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Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion
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We develop a set of kinetic equations for hydrodynamic fluctuations which are equivalent to nonlinear
hydrodynamics with noise. The hydrokinetic equations can be coupled to existing second-order hydrodynamic
codes to incorporate the physics of these fluctuations. We first show that the kinetic response precisely reproduces
the renormalization of the shear viscosity and the fractional power (∝ ω3/2) which characterizes equilibrium
correlators of energy and momentum for a static fluid. Then we use the hydrokinetic equations to analyze thermal
fluctuations for a Bjorken expansion, evaluating the contribution of thermal noise from the earliest moments
and at late times. In the Bjorken case, the solution to the kinetic equations determines the coefficient of the
first fractional power of the gradient expansion (∝ 1/(τT )3/2) for the expanding system. Numerically, we find
that the contribution to the longitudinal pressure from hydrodynamic fluctuations is larger than second-order
hydrodynamics for typical medium parameters used to simulate heavy ion collisions.
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I. INTRODUCTION

A. Overview

The purpose of the current paper is to develop a set of kinetic
equations for hydrodynamic fluctuations and to use these
kinetic equations to study corrections to Bjorken flow arising
from thermal fluctuations. The specific test case of Bjorken
flow (which is a hydrodynamic model for the longitudinal
expansion of a nucleus-nucleus collision [1]) is motivated
by the experimental program of ultrarelativistic heavy-ion
collisions at Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). Detailed measurements of two-
particle correlation functions have provided overwhelming
evidence that the evolution of the excited nuclear material
is remarkably well described by the hydrodynamics of the
quark gluon plasma (QGP) with a small shear viscosity to
entropy ratio of order η/s ∼ 2/4π [2,3]. The typical relaxation
times of the plasma, while short enough to support hydro-
dynamics, are not vastly smaller than the inverse expansion
rates of the collision. For this reason, the gradient expansion
underlying the hydrodynamic formalism has been extended
to include first- and second-order viscous corrections [4],
and these corrections systematically improve the agreement
between hydrodynamic simulations and measured two-particle
correlations [2]. Additional corrections, which have not been
systematically included, arise from thermal fluctuations of the
local energy and momentum densities and could be significant
in nucleus-nucleus collision where only ∼20 000 particles are
produced. This has prompted a keen practical interest in the
heavy ion community in simulating relativistic hydrodynamics
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with stochastic noise [5–11]. In a nonrelativistic context,
such simulations have reached a fairly mature state [12–14].
For a static fluid, thermal fluctuations give rise through
the nonlinearities of the equations of motion to fractional
powers in the fluid response function at small frequency,
GR(ω) ∝ ω3/2. Indeed, the long-time tails first observed in
molecular-dynamics simulations [15–17] are a consequence
of this nonanalytic ω3/2 behavior. For Bjorken flow, the same
nonlinear stochastic physics leads to fractional powers in the
gradient expansion for the longitudinal pressure of the fluid.
One of the goals of this paper is to compute the coefficient of
the first fractional power in this expansion.

The measured two-particle correlations in heavy ion colli-
sions reflect both the fluctuations in the initial conditions and
thermal fluctuations. Thermal fluctuations are believed to be a
small (but conceptually important) correction to nonfluctuating
hydrodynamics [6–8]. In addition, thermal fluctuations can
become significant close to the QCD critical point [9,18]
and in smaller colliding systems such as proton-nucleus and
proton-proton collisions [7], which show remarkable signs of
collectivity [19].

In the current paper, rather than simulating nonlinear fluctu-
ating hydrodynamics directly, we will reformulate fluctuating
hydrodynamics as nonfluctuating hydrodynamics (describing
a long wavelength background) coupled to a set of kinetic
equations describing the phase space distribution of short
wavelength hydrodynamic fluctuations. For Bjorken flow this
set of equations can be solved to determine the first fractional
powers in the gradient expansion.

B. Hydrodynamics with noise and fractional powers
in the gradient expansion

At finite temperature, real-time dynamics in each regime
of scales has an efficient and systematic description by an
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effective theory [20]. Hydrodynamics is a long-wavelength
effective theory which describes the evolution of conserved
quantities by organizing corrections in powers of gradients. For
the hydrodynamic expansion to apply, we require frequencies
under consideration to be small compared to the microscopic
relaxation rates

ε ≡ ωη

(e + p)c2
s

� 1, (1)

where we have estimated the microscopic relaxation time with
the hydrodynamic parameters, τR ≡ η/(e + p)c2

s [21], and for
later convenience defined ε ≡ ωτR .

For definiteness, we follow precedent [4,22,23] and con-
sider a conformal neutral fluid driven from equilibrium by a
small metric perturbation hxy(ω) of frequency ω. Within the
framework of linear response (see Sec. II and Ref. [24] for
further details), the stress tensor at low frequency takes the
form

δT xy = −hxy(ω)

[
p − iωη +

(
ητπ − κ

2

)
ω2

]
. (2)

The first term is the prediction of ideal hydrodynamics
δT xy = −phxy ; the middle term is the prediction of first-order
viscous hydrodynamics [22], where η is the shear viscosity;
finally, the last term is the prediction of second-order hydro-
dynamics, where τπ and κ are the associated second-order
parameters [4].

In writing Eq. (2) we have neglected additional contribu-
tions stemming from fluctuations which will be described
below. Thermal fluctuations can be incorporated into the
hydrodynamic description by including stochastic terms into
the equations of motion [25–27]

dμT μν = 0, T μν = T
μν

ideal + T μν
visc. + Sμν, (3)

where variance of the noise, 〈SμνSρσ 〉 ∼ 2T ηδ(t − t ′), is
determined by the fluctuation dissipation theorem at temper-
ature T and introduces no new parameters into the effective
theory.1 After including these stochastic terms, the correlators
of momentum and energy evolve to their equilibrium values
in the absence of the external force, hxy(ω). Specifically, the
equilibrium two-point functions of the energy and momen-
tum densities, δe(t,x) ≡ T 00(t,x) − 〈T 00〉 and gi(t,x) ≡ T 0i

respectively, approach the textbook result [25]

〈δe(t,k)δe(t, − k′)〉 = (e + p)T

c2
s

(2π )3δ3(k − k′), (4a)

〈gi(t,k)gj (t, − k′)〉 = (e + p)T δij (2π )3δ3(k − k′), (4b)

where cs is the speed of sound and δe(t,k) notates the spatial
Fourier transform of δe(t,x). In the presence of an external
force or a nontrivial expansion, these correlations are driven

1We follow a standard notation for hydrodynamics summa-
rized in Ref. [21]. dμ notates a covariant derivative using the
“mostly plus” metric convention. T

μν
ideal = (e + p)uμuν + pgμν and

T μν
visc = −ησμν , where σμν = �μρ�νσ (dρuσ + dσ uρ − 2

3 gρσ dγ uγ ),
with �μν = gμν + uμuν . The noise correlator is fully specified in
Eq. (15) of Sec. II.

away from equilibrium. The purpose of hydrodynamics with
noise is to describe in detail these deviations from equilibrium.

Due to the nonlinear character of hydrodynamics, the
thermal fluctuations change the evolution of the system.
Indeed, a diagrammatic analysis of the hydrodynamic response
at one-loop order shows that the stress in the presence of a weak
external field (or the retarded Green’s function) is

〈T xy(ω)〉 = −hxy(ω)

{
p − iωη + (i + 1)

[
7 + (

3
2

)3/2]
240π

× T

(
ω

γη

)3/2

+ O(ω2)

}
, (5)

where p, e, and η are renormalized physical quantities (see
Secs. II A and II B for further discussion of the renormaliza-
tion), and

γη ≡ η

e + p
, (6)

is the momentum diffusion coefficient [23,28]. As empha-
sized and estimated previously, the fractional order ω3/2 is
parametrically larger than second-order hydrodynamics [23].
However, the coefficient of the ω3/2 terms is vanishingly small
in weakly coupled theories and in strongly coupled theories
at large Nc, and therefore second-order hydrodynamics may
be an effective approximation scheme except at very small
frequencies. In the context of holography, the ω3/2 term can
only be determined by performing a one-loop calculation in
the bulk [29].

In the current paper we will rederive Eq. (5) using a kinetic
description of short-wavelength hydrodynamic fluctuations.
For an external driving frequency of order ω, we identify an
important length scale set by equating the damping rate and
the external frequency

γηk
2
∗ ∼ ω , k∗ ∼

(
ω

γη

)1/2

. (7)

We will refer to the k∗ as the dissipative scale below (see also
Ref. [29]). Modes with wave numbers significantly larger than
the dissipative scale, k 
 k∗, are damped and re-excited by the
noise on a time scale which is short compared to period 2π/ω,
and this rapid competition leads to the equilibration of these
shorter wavelengths; i.e., their equal time correlation functions
are given by Eq. (4). By contrast, modes with wave numbers
of order k ∼ k∗ have equal time correlation functions which
deviate from the equilibrium expectation values.

