS
4

= 9
〈B2S2〉 − 2〈B2S〉〈S〉 − 2〈BS〉(〈BS〉 − 4〈B〉〈S〉) − 2〈BS2〉〈B〉 + 2〈B〉2(〈S2〉 − 3〈S〉2) − 〈B2〉〈S2〉

〈S4〉 − 4〈S3〉〈S〉 − 3〈S2〉2 + 12〈S2〉〈S〉2 − 6〈S〉4
, (15)

RBS
31 = −27

CBS
31

CS
4

= −27
〈B3S〉 − 3〈B2S〉〈B〉 − 3〈BS〉(〈B2〉 − 2〈B〉2) + 6〈B〉〈S〉(〈B2〉 − 〈B〉2) − 〈B3〉〈S〉

〈S4〉 − 4〈S3〉〈S〉 − 3〈S2〉2 + 12〈S2〉〈S〉2 − 6〈S〉4
. (16)

At vanishing chemical potentials, the mean values of the conserved charges are vanishing 〈B〉 = 〈S〉 = 0, the above equations
can be simplified as

RBS
11

∣∣
μB,μS=0 = −3

〈BS〉
〈S2〉 , (17)

RBS
13

∣∣
μB,μS=0 = −3

〈BS3〉 − 3〈BS〉〈S2〉
〈S4〉 − 3〈S2〉2

, (18)

RBS
22

∣∣
μB,μS=0 = 9

〈B2S2〉 − 3〈B2〉〈S2〉
〈S4〉 − 3〈S2〉2

, (19)

RBS
31

∣∣
μB,μS=0 = −27

〈B3S〉 − 3〈BS〉〈B2〉
〈S4〉 − 3〈S2〉2

. (20)

For illustration and discussion purpose, the formulas with μB = μS = 0 are just to demonstrate a special case, which is not used
in the calculations presented subsequently.

A. Baryon-strangeness correlations in the quark-gluon plasma

At high temperature, the basic degrees of freedom are weakly interacting quarks and gluons. The quark operators u, d, and s
represent the net-quark number of up, down, and strange quarks, respectively. We expressed RBS

11 , RBS
13 , RBS

22 , and RBS
31 in terms

of quark degrees of freedom, noting that the baryon number of a quark is 1
3 and the strangeness of a strange quark is −1 [29]. In

terms of quark flavors, the various order ratios RBS
11 , RBS

13 , RBS
22 , RBS

31 can be written as

RBS
11

∣∣
μB,μS=0 = 〈(u + d + s)s〉

〈s2〉 = 1 + 〈us〉 + 〈ds〉
〈s2〉 , (21)

RBS
13

∣∣
μB,μS=0 = 〈(u + d + s)s3〉 − 3〈(u + d + s)s〉〈s2〉

〈s4〉 − 3〈s2〉2
= 1 + 〈us3〉 + 〈ds3〉 − 3(〈us〉 + 〈ds〉)〈s2〉

〈s4〉 − 3〈s2〉2
, (22)

RBS
22

∣∣
μB,μS=0 = 〈(u + d + s)2s2〉 − 3〈(u + d + s)2〉〈s2〉

〈s4〉 − 3〈s2〉2

= 1 + 〈(u + d)2s2〉 + 2〈(u + d)s3〉 − 3[〈(u + d)2〉 + 2〈(u + d)s〉]〈s2〉
〈s4〉 − 3〈s2〉2

, (23)

RBS
31

∣∣
μB,μS=0 = 〈(u + d + s)3s〉 − 3〈(u + d + s)s〉〈(u + d + s)2〉

〈s4〉 − 3〈s2〉2

= 1 + 〈(u + d)3s〉 + 3〈(u + d)2s2〉 − 3〈(u + d)2〉〈s2〉 + 3〈(u + d)s3〉
〈s4〉 − 3〈s2〉2

− −3〈(u + d)s〉[〈(u + d)2〉 + 2〈(u + d)s〉 + 3〈s2〉]
〈s4〉 − 3〈s2〉2

. (24)