It is notable that the wave numbers of interest k∗ are large
compared to ω/cs , but still small compared to microscopic
wave numbers of order the inverse mean free path.2 Estimating
the mean free path as �mfp = csτR , we see that the strong

2The effect of second-order hydrodynamics is suppressed compared
to the first-order hydrodynamics as long as the derivative expansion
works, i.e., k � 1/�mfp. The causal property of the second-order
hydrodynamics is gained by modifying the dispersions at k ∼ 1/�mfp.
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FIG. 1. The hydrokinetic description of noise is based on the
separation of scales between the long wavelength hydrodynamic
background (with k ∼ ω/cs) and shorter wavelength hydrodynamic
fluctuations (with k ∼ k∗ ≡ √

ω/γη). The wavelengths of the hydro-
dynamic fluctuations are still much longer than microscopic mean free
path. The hydrodynamic fluctuations are driven out of equilibrium by
the expanding background, and this deviation is the origin of the
long-time tail correction to the stress tensor.

inequalities

ω

cs

� k∗ � 1

�mfp
(8)

can be written as

ω

cs

� ω

cs

1√
ε

� ω

cs

1

ε
, (9)

and thus hold whenever hydrodynamics is applicable, ε � 1.
The scale separation illustrated in Fig. 1 can be used to set up
an approximation scheme where modes of order k∗ on a soft
(k ∼ ω/cs) background are treated with a kinetic or Wentzel-
Kramers-Brillouin (WKB) type approximation scheme. We
will develop the appropriate kinetic equations in Sec. II. These
kinetic equations can be solved and used to determine how
the two point functions of energy and momentum with wave
numbers of order k∗ deviate from equilibrium when driven by
an external perturbation. The ω3/2 term in Eq. (5) roughly
represents the contribution of

∫
k2dk ∼ k3

∗ slightly out of
equilibrium hydrokinetic modes per volume, with each mode
contributing 1

2T of energy to the stress tensor. Note that the
contribution to the stress tensor of modes outside of the kinetic
regime k � k∗ is suppressed by phase space.

Similar kinetic equations can be derived for much more
general flows. We will establish the appropriate kinetic
equations for a Bjorken expansion [1], which is a useful
model for the early stages of a heavy ion collision. The ideal,
first-order, and second-order terms in the gradient expansions
have been given in Refs. [1,30], and [4,31] respectively. For
a conformal (nonfluctuating) fluid the longitudinal pressure
during a Bjorken expansion takes the form

τ 2T ηη = p − 4

3

η

τ
+ 8

9τ 2
(λ1 − ητπ ) + · · · . (10)

The expansion rate is ∂μuμ = 1/τ , and each higher term in the
gradient expansion is suppressed by an integer power of 1/τT .
For Bjorken flow the expansion rate plays the role of frequency,
and the distribution of sound modes are characterized by a

dissipative scale analogous to Eq. (7) of order3

k∗ ∼ 1

(γητ )1/2
. (11)

At this scale the viscous damping rate balances the expansion
rate. These hydrodynamic modes satisfy the inequality

1

csτ
� k∗ � 1

�mfp
, (12)

and this strong set of inequalities can be used to determine
a kinetic equation for hydrodynamic modes of order k∗.
The equal time correlation functions for wave numbers of
this order deviate from their equilibrium form in Eq. (4),
and the kinetic equations precisely determine the functional
dependence of this deviation. Finally, these modes contribute
to the longitudinal pressure and determine first fractional
power in the longitudinal pressure of a conformal fluid
[analogous to Eq. (5)]. In Sec. II we will establish that this
nonlinear correction to the longitudinal component of the stress
tensor is

〈τ 2T ηη〉
e + p

=
[

p

e + p
− 4

3

γη

τ
+ 1.08318

s (4πγητ )3/2
+ O

(
1

(τT )2

)]
.

(13)

Noise also contributes to transverse momentum fluctuations,
and this contributes at quadratic order to 〈T ττ 〉 as we discuss in
Sec. III. Thus, a complete description of a Bjorken expansion
with noise must also re-examine the relationship between the
background energy density e and the one-point function 〈T ττ 〉.

An outline of the paper is as follows. In Sec. II we consider a
static fluid perturbed by an external gravitational perturbation.
The purpose of this section is to introduce the kinetic equations
and to reproduce the results of the diagrammatic analysis of
Refs. [23,28] using the hydrokinetic theory adopted here. In
Sec. III B we linearize the hydrodynamic equations of motion
to determine the appropriate kinetic equations for a Bjorken
expansion. In Secs. III C and III D we determine the solutions
to the kinetic theory and use these solutions to evaluate the
contribution of hydrodynamic modes to the stress tensor. We
give an intuitive physical interpretation of the main results of
the paper in Sec. III E. Finally we conclude with results and
discussion in Sec. IV.

II. HYDRODYNAMIC FLUCTUATIONS
IN A STATIC FLUID

We will first derive the kinetic equations for hydrodynamic
fluctuations in homogeneous flat space in Sec. II A. The
purpose here is to introduce notation and to discuss the kinetic
approximations in the simplest context. Then in Sec. II B

3The quantities k∗(τ ), γη(τ ), s(τ ), . . . are all functions of time for a
Bjorken expansion, e.g., for a conformal equation of state and an ideal
expansion, k∗(τ ) ∝ τ−2/3, γη ∝ τ 1/3, s(τ ) ∝ τ−1, etc. Throughout the
paper k∗,γη, s, . . . (without a time argument) will denote the physical
quantity at the final time of consideration. The explicit time argument
will be used when needed, e.g., k∗(τ ′) = k∗(τ/τ ′)−2/3.
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we will perturb the system with a gravitational field and
derive the appropriate kinetic theory in this case. We then
use this hydrokinetic theory to reproduce the results of loop
calculations [23,28] for the renormalization of the shear
viscosity and the long time tails which characterize the
hydrodynamic response due to nonlinear noise effects.

A. Relaxation equations for hydrodynamic fluctuations

To illustrate the approximations that follow and to introduce
notation, we first will derive kinetic equations for the two point
functions for energy and momentum density perturbations
around a static homogeneous background. The basics of the
techniques adopted in our analysis is reviewed in Refs. [32,33].
The (bare) background quantities of the hydrodynamic ef-
fective theory, such as the energy density, pressure, and
shear viscosity [e0(�), p0(�), and η0(�) respectively] are
calculated by integrating out fluctuations above a scale �, i.e.,
by excluding the contributions of hydrodynamic fluctuations
with wave number k < � to the stress tensor. This is important
because modes with k < � will not be in equilibrium when the
system is perturbed by a driving force. The relation between
the bare parameters and the physical quantities (which may be
computed in infinite volume with lattice QCD for instance) is
discussed in Sec. II B and in Ref. [23], where η0(�) is referred
to as ηcl(pmax).

To derive a relaxation equation for the two point functions
we linearize the equations of stochastic hydrodynamics and
study the eigenmodes of the system. The correlations between
eigenmodes with vastly different frequencies are neglected
in a kinetic (or coarse graining) approximation. For the
constant background e0 = const, and to linear order in field
perturbations and stochastic fluctuations, the equations of
motion [Eq. (3)] become

∂t δe + ikig
i = 0, (14a)

∂tgi + ikiδp + γηk
2gi + 1

3γηkikjg
j = −ξi, (14b)

where γη ≡ η0/(e0 + p0) is computed with bare quantities,
and −ξi is the stochastic force, −ikjS

j
i(t,k). Here S

j
i(t,k)

are spatial components of the noise tensor with equilibrium
correlation given by [26]

〈Sμν(t1,k)Sαβ(t2, − k′)〉
= 2T η0

[
(�μα�νβ + �μβ�να) − 2

3�μν�αβ
]

× (2π )3δ3(k − k′)δ(t1 − t2). (15)

It is convenient to combine Eq. (14) into a single matrix
equation for an amalgamated field φa = (csδe,gj )

∂tφa(t,k) = −iLabφb − Dabφb − ξa, (16)

where ideal and dissipative terms are

Lab =
(

0 cskj

cski 0

)
, Dab = γη

(
0 0
0 k2δij + 1

3kikj

)
,

(17)

and the stochastic noise ξa satisfies correlation equation

〈ξa(t1,k)ξb(t2, − k′)〉
= 2T (e0 + p0)Dab(2π )3 × δ3(k − k′)δ(t1 − t2). (18)

At the dissipative scale, the acoustic matrix L ∼ csk∗ orig-
inating from ideal equations of motion dominates over the
competing dissipation D and fluctuation ξa terms. Lab has four
eigenmodes: two longitudinal sound modes with λ± = ±cs |k|
and two transverse zero modes (λT1 = λT2 = 0). SinceL drives
evolution of φa , it will be convenient to analyze the dynamics
in terms of eigenmodes of Lab:4

(e±)a = 1√
2

(
1

±k̂

)
, (eT1 )a =

(
0
�T1

)
, (eT2 )a =

(
0
�T2

)
,

(19)

where k̂ = k/|k| and �T1 and �T2 are two orthonormal spatial
vectors perpendicular to k̂:

k̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), (20a)