For uncorrelated quark flavors, off-diagonal susceptibilities are vanishing compared to the diagonal susceptibilities
[30,31] and susceptibilities inclusive of strangeness are smaller than those which involve lighter flavors [32–34]; then we
have

〈us〉 = 〈ds〉 = 0, (25)

χus = χds � χud � χs � χd = χu, (26)
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FIG. 1. Baryon-strangeness (top) and electric charge-strangeness
correlation (bottom), properly scaled by the strangeness fluctuations
and the power of the fractional baryonic and electric charges [see
Eq. (12)]. The figure is from Ref. [21].

and thus

RBS
mn

∣∣
μB,μS=0 = 1, (27)

where m,n > 0 and m + n = 2, 4.
In the noninteracting massless quark gas all these observ-

ables are unity (shown by the lines at high temperatures in
Fig. 1). At high temperatures, the shaded regions indicate the
ranges of values for these ratios, as predicted for the weakly
interacting quasiquarks from the resummed hard thermal loop
(HTL) perturbation theory at the one-loop order [35,36].

B. Baryon-strangeness correlations in free
hadron resonance gas

It is well known that at low temperature and chemical
potentials the QCD can be modeled as a gas of uncorrelated
hadrons, where interactions are included through resonances
[37]. These states are taken from Particle Data Book [38]. As
the interactions between hadrons are suppressed, the contribu-
tions of individual hadrons to thermodynamics can be regarded
as free Boltzmann gas [3]. For a gas of uncorrelated hadron
resonances, from Eqs. (13)–(16), the numerator receives
contributions from only (strange) baryons and antibaryons,
while the denominator receives contributions also from strange
mesons [37,39]. Equation (13) can be written as

RBS
11 ≈ 3

〈�〉 + 〈�̄〉 + · · · + 3〈�−〉 + 3〈�̄+〉
〈K0〉 + 〈K̄0〉 + · · · + 9〈�−〉 + 9〈�̄+〉 . (28)

Reference [21] gives the lattice QCD results for the
appropriate combinations of up to fourth-order cumulants of

net-strangeness fluctuations and their correlations with net-
baryon number and electric charge fluctuations, shown in
Fig. 1. The ratios of the second-order correlations χBS

11 /χS
2 and

χ
QS
11 /χS

2 are much closer to the expectations for weakly inter-
acting quasiquarks, differing only around T –1.25Tc, while the
HTL perturbative expansion for ratios involving one derivate
of the baryonic/electric charges (χXS

11 /χS
2 and χXS

13 /χS
4 ) [40]

starts differing from the noninteracting quark gas limit [21].
It is the same for those involving higher derivatives of the
baryonic/electric charges (χXS

22 /χ4
2 and χXS

31 /χS
4 ).

IV. RESULTS

In this paper, we performed our calculations with the
UrQMD model in version 2.3 for Au + Au collisions at√

sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV and the corre-
sponding event statistics are 35 × 106, 105 × 106, 106 × 106,
81 × 106, 133 × 106, 38 × 106, and 56 × 106, respectively
[41]. The statistical errors are calculated by the formulas
that are derived from the standard error propagations (see
the Appendix ). To avoid autocorrelations, we define the cen-
tralities with the charged particles within the pseudorapidity
0.5 < |η| < 1 and perform the analysis in the pseudorapidity
range (|η| < 0.5). For the B-S correlations, we include the
particles p, n, K+, K0, �, 
−, 
0, 
+, �−, �0, and �− and
their antiparticles. These particles can be classified into strange
baryons (�, 
, �, �), nonstrange baryons (p,n), and strange
mesons (K,K0). To study the contributions of various hadron
species to the baryon-strangeness correlations, we consider the
B-S correlations with the following combinations of hadrons:

(i) net p vs net K , only p, p̄, K+, K− are included;
(ii) net p vs net �, only p, p̄, �, �̄ are included;

(iii) net � vs net K , only �, �̄, K+, K− are included;
(iv) B-S (all particles): p, n, K+, K0, �, 
, �, � and

their antiparticles are included;
(v) B-S (excluding strange baryon), only p, n, K+, K0

are included;
(vi) B-S (excluding �, �̄), only p, n, K+, K0, 
, �, �

and their antiparticles are included;
(vii) B-S (excluding nonstrange baryon), only K+, K0,

�, 
, �, � and their antiparticles are included;
(viii) B-S (excluding p, p̄), only n, K+, K0, �, 
, �, �

and their antiparticles are included;
(ix) B-S (excluding strange meson), only p, n, �, 
, �,

� and their antiparticles are included;
(x) B-S (excluding K+, K−), only p, n, K0, �, 
, �,

� and their antiparticles are included.

Figure 2 shows the centrality dependence for cases (iv)–
(x) in the Au + Au collisions at

√
sNN = 39 GeV from the

UrQMD model. The top panels of Fig. 2 display the two-
dimensional correlations for cases (iv)–(x) for the most central
(0%–5%) Au + Au collisions. To quantify the correlation
strength, we calculated the standard correlation coefficient
for each case. In statistics, the correlation coefficient (ρ) is
a measure of the linear dependence between two variables X
and Y , and it is the covariance of the two variables divided by
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FIG. 2. (Top) The baryon-strangeness correlations for cases (iv)–(x) in the most central (0%–5%) Au + Au collisions at
√

sNN = 39 GeV
from the UrQMD model. (Bottom) The centrality dependence of various order mixed cumulants (CBS

11 , CBS
13 , CBS

22 , CBS
31 , CBS

02 , CBS
04 ) and ratios

(RBS
11 , RBS

13 , RBS
22 , RBS

31 ) of (iv)–(x) at
√

sNN = 39 GeV for Au + Au collisions from the UrQMD model.

the product of their standard deviations. It is defined as

ρX,Y = cov(X,Y )

σXσY

= 〈(X − 〈X〉)(Y − 〈Y 〉)〉√
〈X2〉 − 〈X〉2

√
〈Y 2〉 − 〈Y 〉2

,

where cov(X,Y ) is the covariance between random variables
X and Y . σX and σY are the standard deviations of X and
Y , respectively. The definition gives a value between +1 and
−1, where a value of 1 represents strong correlation, a value
of 0 indicates no linear correlation, and a value of −1 gives
perfect anticorrelation. These two-dimensional plots indicate
that most of the cases are anticorrelated and dominated by the
strange baryons, such as �. The bottom panels of Fig. 2 show
the centrality dependence of mixed cumulants (CBS

11 , CBS
13 ,

CBS
22 , CBS

31 , CBS
02 , CBS

04 ) and ratios (RBS
11 , RBS

13 , RBS
22 , RBS

31 ) for
cases (iv)–(x) in Au + Au collisions at

√
sNN = 39 GeV. It is

found that the CBS
11 , CBS

13 , and CBS
31 have negative values, while

CBS
22 have positive values. A strong centrality dependence for

the baryon-strangeness (B-S) correlations for cases (vi)–(x)
is observed. By comparing case (iv) with case (v), we find
that the strange baryons have significant contributions to the
baryon-strangeness correlations, and the strange mesons (K±
and K0) contribute significantly to strangeness fluctuations of
case (ix) [42]. When the strange baryons are excluded from
the B-S correlations, the mixed-cumulant ratios are much
smaller than the case with all particles and have values close
to zero. However, when the strange mesons are excluded
from the B-S correlations, the values of the ratios (RBS

11 ,
RBS

13 , RBS
22 , RBS

31 ) become larger than those in the case with
all particles. Furthermore, the results from the case where
the nonstrange baryons are not included is very close to the
results from the case with all particles included. This indicates
that the nonstrange baryons have little contribution to the
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FIG. 3. (Left) The correlation between net baryon and net strangeness of (i)–(iv) at
√

sNN = 39 GeV for the most central (0%–5%) Au + Au
collision from the UrQMD model. (Right) The centrality dependence of mixed cumulants (CBS