�T1 = (− sin ϕ, cos ϕ,0), (20b)

�T2 = (cos θ cos ϕ, cos θ sin ϕ,− sin θ ). (20c)

Now we will derive a relaxation equation for the two-point
correlation function of hydrodynamic fluctuations by defining
a density matrix Nab(t,k)

〈φa(t,k)φb(t, − k′)〉 ≡ Nab(t,k)(2π )3δ3(k − k′) (21)

and analyzing the time evolution of Nab(t,k).
The analysis is most transparent in the eigenbasis, φA ≡

φa(eA)a with A = +,−,T1,T2, and below we will determine
the equation of motion for NAB ≡ 〈φAφB〉, where A,B =
+, − ,T1,T2. We note that the positive and negative sound
modes φ+ and φ− are related since the hydrodynamic fields
are real, φ∗

−(k,t) = φ+(−k,t).
Using the equations of motion for φA we calculate the

infinitesimal change of NAB(t + dt) − NAB(t) and use the
equal time correlator for the noise [Eq. (18)] to find a
differential equation for NAB :

∂tN = −i[L,N ] − {D,N} + 2T (e0 + p0)D, (22)

where [X,Y ] ≡ XY − YX, {X,Y } ≡ XY + YX, and
[L,N ]AB = (λA − λB)NAB . We are interested in the evolution
of two-point correlation functions over time scales much
larger than acoustic oscillations, �t 
 1/(csk∗). On these
time scales the off-diagonal matrix elements of the density
matrix, N+T1 , for example, rapidly oscillate reflecting
the large difference in eigenvalues, λ+ − λT1 ∼ csk∗. In a
coarse-graining approximation the contributions of these
off-diagonal matrix elements to physical quantities can
be neglected when averaged over times long compared to
1/(csk∗). This reasoning does not apply to the diffusive modes
A,B = T1,T2 where both eigenvalues are zero, but rotational
symmetry in the transverse xy-plane requires NT1T2 to vanish.5

4Another reason why analysis in terms of eigenmodes of Lab is
convenient is that they form a real and orthonormal basis and the
projection onto each mode is easily handled.

5Rotational symmetry in the transverse xy plane requires that
〈gigj 〉 ∼ Aδij + Bk̂i k̂j , where i,j = x,y. Such a tensor structure has
vanishing T1T2 projection.
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With these approximations, the nontrivial relaxation equa-
tions of two-point correlation functions in Eq. (22) are

∂tN±±(t,k) = − 4
3γηk

2(N±± − N0), (23a)

∂tNT1T1 (t,k) = −2γηk
2(NT1T1 − N0), (23b)

∂tNT2T2 (t,k) = −2γηk
2(NT2T2 − N0), (23c)

where

N0 = T (e0 + p0) (24)

is the equilibrium value for NAA [cf. Eq. (4)]. In the absence of
external perturbations, two-point correlation functions relax to
their equilibrium values. The next step towards general kinetic
equations is to study how equal time correlations are driven
out of equilibrium by the presence of external fields.

B. Linear response to gravitational perturbations

In this section we will study the evolution of two-point
energy and momentum correlators in the presence of a time-
varying gravitational field. We determine the kinetic equations
in the time-dependent background and use these equations to
reproduce the modifications of the retarded Green’s function
[Eq. (5)] due to thermal fluctuations, which were previously
found by a one-loop calculation [23,28].

A straightforward way of introducing an external source to
equations of motion is to study fluctuating hydrodynamics in
the presence of a small metric perturbation, gμν = ημν + hμν .
The Green’s function records the response of T μν to the metric
perturbation

δ〈T μν(ω)〉 = − 1
2G

μν,αβ
R (ω)hαβ(ω). (25)

For a constant homogeneous background with time-
dependent metric perturbation hij (t), symmetry constrains the
form of the retarded Green’s function

G
ij,kl
R (ω) = G̊R(ω)

(
δikδjl + δilδjk − 2

3δij δkl
)

+GR(ω) δij δkl, (26)

and therefore we can obtain the Green’s function in Eq. (5),
i.e., G̊R(ω), by considering a diagonal traceless metric pertur-
bation, hij (t) = h(t) diag (1,1,−2).

In the presence of metric perturbations and thermal fluctu-
ations, the energy momentum tensor is

δ
〈
T ij (t)

〉 = −p0h
ij − η0∂th

ij + 〈gi(t,x)gj (t,x)〉
e0 + p0

, (27)

where the nonlinear term stems from the constitutive relation
of ideal hydrodynamics, T ij = p0δ

ij + (e0 + p0)uiuj . The
averaged squared momentum, 〈gi(t,x)gj (t,x)〉, is related to
the two-point functions of gi in k space as

〈gi(t,x)gj (t,x)〉 =
∫

d3k

(2π )3
Nij (t,k). (28)

In this integral, the equilibrium value of Nij and its first viscous
correction will renormalize p0 and η0 (see below), while the
finite remainder will determine the first fractional power in the
stress tensor correlator ∝ ω3/2.

Studying the hydrodynamic equations in Eq. (3) and
neglecting metric perturbations of the dissipative terms, we
find that the linearized equations of motion are identical to flat
background Eq. (14), but now there is a difference between
covariant and contravariant indices

∂t δe + ikig
i = 0, (29a)

∂tgi + ikiδp + γηk
2gi + 1

3γηkikjg
j = −ξi . (29b)

To avoid this complication, we use a vielbein formalism and
scale the spatial components of momentum and wave number
by

√
gij ; i.e., gi and kj are replaced by

Gı̂ = (
1 + 1

2hij

)
gj , (30a)

Kı̂ = (
1 − 1

2hij
)
kj , (30b)

where now the position of hatted indices is unimportant.
Analogously to Eq. (16), we obtain a matrix equation for
φa = (csδe,Gı̂)

∂tφa(t,k) = −iLabφb − Dabφb − ξa − Pabφb, (31)

with an additional metric dependent source term

Pab =
(

0 0
0 1

2∂0hîĵ

)
, (32)

which drives the hydrodynamic fluctuations away from equi-
librium. The eigenbasis of L [see Eq. (19)] is now defined
with respect to the time-dependent vector �K(t) but remains
orthonormal at all times. Furthermore, the metric perturbation
preserves rotational symmetry in the transverse xy plane,
and this guarantees that the T1 and T2 modes are not
mixed by the time-dependent perturbation. Thus, the only
nontrivial diagonal components of the symmetrized energy
and momentum two-point functions are

∂tN±± = − 4
3γηK

2(N±± − N0)

− 1
2∂th (sin2 θK − 2 cos2 θK )N±±, (33a)

∂tNT1T1 = −2γηK
2(NT1T1 − N0) − ∂th NT1T1 , (33b)

∂tNT2T2 = −2γηK
2(NT2T2 − N0)

− ∂th (cos2 θK − 2 sin2 θK )NT2T2 . (33c)

We can find a perturbative solution to these equations for a
small periodic metric perturbation, e.g.,

NT2T2 (ω,k)  N0

[
2πδ(ω) + iωh(ω)(cos2 θK−2 sin2 θK )

−iω + 2γηK2

]
.

(34)

To find the correction to the energy momentum tensor due to
the nonlinear momentum fluctuations in Eq. (27), we need to
perform the k space integral in Eq. (28)

〈φa(x)φb(x)〉 =
∫

d3K

(2π )3
Nab(t,k),

=
∫

K2dKd cos θKdϕK

(2π )3
(eA)aNAB(t,k)(eB)b.

(35)
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Note that care should be taken when transforming the zeroth-
order value NAA = N0 to original unhatted basis as it produces
terms linear in metric perturbation. The modification of the
response function G̊R(ω) due to the momentum fluctuations
[i.e., the last term in Eq. (27)] is

G̊R(ω) = −1

6
(δT xx + δT yy − 2δT zz)/h(ω),

⊃ −T

6

∫
d3K

(2π )3

[
−6 + iω

(sin2 θK − 2 cos2 θK )2

−iω + 4
3γηK2

+ iω
1 + (cos2 θK − 2 sin2 θK )2

−iω + 2γηK2

]
. (36)

Performing K-space integral with ultraviolet cutoff, Kmax =
�, and adding the remaining terms in Eq. (27), we find

G̊R(ω) =
(

p0 + �3

6π2
T

)
−i

(
η0 + �

γη

17

120π2
T

)
ω

+ (1 + i)
1

γ
3/2
η

(
3
2

)3/2 + 7

240π
T ω3/2, (37)

in agreement with previous work [23,28]. The first two terms
in Eq. (37) are the renormalized pressure [p ≡ p0(�) +
O(T �3)] and shear viscosity [η ≡ η0(�) + O(�T 2)] as dis-
cussed previously [23]. In general, � � 1/�mfp � T holds
and the renormalization only slightly shifts the quantities in
the thermodynamic limit (� → 0). Further discussion of the
renormalization of these quantities is given in the next section
when the expanding case is presented.