11 , CBS
13 , CBS

22 , CBS
31 , CBS

02 , CBS
04 ) and ratios (RBS

11 ,
RBS

13 , RBS
22 , RBS

31 ) for (i)–(iv) at
√

sNN = 39 GeV for Au + Au collisions from the UrQMD model.

baryon-strangeness correlations. Because these ratios show
weak centrality dependence, we will only consider the
most central (0%–5%) collision centralities for the energy
dependence.

Figure 3 shows the centrality dependence of B-S corre-
lations for cases (i)–(iv) in Au + Au collisions at

√
sNN =

39 GeV. The left panels of Fig. 3 show the correlations
for different cases in the most central (0%–5%) Au + Au
collisions. The right panels of Fig. 3 show the centrality
dependence of mixed cumulants (CBS

11 , CBS
13 , CBS

22 , CBS
31 , CBS

02 ,
CBS

04 ) and ratios (RBS
11 , RBS

13 , RBS
22 , RBS

31 ) for cases (i)–(iv). In
the two-dimensional plots, we find that the net baryon versus
net strangeness shows strong anticorrelations. If the strange
baryons are excluded, for example, the net-proton and net-kaon
correlations are almost independent of each other (ρ ∼ 0).
It indicates that the strange baryons play an important role
and have significant contributions to the B-S correlations. In
the B-S correlations with all particles, the CBS

11 , CBS
13 , and

CBS
31 show negative values and monotonically decrease with

increasing of the number of participant nucleons in the colli-
sions, while the CBS

22 have large and positive values for all of the
cases. Interestingly, the ratios RBS

11 , RBS
13 , RBS

22 , and RBS
31 with

all particles included show weak centrality dependence and
are comparable with the lattice QCD results shown in Fig. 1.
In the left panels of Fig. 3, the net proton and net �, net K , and
net � show finite positive correlations. This can be understood
in terms of the baryon stopping and associated productions of
the K+ and �. Their mixed cumulants are positive values,
but the ratios RBS

11 , RBS
13 , and RBS

31 are negative. Furthermore,
the variance of the fluctuation of net � is much smaller than
the variance of net-kaon distributions. This leads to bigger
deviation from zero for the proton-� than kaon-� correlations.

Figure 4 shows the energy dependence of the mixed
cumulants and ratios for cases (i)–(iv) in the most central

(0%–5%) Au + Au collisions from the UrQMD model. In the
B-S correlation including all particles, the mixed cumulants
CBS

11 , CBS
13 , and CBS

31 are negative and show weak energy
dependence, while CBS

02 , CBS
04 , and CBS

22 are positive and mono-
tonically increase with increasing energy. However, the ratios
RBS

11 , RBS
13 , RBS

22 show weak energy dependence, but the
ratio RBS

31 decreases at low energies. This decreasing trend of
the RBS

31 is also observed in the correlations between net proton

FIG. 4. The energy dependence of mixed cumulants and ratios of
cases (i)–(iv) for the most central (0%–5%) Au + Au collisions from
the UrQMD model.
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FIG. 5. The energy dependence of various order mixed cumulants (CBS
11 , CBS

13 , CBS
22 , CBS

31 , CBS
02 , CBS

04 ) and ratios (RBS
11 , RBS

13 , RBS
22 , RBS

31 ) of
cases (iv)–(x) at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV for the most central (0%–5%) Au + Au collision from the UrQMD model.

and net kaon, which might originate from the associated
production of K+ by the reaction channel NN → NYK, where
N stands for nucleon and Y stands for hyperon. The trends
of these ratios for the correlations between net proton and
net � are opposite to the trends observed in the net-kaon and
net-� correlations. For these two cases, the mixed-cumulant
ratios RBS