The last term is the finite nonlinear modification of
the medium response and agrees with loop calculations in
equilibrium. The kinetic approach outlined in this section has
the advantage that it can be readily applied to more general
backgrounds, and we will exploit this advantage to calculate
the analogous correction for a Bjorken expansion in the next
section. In contrast to the linear response described here, the
deviation from equilibrium in the expanding case is of order
unity. Consequently, computing the first fractional power in
an expanding system with the diagrammatic formalism would
require an extensive resummation, which would invariably
reproduce kinetic calculation described in the next section [34].

III. HYDRODYNAMIC FLUCTUATIONS FOR
A BJORKEN EXPANSION

In this section we will derive the kinetic evolution equations
for hydrodynamic fluctuations during a Bjorken expansion. We
consider a neutral conformal fluid, for which c2

s = 1/3, ζ = 0,
and μB = 0. In Bjorken coordinates the energy and momentum
conservation laws are

∂μT μν + 1

τ
T τν + �ν

μβT μβ = 0, (38)

with �τ
ηη = τ and �η

τη = �η
ητ = 1/τ [21]. For hydrody-

namics without noise the background flow fields are
independent of transverse coordinates and rapidity and

satisfy

d(τT ττ )

dτ
= −τ 2T ηη, (39)

d(τT τi)

dτ
= 0, (40)

where roman indices, i,j . . ., run over transverse coordinates
x,y. The transverse momentum T τi is constant and can be
chosen to be zero. In hydrodynamics T ττ and τ 2T ηη are related
by constitutive equations

T ττ = e, (41)

τ 2T ηη = c2
s e − 4η

3τ
. (42)

Note that in τ 2T ηη the viscous correction is of order ε =
η/(e + p)τ � 1 smaller than the ideal part, and the solution
is approximately e(τ ) = e(τ0)(τ0/τ )1+c2

s [1 + O(ε)].
We will consider the evolution of linearized fluctuations

on top of this background. The effect of these fluctuations on
the background evolution can then be included as a correction
after the two-point functions are known, i.e.,

d〈〈T ττ 〉〉
dτ

= −〈〈T ττ 〉〉 + 〈〈τ 2T ηη〉〉
τ

, (43)

where the constitutive relations take the form

〈〈T ττ 〉〉 = e + 〈〈 �G2〉〉
e + p

, (44)

〈〈τ 2T ηη〉〉 = c2
s e − 4η

3τ
+ 〈〈(Gẑ)2〉〉

e + p
. (45)

Here and below e(τ ) is the average rest frame energy density;6

�G is the momentum density �G = (T τx,T τy,τT τη); and all
quantities are renormalized as explained more completely
below.

There are two sorts of fluctuations to consider: fluctuations
in the initial conditions (which are long range in rapidity)
and hydrodynamic fluctuations stemming from thermal noise
(which are short range in rapidity). The averages over the
initial conditions and noise are denoted with 〈· · · 〉τ0

and
〈· · · 〉 respectively, while the average over both fluctuations is
denoted with the double brackets 〈〈· · · 〉〉. Since the transverse
momentum per rapidity is conserved for boost-invariant fields,
approximately boost-invariant initial fluctuations in τT τi

remain important at late times. In Sec. III A we study initial
transverse momentum fluctuations, while in remainder of the
paper we complete our study of thermal fluctuations during a
Bjorken expansion.

6e(τ ) notates the average rest frame energy density and does not
fluctuate; 〈〈T ττ 〉〉 is the average energy density. In general, the rest
frame energy density e + δe in a finite volume would be estimated
from sample estimate of T ττ and �G through the (ideal) constitutive
equations, e + δe  T ττ − �G2

(1+c2
s )T ττ . Thus e is given by Eq. (44), and

δe  δT ττ − δ( �G2/T ττ )/(1 + c2
s )  δT ττ .
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A. A Bjorken expansion with initial transverse
momentum fluctuations

After the initial passage of two large nuclei in a specific
event, each rapidity interval contains a finite amount of
transverse momentum, although the event-averaged transverse
momentum per rapidity is zero. This initial transverse momen-
tum is spread over a large rapidity range by the subsequent
rescatterings in the initial state. Ultimately, this dynamical
process can be described by (transverse) momentum diffusion
in rapidity and can be modeled with hydrodynamics and
noise; see Sec. III D. Here we will determine how long-range
transverse momentum fluctuations in the initial state influence
the evolution of the background energy density at late times.

As a model for the initial conditions in the x,y plane, we
take Gaussian statistics for the initial transverse momentum
fluctuations〈

τ0g
i
⊥(τ0,�x⊥) τ0g

j
⊥(τ0,�y⊥)

〉
τ0

= χgg
τ0

δij δ2(�x⊥ − �y⊥), (46)

where gi
⊥(τ,�x⊥) ≡ T τi is approximately independent of ra-

pidity, so that each (large) rapidity interval is approximately
boost invariant. Integrating over the transverse areaA, the total
transverse momentum per rapidity,

dpx

dη
≡
∫
A

d2x⊥ τ0g
x
⊥(τ0,�x⊥), (47)

fluctuates from event to event with a scaled variance of

χgg
τ0

≡
〈

1

A
(

dpx

dη

)2
〉

τ0

. (48)

To find out how this fluctuating initial condition changes the
evolution of the system, we linearize the equations of motion
of viscous hydrodynamics and Fourier transform with respect
to the transverse coordinates

�g⊥(τ,�k⊥) ≡
∫

d2x⊥ei�k⊥·�x⊥ �g⊥(τ,�x⊥). (49)

The full equations of motion are given in the next section; see
Eq. (56). Decomposing the transverse momentum fluctuation
into longitudinal and transverse pieces

gi
⊥(τ,�k⊥) = gi

L(�k⊥) + gi
T (�k⊥), (50)

with k̂i
⊥gi

T = 0 and gi
L = k̂i

⊥k̂
j
⊥g

j
⊥, we find that the transverse

piece obeys a two-dimensional diffusion equation

∂τ

(
τgi

T

)+ γηk
2
⊥
(
τgi

T

) = 0, (51)

with initial conditions specified by Eq. (46)

〈
τ0g

i
T (τ0,�k⊥) τ0g

j
T (τ0, − �k′

⊥)
〉
τ0

= χgg
τ0

(δij − k̂i k̂j ) (2π )2δ2(�k⊥ − �k′
⊥). (52)

Solving the diffusion equation with a time-dependent diffusion
constant γη ∝ τ c2

s , we see that the variance at a specified space

time point due to the fluctuating initial conditions is7

〈
τgi

⊥(τ,�x⊥)τg
j
⊥(τ,�x⊥)

〉
τ0

= δij χ
gg
τ0

12πγητ
. (53)

Thus, we see that a fluctuating initial conditions contributes
quadratically to the average stress tensor

〈τ 2T ηη〉τ0

e + p
= p

e + p
− 4γη

3τ
, (54a)

〈T xx〉τ0

e + p
= p

e + p
+ 2γη

3τ
+
[

χ
gg
τ0

τ 2(e + p)2

]
1

12πγητ
, (54b)

〈T yy〉τ0 = 〈T xx〉τ0 , (54c)

〈T ττ 〉τ0 = 〈T xx〉τ0 + 〈T yy〉τ0 + 〈τ 2T ηη〉τ0 , (54d)

where p = c2
s e.

B. Kinetic equations of hydrodynamic fluctuations

To derive the kinetic equations we will follow the strategy
of Sec. II A, and expand all fluctuations in Fourier modes
conjugate to transverse coordinates and rapidity, e.g.,

δe(τ,k) ≡
∫

dη d2x⊥ ei�k⊥·�x⊥+iκη δe(τ,x⊥,η). (55)

The linearized equations of motion of all hydrodynamic fields
around the Bjorken background read

0 =
(

∂

∂τ
+ 1 + c2

s

τ

)
δe + i�k⊥ · �g⊥ + iκgη + ξ τ , (56a)

�0⊥ =
(

∂

∂τ
+ 1

τ

)
�g⊥ + c2

s i
�k⊥δe + γη

(
k2
⊥ + κ2

τ 2

)
�g⊥

+ 1

3
γη

�k⊥(�k⊥ · �g⊥ + κgη) + �ξ⊥, (56b)

0 =
(

∂

∂τ
+ 3

τ

)
gη + c2

s iκ

τ 2
δe + γη

(
k2
⊥ + κ2

τ 2

)
gη

+ 1

3τ 2
γηκ(�k⊥ · �g⊥ + κgη) + ξη, (56c)

where (gx
⊥,g

y
⊥,gη) = (T τx,T τy,T τη). As in Secs. II A and II B

the hydrodynamic parameters in these equations (such as
γη) are constructed from the bare parameters, e0(�), p0(�),
η0(�) and evolve according to ideal hydrodynamics, e0(τ ) =
e0(τ0)(τ0/τ )1+c2

s . We also neglected variation in viscosity
δη/τ � δp,δe, which is smaller by a factor ε = η0/[(e0 +
p0)c2

s τ ] � 1 for conformal fluid. Note also that the temporal
noise component ξ τ is smaller than ξ i⊥ and τξη by a factor
1/(k∗τ ) ∼ ε1/2 and the former can be neglected.

Following the procedure outlined in Sec. II we rewrite
Eqs. (56) in a compact matrix notation. We define �G =
(Gx̂,Gŷ,Gẑ) ≡ (�g⊥,τgη) and �K = (Kx̂,Kŷ,Kẑ) ≡ (�k⊥,κ/τ ),
so that equation of motion for φa ≡ (csδe, �G) is

∂τφa(τ,k) = −iLabφb − Dabφb − ξa − Pabφb, (57)

7Here we are neglecting the longitudinal contribution, 〈gLgL〉,
which decreases more rapidly than 1/τ at late times.
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L =
(

0 cs
�K

cs
�K 0

)
,

(58)

D = γη

(
0 0
0 K2δı̂ĵ + 1

3Kı̂Kĵ

)
,

P = 1

τ

⎛
⎜⎝

1 + c2
s

1
1

2

⎞
⎟⎠, (59)

with noise correlator

〈ξa(τ,k)ξb(τ ′, − k)〉
= 2T (e0 + p0)

τ
Dab(2π )3 × δ3(k − k′)δ(τ − τ ′). (60)

Here δ3(k − k′) ≡ δ2(�k⊥ − �k′
⊥)δ(κ − κ ′) and the factor of 1/τ

stems from the Jacobian of the coordinate system δ4(x −
x ′)/

√
g(x).

The kinetic equation for the two-point functions

〈φa(τ,k)φb(τ, − k′)〉 ≡ Nab(τ,k)(2π )3δ3(k − k′) (61)

is obtained similarly to Sec. II

∂τN (τ,k) = −i[L,N ] − {D,N} + 2T (e0 + p0)

τ
D − {P,N}.

(62)

The eigenvectors of L are of the same form as before, Eq. (19),

(e±)a= 1√
2

(
1

±K̂

)
, (eT1 )a=

(
0
�T1

)
, (eT2 )a =

(
0
�T2

)
. (63)

However, now the wave number vector �K is time dependent:

K̂ ≡ (�k⊥,κ/τ )√
k2
⊥ + (κ/τ )2

(64a)

≡ (sin θK cos ϕK, sin θK sin ϕK, cos θK ). (64b)

The azimuthal angle ϕK is independent of time due to the
residual rotational symmetry of the background in the xy
plane. Following the same arguments as in Sec. II, we arrive
at the kinetic equations for diagonal components,

∂τN±± = −4

3
γηK

2

[
N±± − T (e0 + p0)

τ

]

− 1

τ

(
2 + c2

s + cos2 θK

)
N±±, (65a)

∂τNT1T1 = −2γηK
2

[
NT1T1 − T (e0 + p0)

τ

]
− 2

τ
NT1T1 , (65b)

∂τNT2T2 = −2γηK
2

[
NT2T2 − T (e0 + p0)

τ

]

− 2

τ
(1 + sin2 θK )NT2T2 . (65c)

The first terms on the right-hand side describe relaxation of
NAA toward local equilibrium T (e0 + p0)/τ , and the second

terms drive NAA out of equilibrium through the interaction
with the background flow.

We derived these equations relying on the scale separation
given in Eq. (12). The off-diagonal components between
gapped modes (such as between the ± and T1 and T2 modes) are
ignored because they rapidly rotate, as discussed in Sec. II A.
Note that the transverse mode φT1 is so chosen that it does
not mix with the other modes. This is possible because of the
residual rotational symmetry in the xy plane in the Bjorken
expansion. Therefore, the kinetic equation for NT1T1 , Eq. (65b),
holds without the scale separation in Eq. (12) and is applicable
for all wave numbers k from to zero to 1/�mfp.

C. Nonlinear fluctuations in the energy momentum tensor

Now let us investigate the solution of the kinetic equations
close to the cutoff and isolate the ultraviolet divergent
contribution. Solving Eq. (65) in series of 1/(γηK

2τ ) we obtain
an asymptotic solution for large K/k∗

N±±(τ,k)

T (e0 + p0)/τ
= 1 + c2

s − cos2 θK

4
3γηK2τ

+ · · · , (66a)

NT1T1 (τ,k)

T (e0 + p0)/τ
= 1 + c2

s

γηK2τ
+ · · · , (66b)

NT2T2 (τ,k)

T (e0 + p0)/τ
= 1 + c2

s − sin2 θK

γηK2τ
+ · · · , (66c)

where we used ∂τ [T (e0 + p0)]  −(1 + 2c2
s )[T (e0 + p0)]/τ ,

which is adequate for the desired accuracy of the present
analysis. For a given K2γητ = (K/k∗)2 and θK at final time
τ , we can solve Eq. (65) numerically and find a steady-state
solution at late time τ 
 τ0. We compare this steady-state
solution to the asymptotic form Eq. (66) in Fig. 2.

Equation (66) is analogous to the ideal and first viscous
correction to the thermal distribution function, f0 + δf , which
are used in heavy ion phenomenology and in determining the
shear viscosity [21]. At large K/k∗ the distribution NAA attains
its equilibrium value, T (e0 + p0)/τ , up to viscous corrections
of order τR/τ , where τR is a typical relaxation time for a mode
of momentum K , τR ∼ 1/γηK

2.
The energy-momentum tensor averaged over fluctuations

is given by

〈T ττ 〉 = e0 + 〈 �G2〉
e0 + p0

, (67a)

〈T xx〉 = p0 + 2η0

3τ
+ 〈(Gx̂)2〉

e0 + p0
, (67b)

〈T yy〉 = p0 + 2η0

3τ
+ 〈(Gŷ)2〉

e0 + p0
, (67c)

〈τ 2T ηη〉 = p0 − 4η0

3τ
+ 〈(Gẑ)2〉

e0 + p0
. (67d)

Calculating Nab(τ,k) = [(eA)aNAB(eB)b] from the kinetic
theory, we determine 〈φa(τ,k)φb(τ, − k)〉 with φa = (csδe, �G)
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FIG. 2. Steady-state solutions of Eq. (65) for the two-point
energy-momentum correlation functions during a Bjorken expansion
at late times, τ 
 τ0. The correlations are plotted as a function of
K[γητ ]1/2 for final time angle cos θK = 0.1. For comparison, leading-
order viscous solutions in 1/(γηK

2τ ) are also shown, Eq. (66). The
differences of the steady-state solutions from their asymptotic forms
induce finite corrections to energy-momentum tensor, Eq. (74).

in Fourier space, yielding

〈φa(x)φb(x)〉 =
∫

d2k⊥dκ

(2π )3
Nab(τ,k),

= τ

∫
K2dKd cos θKdϕK

(2π )3
(eA)aNAB(τ,k)(eB)b.

(68)

Note that the momentum integral is done in final time variables,
�K(τ ). As shown below, the integration in Fourier space is

divergent in the ultraviolet. Therefore, we regulate the integral
by introducing a cutoff at | �K| ∼ �. In turn, the background
quantities such as e0 and η0 must be renormalized and depend
on � so that the total result is independent of �. The choice
of � is arbitrary as long as k∗ � � � 1/�mfp so that the
nonlinear contribution with | �K| ∼ � is independent of the
background flow.

The integration in Eq. (68) includes the soft fluctuations for
which the kinetic equation may not be applicable. However,
this contribution is suppressed by phase space and the kinetic
result can be extrapolated into this regime with negligible
errors.

Combining Eqs. (66), (67), and (68), the energy momentum
tensor is obtained as

〈T ττ 〉 = e0 + 3T

∫ �

0

K2dK

2π2
+ �T ττ , (69a)

〈T xx〉 = p0 + 2η0

3τ
+ T

∫ �

0

K2dK

2π2

+ 17

90

T (e0 + p0)

η0τ

∫ �

0

dK

2π2
+ �T xx, (69b)

〈T yy〉 = p0 + 2η0

3τ
+ T

∫ �

0

K2dK

2π2

+ 17

90

T (e0 + p0)

η0τ

∫ �

0

dK

2π2
+ �T yy, (69c)

〈τ 2T ηη〉 = p0 − 4η0

3τ
+ T

∫ �

0

K2dK

2π2

− 17

45

T (e0 + p0)

η0τ

∫ �

0

dK

2π2
+ τ 2�T ηη, (69d)

where the finite contributions �T ττ , �T xx , �T yy , and
τ 2�T ηη are discussed in the next section. By comparing
terms with the same explicit τ dependence, the ultraviolet
divergences are absorbed into the renormalized hydrodynamic
variables

e = e0(�) + T �3

2π2
, (70a)

p = p0(�) + T �3

6π2
, (70b)

η = η0(�) + 17�

120π2

T [e0(�) + p0(�)]

η0(�)
. (70c)

Note that we do not assign a cutoff dependence to the tempera-
ture. The coefficients of the cubic and linear renormalizations
of the pressure and shear viscosity are independent of the
background expansion and match the static fluid results of
Sec. II B. Here e, p, and η are physical quantities at a
given temperature T in an infinite volume. Using the physical
quantities, the energy-momentum tensor is given as

〈T ττ (τ )〉 = e + �T ττ , (71a)

〈T xx(τ )〉 = p + 2η

3τ
+ �T xx, (71b)

〈T yy(τ )〉 = p + 2η

3τ
+ �T yy, (71c)

〈τ 2T ηη(τ )〉 = p − 4η

3τ
+ τ 2�T ηη. (71d)

If the two-point functions of the fluctuations were completely
determined by the first two terms in Eq. (66), their contribu-
tions would be completely absorbed by the renormalization
of the background flow parameters such as p0(�) and η0(�).
However, the kinetic equations yield residual contributions,
since the full solution deviates from its asymptotic form for
K ∼ k∗ as seen from Fig. 2. The purpose of hydrodynamics
with noise is to capture this contribution.