11 , RBS
13 , and RBS

31 are negative, RBS
22 is positive,

but higher-order ratios RBS
22 and RBS

31 have larger value. To
demonstrate the energy dependence of the second-order ratio
RBS

11 more clearly, we plot RBS
11 as a function of energy in the

bottom panels of Fig. 4. It is found that when all particles
are considered or only proton and λ are included, the RBS

11
decreases with increasing energy, while we observe different
trends for the other two cases. At low energy, the higher-order
ratio RBS

31 becomes small for cases (i) (net p vs net K) and
(iv) (net B vs net S), the main reason is probably because
at low energy, the baryon stopping of protons and associated
kaon production play important roles.

Figure 5 shows the energy dependence of various order
mixed cumulants and ratios of the baryon-strangeness cor-
relations for cases (iv)–(x) for the most central (0%–5%)
Au + Au collisions from the UrQMD model. By excluding
the nonstrange baryons from the B-S correlations, we find
that the values of ratios RBS

11 , RBS
13 , RBS

22 , RBS
31 are finite and

monotonically increase with decreasing collision energy; it is
comparable with the results from lattice QCD at low temper-
ature (lattice QCD results shown in Fig. 1). For the RBS

11 , the
case including all particles is very close to the one excluding
nonstrange baryons or protons, while they are different for

RBS
31 . It means the nonstrange baryons have small effects on

the second-order ratio RBS
11 , while they have large effects on the

higher-order ratio. However, if we exclude the strange baryons
or �, the values of baryon-strangeness correlations are close to
zero at high energies. It indicates that the strange baryons, es-
pecially the � baryons, carry significant information and play
an important role for the B-S correlations. Especially, the RBS

31
show large increase at low energy. It is probably because � is
the lightest strange baryon and contributes most significantly
to the baryon-strangeness correlations. When the K+ and K−
are excluded, there are large impacts on the higher-order ratio
RBS

31 at low energies. The ratio becomes negative, which is
probably attributable to the kaon associated production at low
energy. There is a strong correlation between protons and
kaons, as shown in the Fig. 4. If we remove the kaons from the
B-S correlations, the correlations between proton and � will
dominate the B-S correlations, which is negative.

V. SUMMARY

We have analyzed the centrality and energy dependence
of the baryon-strangeness (B-S) correlations in Au + Au
collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and

200 GeV from the UrQMD model. The B-S correlations are
studied via various order mixed cumulants and corresponding
ratios. The B-S correlations are studied via various order
mixed cumulants and corresponding ratios. Such a study
provides the following important features. (1) It provides an
expectation from a non-CP-based model on B-S correlations.
The model incorporates standard physics related to baryon
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number, strangeness number, and charge conservation. It
also models the baryon stopping at lower beam energies. In
addition, it incorporates resonances, their decay and particle
interactions in a hadronic matter. (2) The UrQMD model in
this paper is treated as datalike, and we have discussed the
ways to construct feasible B-S correlations which can be
experimentally measured. (3) The B-S correlations results
presented in this paper from the analysis of the UrQMD
model data as one would have carried out in a manner as
one would do it using the real experimental data. It has been
done using typical acceptance cuts, avoiding autocorrelations
while choosing the particle multiplicity used to define the
collision centrality and to calculate the correlations, derive
the expressions for the statistical errors for such correlations,
etc. Our results presented in this paper provide a methodology
to look at the experimental data.

We have presented the B-S correlations by excluding
different hadron species, we have studied ten different cases:
(i)–(x). In these studies, we observed strong correlations
between net proton and net � at low energies, which could
be related to the baryon stopping and associated production
of the hyperons and kaons. The various results of the mixed
cumulants and ratios obtained from UrQMD calculations show
a weak centrality dependence. As far as the energy dependence
is concerned, we observe that the strange baryons and strange
mesons have significant contributions to baryon-strangeness
correlations and various order mixed-cumulant ratios RBS

13 ,
RBS

13 , RBS
22 , and RBS

31 , especially at low energy. When strange
baryons are excluded from the B-S correlations, the values are
relatively small and close to zero. It is found that the model
results are also comparable with the lattice QCD calculations
at low temperature.