Physically, the parameters e0(�), p0(�), and η0(�) in
fluctuating hydrodynamics reflect the equilibrium properties
of modes above a cutoff �, which have been already integrated
out. Equivalently, these parameters are determined by modes
contained in a cell of size a ∼ 2π/�. For example, p0(�) is
the partial pressure from equilibrated modes above the cutoff
(inside a cell), while the partial pressure from the modes below
the cutoff (larger than a cell size) is determined dynamically
with fluctuating hydrodynamics. The second terms on the
right-hand sides of Eq. (70) are the contributions to each
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quantity from the modes below the cutoff, when all of these
long-wavelength modes are in perfect equilibrium in infinite
volume.

D. Out-of-equilibrium noise contributions to energy
momentum tensor

In this section we determine the residual contributions
to the energy momentum tensor, �T μν , in Eq. (71) after
the hydrodynamic parameters have been renormalized. We
evaluate the precise numerical factors of the long-time tail
terms for a Bjorken expansion (which is the main result
of this paper) and identify additional contributions from the
noise at early times. The mathematical procedure is somewhat
involved, so here we outline the calculation and present results,
delegating the technical details to the Appendix.

To find the full out-of-equilibrium correlators, we need to
solve Eq. (65), which can be written in the following general
form,

∂τNAA(τ,k) = f (τ,k)NAA(τ,k) + g(τ,k), (72)

where f (τ,k) has contributions from both the dissipative and
external forcing terms, and g(τ,k) is the inhomogeneous term
coming from the equilibrium correlation functions. A formal
solution of Eq. (72) is given by

NAA(τ,k) = NAA(τ0,k)e
∫ τ

τ0
dτ ′f (τ ′,k)

+
∫ τ

τ0

dτ ′′g(τ ′′,k)e
∫ τ ′′
τ0

dτ ′f (τ ′,k)
. (73)

The first term describes the evolution of the initial correlation
density matrix NAA(τ0,k) to final time τ . The second term in
Eq. (73) is the contribution from thermal fluctuations. As we
will see, only the NT1T1 contribution is sensitive to the initial
conditions and the thermal fluctuations at early times. For the
T1T1 correlator we will take the initial conditions described by
Eq. (52) in Sec. III A, τ 2

0 NT1,T1 (τ0,k) = χ
gg
τ0 2πδ(κ).

Substituting the formal solution for NAA in Eqs. (67)
and (68), we can determine the stress tensor at time τ 
 τ0.
The integral

∫
d3k in Eq. (68) diverges, but after subtracting

�3 and � divergences discussed in the previous section, we
finally obtain the finite correction to energy momentum tensor
�T μν . Writing Eq. (71) in full gives

〈〈τ 2T ηη(τ )〉〉
e + p

= p

e + p
− 4γη

3τ
+ 1.08318

s (4πγητ )3/2
, (74a)

〈〈T xx(τ )〉〉
e + p

= p

e + p
+ 2γη

3τ
+
[

χ
gg
τ0 +δχ

gg
τ0

τ 2(e + p)2

]
1

(12πγητ )

− 0.273836

s (4πγητ )3/2
, (74b)

〈〈T yy〉〉 = 〈〈T xx〉〉, (74c)

〈〈T ττ 〉〉 = 〈〈T xx〉〉 + 〈〈T yy〉〉 + 〈〈τ 2T ηη〉〉. (74d)

The coefficients 1.08318 and −0.273836 of the long-time tails,
1/(γητ )3/2, are obtained by numerical integration as explained
in the Appendix. The term χ

gg
τ0 + δχ

gg
τ0 records the initial

variance in transverse momentum in a given rapidity slice

[see Eqs. (46) and (48)] together with the thermal contribution

χgg
τ0

+δχgg
τ0

=
〈

1

A
(

dpx

dη

)2
〉
τ0

+
(

T (e + p)τ0√
12πγη/τ0

)
τ0

, (75)

where the brackets (· · · )τ0
indicate that all contained quantities

are to be evaluated at the initial time, τ0. We will provide an
intuitive discussion of the result in the next section.

E. Qualitative discussion of Eq. (74)

1. Long-time tails: 1/(γητ )3/2

Examining Eq. (74), we see two groups of terms. The
first group is proportional to 1/(γητ )3/2 and is independent of
initial conditions. By contrast, the second group is proportional
to 1/(γητ ) and depends on the initial transverse momentum
fluctuations through the parameter χ

gg
τ0 + δχ

gg
τ0 (see Sec. III A).

We will first describe the terms proportional to the fractional
power 1/(γητ )3/2, known as the long-time tails.

Squared fluctuations in equilibrium are of order
〈δe(�x)δe(�y)〉eq/e

2 ∼ 〈vi(�x)vj (�y)〉eq ∼ s−1δ(�x − �y), where s is
the entropy density [see Eq. (4)]. Thus a fluctuation with wave
number k is suppressed by

√
k3/s. The suppression factor k3/s

is roughly the inverse of the degrees of freedom inside a box
of volume �V ∼ (1/k)3, which must be a huge number for
local thermodynamics to apply. This is why the linear analysis
of the hydrodynamic fluctuations is justified.

The energy momentum tensor in viscous hydrodynamics
is expanded in powers of gradients, leading to corrections
in powers of ε ≡ η/(e + p)τ � 1. In addition, as discussed
in Sec. I B, the fluctuations with wave number of order | �K| ∼
k∗ ∼ 1/(γητ )1/2 dominate the nonlinear noise correction to the
stress tensor, which is suppressed by s�V ≡ s/k3

∗ 
 1. This
correction to the longitudinal pressure reflects the equipartition
of energy, with 1

2T of energy per mode, and the number of
nonequilibrium modes per volume ∼k3

∗ . To summarize, the
reasoning in this paragraph leads to the following parametric
estimate for the longitudinal stress:

〈τ 2T ηη〉
e + p

∼
[

1

4
+ η

(e + p)τ
+ 1

s(γητ )3/2
+ · · ·

]
, (76)

which is reflected by Eq. (74).

2. Transverse momentum diffusion in rapidity: 1/γητ

Additional corrections to the stress in Eq. (74) decrease
as 1/γητ , in contrast to the long-time tails. As described
in Sec. III A, long-range (in rapidity) initial transverse mo-
mentum fluctuations correct the mean transverse pressures,
T xx and T yy , by a term proportional to χ

gg
τ0 /γητ [see

Eq. (74b)]. Hydrodynamic noise in the initial state adjusts
this correction by adding to the long-range fluctuations of
transverse momentum [see Eqs. (74b) and (75)]. The goal
of this section is to explain this process qualitatively and to
quantitatively explain the adjustment, χ

gg
τ0 → χ

gg
τ0 + δχ

gg
τ0 .

Formally, the NT1T1 correlation function is sensitive to the
noise at the initial time τ0, which arises from a restricted region
of �K-space integration, k⊥ ∼ k∗ and κ/τ ∼ k∗(τ0)(τ0/τ ) ∼
k∗(τ0/τ )1/3 � k∗. In this region the longitudinal momentum
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κ/τ0 reflects the dissipative scale k∗(τ0) at the initial time τ0,
while the transverse momenta reflect the dissipative scale at
final time τ .

The dynamics in this phase space region is the following.
During the initial moments, thermal fluctuations lead to a local
fluctuation of transverse momentum in a given rapidity slice
for each cell in the transverse plane:

〈(
τ0�gx

⊥
)2〉 ∼ [

T (e + p) τ0

�η (�x⊥)2

]
τ0

. (77)

Here (as before) the brackets (· · · )τ0 indicate that all contained
quantities should be evaluated at τ0. During an initial time
of order τ0, the momentum per rapidity diffuses to a finite
longitudinal width [5] (see below)

�η → ση(τ0) ≡ √
6γη(τ0)/τ0. (78)

The process is diffusive because the transverse momentum
per rapidity is conserved. The rapidity width is finite because
the longitudinal expansion shuts off the diffusion process.
ση(τ0) is broader than the rapidity width of subsequent interest,
which is of order ση(τ ). Thus, after an initial transient,
the transverse momentum per rapidity may be considered
approximately constant in time and rapidity, though localized
in this transverse plane

〈(
τ�gx

⊥
)2〉 ∼

[
T (e + p) τ0√

γη/τ0

]
τ0

1

(�x⊥)2
. (79)

At much later times these transverse momentum fluctuations
diffuse transversely (as described in Sec. III A), leading to a
correction of order

〈T xx〉
e + p

∼ 1

τ 2(e + p)2

[
T (e + p)τ0√

γη/τ0

]
τ0

1

γητ
, (80)

which qualitatively reproduces the correction in Eq. (74b).
Now we will briefly sketch this reasoning with equations.

At the early time moments τ ∼ τ0, the wave vector is
predominantly longitudinal �K  (�0⊥,κ/τ ) and the transverse
momentum correlator

〈gi
⊥(τ,k)gj

⊥(τ, − k′)〉 ≡ Nij (k,τ )(2π )3δ3(k − k′) (81)

can be reconstructed from NT1T1 and NT2T2

Nij (τ,k) =
∑

A∈T1,T2

ei
Ae

j
ANAA(τ,k), (82)

since �T1 and �T2 form a basis for the transverse plane. In
this limit, the equations of motion for NT1T1 and NT2T2 [see
Eqs. (65b) and (65c)] are the same, and Nij satisfies a
one-dimensional diffusion equation with a source at early
times[

∂τ + 2γη

(
κ

τ

)2
]

(τ 2Nij ) = 2γη

(
κ

τ

)2

T (e + p)τδij . (83)

The left-hand side of Eq. (83) represents the diffusion of
transverse momentum in rapidity, while the right-hand side
represents the thermal transverse momentum fluctuations at
the earliest moments, which act as a source. The source for

the fluctuations, 2T η (κ/τ )2, is a rapidly decreasing function
of time and is dominant for times of order τ0.

The Green’s function propagating data from τ ′ to τ for the
left-hand side of Eq. (83) is

Gij (τη�x⊥|τ ′η′ �x ′
⊥) = e−(η−η′)2/(12γη(τ ′)/τ ′)√

12πγη(τ ′)/τ ′ δij δ2(�x⊥ − �x ′
⊥),

(84)

for τ 
 τ ′. Thus, a fluctuation localized in rapidity at time τ0

will diffuse to a finite rapidity width of ση(τ0) = √
6γη(τ0)/τ0

at late times8 [5,35]. This is a small rapidity width in absolute
units (since γη(τ0)/τ0 � 1 when hydrodynamics is a good
approximation), but much broader than the rapidity width of
interest at the final time, γη(τ0)/τ0 
 γη(τ )/τ .

Returning to Eq. (83), we solve the equation and determine
the transverse momentum correlation function (in the same
rapidity slice) at an intermediate time τ ′, which is large
compared to τ0 but much much less than the final time τ ,
τ0 � τ ′ � τ

τ ′2〈gi
⊥(τ ′,η,�x⊥)gj

⊥(τ ′,η,�y⊥)
〉

=
∫

dκd2k⊥
(2π )3

ei�k⊥·(�x⊥−�y⊥) τ ′2Nij (τ ′,κ). (86)

Implementing these steps, we find

τ ′2〈gi
⊥(τ ′,η,�x⊥)gj

⊥(τ ′,η,�y⊥)
〉

=
[

T (e + p)τ0√
12πγη/τ0

]
τ0

δij δ2(�x⊥ − �y⊥). (87)

This has the same form as the initial conditions described in
Sec. III A, and fluctuations at the earliest moments simply
increase the variance of long-range transverse momentum
fluctuations by a constant amount,

δχgg
τ0

=
[

T (e + p)τ0√
12πγη/τ0

]
τ0

, (88)

reproducing Eq. (75). In a sense, this constant shift simply
finalizes the thermalization process described at the start of
Sec. III A. The correction δχ

gg
τ0 scales as τ

−1/3
0 and is therefore

small compared to the first term in Eq. (75) if τ0 is large
compared to a typical thermalization time.

IV. RESULTS AND DISCUSSION

In this paper we determined a set of kinetic equations which
describe the evolution of hydrodynamic fluctuations during

8In Refs. [5,35] the authors consider an initial distribution which is
Gaussian in rapidity of width σ0. During the expansion, the width is
broadened by the diffusion process

σ 2
0 → σ 2

0 + 6
γη(τ0)

τ0
. (85)

These authors considered constant η/(e + p) and found a factor of 4
rather than 6 in Eq. (85).
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a Bjorken expansion. We used these equations to find the
first fractional power correction to the longitudinal pressure,
∝ 1/(τT )3/2, at late times. The evolution equations can be
extended to much more general flows and ultimately coupled
to existing hydrodynamic codes.

The kinetic equations for hydrodynamic fluctuations are
a WKB (or rotating wave) type approximation of the full
stochastic hydrodynamic evolution equations. This approxi-
mation is justified because the relevant hydrodynamic modes
have wave numbers of order

k∗ ∼
√

e + p

ητ
, (89)

which is large compared to the inverse expansion rate, 1/τ .
For example, the kinetic equation for the sound mode with
wave number �K = (�k⊥,κ/τ ) interacting with the Bjorken
background takes the form of a relaxation-type equation

∂τN++(τ,k) =−4

3
γηK

2

[
N++ − T (e0 + p0)

τ

]

− 1

τ

(
2 + c2

s + cos θK

)
N++. (90)

N++(τ,k) are short wavelength (symmetrized) two-point func-
tions of conserved stress tensor components, φ+ ≡ (csδe +
K̂ · �G)/

√
2 in an evolving Bjorken hydrodynamic background

[see Sec. III and Eq. (65) for the remaining modes]. At
high wave numbers K 
 k∗, the distribution function N++
reaches its equilibrium form T (e0 + p0)/τ , up to first viscous
corrections which may be found by solving Eq. (90) order
by order at large K/k∗ [see Eq. (66a)]. This asymptotic
form is responsible for the renormalization of the pressure
and shear viscosity. For wave numbers of order k∗ the
hydrodynamic fluctuations are not in equilibrium at all, but
reach a nonequilibrium steady state at late times. A graph of
this nonequilibrium steady state is given in Fig. 2.

The deviation of hydrodynamic fluctuations from equilib-
rium has consequences for the evolution of the system. Indeed,
the longitudinal pressure τ 2T ηη receives a correction from the
unequilibrated modes

〈τ 2T ηη〉
e + p

=
[

p

e + p
− 4

3

γη

τ
+ 1.08318

s (4πγητ )3/2

+ (λ1 − ητπ )

e + p

8

9τ 2

]
, (91)

where we have repeated Eq. (74a) for convenience. The
correction to the pressure ∼T/(γητ )3/2 is of order ∼T k3

∗ ,
reflecting the number of modes of order k∗ and the en-
ergy per mode, 1

2T . In contrast to all previous analyses
of long-time tails [23,28], the hydrodynamic fluctuations
in the expanding case are not close to equilibrium, and a
one-loop expansion around equilibrium is not an appropriate
approximation scheme. Our kinetic description effectively
resums all diagrams contributing at the same order in the
presence of expansion [34].

Formally, the noise correction is lower order than the
correction due to second-order hydrodynamics, which is
proportional to a particular combination of second order

parameters, λ1 − ητπ . To quantify the importance of thermal
fluctuations in practice, we take representative numbers for the
entropy from the lattice [36,37], estimates for the second-order
hydrodynamic coefficients based on weakly and strongly
coupled plasmas [4,31,38], and an estimate for τT at τ ∼
3.5 fm based on hydrodynamic simulations9

T 3

s
 1

13.5
, (92a)

(λ1 − ητπ )

e + p
 −0.8

(
η

e + p

)2

, (92b)

τT  4.5. (92c)

Then, for η/s  1/4π , Eq. (91) evaluates to

〈τ 2T ηη〉
e + p

= 1

4

[
1. − 0.092

(
4.5

τT

)
+ 0.034

(
4.5

τT

)3/2

− 0.00085

(
4.5

τT

)2]
, (93)

while for η/s = 2/4π , we find

〈τ 2T ηη〉
e + p

= 1

4

[
1. − 0.185

(
4.5

τT

)
+ 0.013

(
4.5

τT

)3/2

− 0.0034

(
4.5

τT

)2]
. (94)

For the smaller shear viscosity, Eq. (93), the nonlinear noise
contribution completely dominates over the second-order
hydro contribution. For the larger shear viscosity, Eq. (94), the
noise remains three times larger than second-order hydro, but
this contribution is only ∼10% of the first-order viscous term.
Finally, for η/s ∼ 3/4π the noise and second-order hydro
contributions become comparable.