Thus, our studies presented in this paper have provided
the expectations on the interplay of baryon stopping and kaon
associated production to B-S correlations at different collision
energies from the UrQMD model. They also provide a baseline
for the B-S correlations as an observable to search for the
signals of the QCD phase transition and critical point in heavy-
ion collisions.
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APPENDIX: STATISTICAL ERROR CALCULATIONS

It is well known that the variance of statistic �(X1,
X1, . . . ,Xm) can be expressed in terms of the following [43]:

V (�) =
m∑

i=1,j=1

(
∂�

∂Xi

)(
∂�

∂Xj

)
cov(Xi,Xj ). (A1)

The covariance of the multivariate moments can be written
as [44]

cov(fi,j ,fk,h) = 1

N
(fi+k,j+h − fi,j fk,h), (A2)

where N is the number of events, fi,j = 〈BiSj 〉 and fk,h =
〈BkSh〉 are the joint moments of net baryon and net
strangeness.

We use Fm,n to present the mixed-central moments,

Fm,n = 〈(δB)m(δS)n〉

=
m∑

i=0

n∑
j=0

Ci
mCj

n (−1)m+n−i−j f m−i
1,0 f

n−j
0,1 fi,j . (A3)

The partial derivation of Fm,n to its variable fi,j is

Dm,n,i,j = ∂Fm,n

∂fi,j

=
m∑

i=0

n∑
j=0

Ci
mCj

n (−1)m+n−i−j f m−i
1,0 f

n−j
0,1 .

(A4)

The various order mixed-cumulant ratios can be expressed
by the terms of joint moments:

RBS
11 = −3

CBS
11

CBS
02

= −3
F1,1

F0,2
= −3

f1,1 − f0,1f1,0

f0,2 − f 2
0,1

, (A5)

RBS
13 = −3

CBS
13

CBS
04

= −3
F1,3 − 3F1,1F0,2

F0,4 − 3F 2
0,2

= −3
f1,3 − 3f1,2f0,1 + 6f1,1f

2
0,1 + 6f1,0f0,2f0,1 − 3f1,1f0,2 − 6f1,0f

3
0,1 − f1,0f0,3

f0,4 − 4f0,3f0,1 − 3f 2
0,2 + 12f0,2f

2
0,1 − 6f 4

0,1

, (A6)

RBS
22 = 9

CBS
22

CBS
04

= 9
F2,2 − 2F 2

1,1 − F0,2F2,0

F0,4 − 3F 2
0,2

= 9
−6f 2

0,1f
2
1,0 + 2f0,2f

2
1,0 + 8f0,1f1,0f1,1 − 2f 2

1,1 − 2f1,0f1,2 + 2f2,0f
2
0,1 − f2,0f0,2 − 2f0,1f2,1 + f2,2

f0,4 − 4f0,3f0,1 − 3f 2
0,2 + 12f0,2f

2
0,1 − 6f 4

0,1

, (A7)

RBS
31 = −27

CBS
31

CBS
04

= −27
F3,1 − 3F1,1F2,0

F0,4 − 3F 2
0,2

= −27
f3,1 − 3f2,1f1,0 + 6f1,1f

2
1,0 + 6f1,0f2,0f0,1 − 3f1,1f2,0 − 6f0,1f

3
1,0 − f0,1f3,0

f0,4 − 4f0,3f0,1 − 3f 2
02 + 12f0,2f

2
0,1 − 6f 4

0,1

. (A8)
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The partial derivation of RBS
11 to its variable fi,j is

∂RBS
11

∂fij

= ∂RBS
11

∂F1,1

∂F1,1

∂fi,j

+ ∂RBS
11

∂F0,2

∂F0,2

∂fi,j

= −3

CBS
02

D1,1,i,j + 3CBS
11(

CBS
02

)2 D0,2,i,j . (A9)

The variance of observable RBS
11 is

V
(
RBS

11

) =
1∑

i,k=0

2∑
j,h=0

∂RBS
11

∂fi,j

∂RBS
11

∂fk,h

cov(fi,j ,fk,h). (A10)

The error of observable RBS
11 is

error
(
RBS

11

) =
√

V
(
RBS

11

)
. (A11)

The partial derivation of RBS
13 to its variable fi,j is

∂RBS
13

∂fi,j

= ∂RBS
13

∂F1,3

∂F1,3

∂fi,j

+ ∂RBS
11

∂F1,1

∂F1,1

∂fi,j

+ ∂RBS
11

∂F0,4

∂F0,4

∂fi,j

+ ∂RBS
11

∂F0,2

∂F0,2

∂fi,j

= −3

CBS
04

D1,3,i,j + 3CBS
02

CBS
04

D1,1,i,j + 3CBS
13(

CBS
04

)2 D0,4,i,j + 9CBS
11 CBS

04 + 18CBS
13 CBS

02(
CBS

04

)2 D0,2,i,j . (A12)

The variance of observable RBS
13 is

V
(
RBS

13

) =
1∑

i,k=0

4∑
j,h=0

∂RBS
13

∂fi,j

∂RBS
13

∂fk,h

cov(fi,j ,fk,h). (A13)

The error of observable RBS
13 is

error
(
RBS

13

) =
√

V
(
RBS

13

)
. (A14)

The partial derivation of RBS
22 to its variable fi,j is

∂RBS
22

∂fi,j

= ∂RBS
22

∂F2,2

∂F2,2

∂fi,j

+ ∂RBS
22

∂F2,0

∂F2,0

∂fi,j

+ ∂RBS
22

∂F1,1

∂F1,1

∂fi,j

+ ∂RBS
22

∂F0,4

∂F0,4

∂fi,j

+ ∂RBS
22

∂F0,2

∂F0,2

∂fi,j

= 9

CBS
04

D2,2,i,j + −9CBS
02

CBS
04

D2,0,i,j + −36CBS
11

CBS
04

D1,1,i,j + −9CBS
22(

CBS
04

)2 D0,4,i,j + 9CBS
20 CBS

04 + 54CBS
02 CBS

22(
CBS

04

)2 D0,2,i,j . (A15)

The variance of observable RBS
22 is

V
(
RBS

22

) =
2∑

i,k=0

4∑
j,h=0

∂RBS
22

∂fi,j

∂RBS
22

∂fk,h

cov(fi,j ,fk,h). (A16)

The error of observable RBS
22 is

error
(
RBS

22

) =
√

V
(
RBS

22

)
. (A17)

The partial derivation of RBS
31 to its variable fi,j is

∂RBS
31

∂fi,j

= ∂RBS
31

∂F3,1

∂F3,1

∂fi,j

+ ∂RBS
31

∂F2,0

∂F2,0

∂fi,j

+ ∂RBS
31

∂F1,1

∂F1,1

∂fi,j

+ ∂RBS
31

∂F0,4

∂F0,4

∂fi,j

+ ∂RBS
31

∂F0,2

∂F0,2

∂fi,j

= −27

CBS
04

D3,1,i,j + 81CBS
11

CBS
04

D2,0,i,j + 81CBS
20(

CBS
04

)2 D1,1,i,j + 27CBS
31(

CBS
04

)2 D0,4,i,j + −162CBS
02 CBS

31(
CBS

04

)2 D0,2,i,j . (A18)

The variance of observable RBS
31 is

V
(
RBS

31

) =
3∑

i,k=0

4∑
j,h=0

∂RBS
31

∂fi,j

∂RBS
31

∂fk,h

cov(fi,j ,fk,h). (A19)
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The error of observable RBS
31 is

error
(
RBS

31

) =
√

V
(
RBS

31

)
. (A20)
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