The evolution of the average energy density of the system
obeys

d〈〈T ττ 〉〉
dτ

= −〈〈T ττ 〉〉 + 〈〈τ 2T ηη〉〉
τ

, (95)

where the double brackets notate an average over (long range
in rapidity) initial conditions and thermal noise.10 To close the
system of equations, the relationship between average energy
density 〈〈T ττ 〉〉 and the average rest frame energy density
e(τ ) must be specified, and this relation is given in Eq. (74).
T ττ , T xx , and T yy are sensitive to hydrodynamic noise at the
earliest moments in addition to the long-time tails. In these
cases thermal noise in the initial state adds to the long-range
rapidity correlation functions of transverse momentum, which

9We take an estimate for the (approximately constant) average
entropy in the transverse plane from a recent LHC simulation for PbPb
collisions at

√
s = 2.76 TeV/nucleon, 〈τos(τo)〉  4.0 GeV2 [39]. We

take a time of τ ∼ 3.5 fm (which is the time at which the elliptic flow
develops [21]), where T  250 MeV.

10The longitudinal pressure in Eq. (91) is independent of fluctuations
in the initial conditions at late times. Thus, only the average over the
noise is relevant in this case, 〈〈τ 2T ηη〉〉 = 〈τ 2T ηη〉.

014909-12



KINETIC REGIME OF HYDRODYNAMIC FLUCTUATIONS . . . PHYSICAL REVIEW C 95, 014909 (2017)

are already present without noise. This result is encapsulated
by Eq. (75) and is discussed in Secs. III A and III E 2.

Although the analysis of hydrodynamic fluctuations in this
paper was limited to conformal neutral fluids and a Bjorken
expansion, the techniques developed here can be applied to
much more general flows. A next step is to generalize the
kinetic equations in Eq. (65) to an arbitrary expansion and
to couple such generalized equations to existing second-order
hydrodynamic codes. In addition, it will be phenomenologi-
cally important to extend this work to nonconformal systems
with net baryon number. Near the QCD critical point the noise
will continue to grow without bound, leading to a critical
renormalization of the bulk viscosity. In an expanding system
these fluctuations will not be fully equilibrated. We believe the
formalism set up in this paper provides the first steps towards
quantitatively analyzing this rich dynamical regime.
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APPENDIX: COMPUTATION OF FINITE RESIDUAL
CONTRIBUTIONS

In this Appendix we provide the details of the computation
sketched in Sec. III D for the residual out-of-equilibrium noise
contribution to the energy momentum tensor for a Bjorken
background. Let us scale the correlation density matrix by the
equilibrium value:

RAA(τ,k) ≡ NAA(τ,k)

T (e0 + p0)/τ
. (A1)

The kinetic equations of motion Eq. (65) written for relative
density matrix RAA are

∂τR±± =−4

3
γηK

2(R±± − 1) + c2
s − cos2 θK

τ
R±±, (A2)

∂τRT1T1 = −2γηK
2
(
RT1T1 − 1

)+ 2c2
s

τ
RT1T1 , (A3)

∂τRT2T2 = −2γηK
2
(
RT2T2 − 1

)+ 2
(
c2
s − sin2 θK

)
τ

RT2T2 .

(A4)

Using dimensionless variables t ≡ τ ′/τ and �r ≡ �K/k∗ with
�K = (�k⊥,κ/τ ) and k∗ = 1/(γητ )1/2 defined at τ , the Green’s

functions for the homogeneous parts are

G±±(τ ′,τ ; k) = 1

t c
2
s

1√
A(t,θK )

exp

[
−4

3
r2B(t,θK )

]
, (A5)

GT1T1 (τ ′,τ ; k) = 1

t2c2
s

exp[−2r2B(t,θK )], (A6)

GT2T2 (τ ′,τ ; k) = t2−2c2
s A(t,θK ) exp[−2r2B(t,θK )], (A7)

where

A(t,θK ) ≡ sin2 θK + cos2 θK

t2
, (A8)

B(t,θK ) ≡ sin2 θK

1 + c2
s

(
1 − t1+c2

s
)+ cos2 θK

1 − c2
s

(
1

t1−c2
s

− 1

)
.

(A9)

With these Green’s functions, RAA due to thermal fluctuations
(in contrast to initial fluctuations discussed in Sec. III A) is
given by

R++(τ,k) =
∫ τ

τ0

dτ ′ 4
3
γη(τ ′)

(
k2
⊥ + κ2

τ ′2

)
G++(τ ′,τ ; k),

(A10)

and similarly for the other modes (change 4/3 to 2 for the
transverse modes). Since the asymptotic solution of RAA for
large K is known, we define the remainder of RAA as

R
(r)
±±(τ,k) ≡ R±±(τ,k) −

(
1 + c2

s − cos2 θK

4
3γηK2τ

)
, (A11)

R
(r)
T1T1

(τ,k) ≡ RT1T1 (τ,k) −
(

1 + c2
s

γηK2τ

)
, (A12)

R
(r)
T2T2

(τ,k) ≡ RT2T2 (τ,k) −
(

1 + c2
s − sin2 θK

γηK2τ

)
. (A13)

Using R
(r)
AA the residual contribution to the energy-

momentum tensor is calculated from Eq. (67a) and Eq. (68)
as

�T xx = T

∫
d3K

(2π )3

⎡
⎢⎢⎣

R
(r)
+++R

(r)
−−

2 sin2 θK cos2 ϕK

+R
(r)
T1T1

sin2 ϕK

+R
(r)
T2T2

cos2 θK cos2 ϕK

⎤
⎥⎥⎦, (A14)

�T yy = T

∫
d3K

(2π )3

⎡
⎢⎢⎣

R
(r)
+++R

(r)
−−

2 sin2 θK sin2 ϕK

+R
(r)
T1T1

cos2 ϕK

+R
(r)
T2T2

cos2 θK sin2 ϕK

⎤
⎥⎥⎦, (A15)

τ 2�T ηη = T

∫
d3K

(2π )3

[
R

(r)
+++R

(r)
−−

2 cos2 θK

+R
(r)
T2T2

sin2 θK

]
, (A16)

�T ττ = �T xx + �T yy + τ 2�T ηη. (A17)

Substituting the subtracted solution R
(r)
AA into (A14)–(A17)

and performing r integration with a Gaussian cutoff
exp[−r2k2

∗/�
2], we get

[τ 2�T ηη(τ )]

T (τ )k3∗

= 3
√

π

8

∫ 1

−1

d(cos θK )

4π2

∫ 1

τ0/τ→0
dt

{
4
3 cos2 θK

√
A(t,θK )[

4
3B(t,θK ) + k2∗/�2

]5/2

+ 2t2−c2
s0 sin2 θKA(t,θK )2[

2B(t,θK ) + k2∗/�2
]5/2

}
− [O(�3) + O(�)], (A18)
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[�T xx(τ ) + �T yy(τ )]

T (τ )k3∗

= 3
√

π

8

∫ 1

−1

d(cos θK )

4π2

∫ 1

τ0/τ

dt

{
4
3 sin2 θK

√
A(t,θK )[

4
3B(t,θK ) + k2∗/�2

]5/2

+ 2t2−c2
s cos2 θKA(t,θK )2 + 2t−c2

s A(t,θK )

[2B(t,θK ) + k2∗/�2]5/2

}

− [O(�3) + O(�)]. (A19)

The ultraviolet divergent terms O(�3,�) are from the asymp-
totic form of RAA at large K in (A11)–(A13). Near t = 1,
B(t,θK )  1 − t and the cutoff � regulates the divergence in
time integral. To isolate the divergences, we perform the partial
integration twice and pick up cubic and linear divergences
from the surface terms at t = 1. The resultant divergences are
precisely canceled by O(�3,�) terms.

After subtracting the ultraviolet divergences at t = 1 and
doing cos θK integral analytically, the remaining time inte-
gration has to be done numerically. R

(r)
T1T1

mode contribution
to T xx and T yy is divergent in the limit τ 
 τ0. Since the

TABLE I. Numerical values of finite pieces of regularized R
(r)
AA

integrals for energy momentum tensor corrections. For the special
case of

∫
d3rR

(r)
T1T1

the remaining one-dimensional time integral can
be done analytically.

R
(r)
AA (4π )−3/2

∫
d3rR

(r)
AA (4π )−3/2

∫
d3r cos2 θKR

(r)
AA

R
(r)
±± −0.439511 0.021281

R
(r)
T1T1

− π

3
√

6
≈ −0.427517 −0.467513

R
(r)
T2T2

1.402539 0.340636

analytic behavior of the integrand around t ∼ 0 is known,
we can explicitly subtract the part sensitive to early times
from the integrand to extract remaining finite pieces for R

(r)
T1T1

mode. Numerical integration results necessary to find finite
stress tensor corrections in Eqs. (A14)–(A16) are summarized
in Table I. Summing contributions from the different modes
to the longitudinal and transverse components of energy
momentum tensor gives the numerical coefficients 1.08318
and −0.273836 as seen in Eq. (74).
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