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Magnetic catalysis of a finite-size pion condensate

Alejandro Ayala,1,2 Pedro Mercado,1 and C. Villavicencio3

1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543,
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We study the Bose-Einstein condensation of a finite-size pion gas subject to the influence of a magnetic field.
We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show
that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than
the one obtained by considering only finite-size effects. We use experimentally reported values of pion source
sizes and multiplicities at Large Hadron Collider (LHC) energies to show that if the magnetic flux, produced
initially in peripheral heavy-ion collisions, is at least partially preserved up to the hadronic phase, the combined
finite-size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature.
We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) of a pion system has
been extensively explored, mainly as a possible state of matter
present in compact stars [1]. The possibility to produce BEC
in a relativistic pion system at high temperature has also been
a long-studied and sought-after phenomenon. The copious
production of these particles in relativistic heavy-ion reactions
is one of the primary motivations both to study the problem
[2–4] and to look for signals [5]. Among these, one of the
most promising seems to be the search for non-fully chaotic
behavior in interferometry studies [6].

Since condensation is a low momentum phenomenon, in
the past, some studies have searched for signatures in the low
pt region of the pion spectrum [7]. However, the spectrum at
low pt also contains the contribution of long-lived hadronic
resonances, which tends to obscure any possible signal.

Another interesting avenue to study BEC considers the
finite-size effects of the pion system produced in heavy-ion
reactions. It has been shown that the high pt part of the
spectrum widens for a finite-size system [8]. The effect is
due to the Heisenberg relations, whereby a finite uncertainty
in the transverse location of the particle corresponds a larger
spread of its momentum. The treatment used the discrete
eigenstates for relativistic scalars subject to hard sphere
boundary conditions. However, since the spectrum at high pt

is also enhanced by flow effects, possible signals due to finite
sizes tend to be obscured as well.

An alternative look into the study of finite-size effects is
to search for the consequences on the critical temperature Tc

for the onset of condensation. If Tc turns out to be in between
the kinetic freeze-out Tth and the chemical freeze-out Tchem

temperatures, the possibility increases that the pion source
produces a partially coherent component. It has been shown
[4,8] that for systems of the size thought to be formed in
heavy-ion collisions, finite-volume effects produce a moderate
increase of the critical temperature for pion condensation.
When in this approach the volume is taken to infinity (the

thermodynamic limit), one recovers the usual expressions de-
scribing the onset of condensation and the critical temperature
for a relativistic pion gas. The approach lends itself to the study
of event-by-event fluctuations of conserved charges, where it
becomes crucial to carefully distinguish the system’s from the
heat bath’s volume. Indeed, in order to observe grand canonical
fluctuations of the conserved charges, the ratio of the total
conserved charge carried by the system to that by the bath
should be a small number [9].

In recent years it has also been realized that in peripheral
heavy-ion collisions a large magnetic field is produced affect-
ing the interaction region and thus the pion system created in
the aftermath of the reaction. Several calculations show that, at
the very early stages of the collision, the field strength can be as
high as several times the pion mass squared. However, the field
strength is a rapidly decreasing function of time. Depending on
the centrality and collision energy, by the time hadronization
happens, the field strength decreases to a fraction of the pion
mass squared [10].

It is then natural to ask what, if any, is the effect of these
fields on the condensation process. As is well known, in a
weakly interacting system, the presence of a magnetic field
catalyses condensation. This means that the process is aided
by the magnetic field, which translates into a larger critical
temperature for condensation. The question we set out to
answer is whether this can also be the case when dealing
with a relativistic pion gas with a charged component in the
presence of a magnetic field [11,12]. As we show in this work,
the answer is positive. We find that when the magnetic flux,
passing through the volume formed by the pion system, is
larger than the elemental flux, pion condensation is catalyzed.

The work is organized as follows: In Sec. II we set up the
formalism to obtain the expressions for the critical chemical
potential in the presence of an external magnetic flux in a
finite-size pion gas. We work in the weak field limit and show
that in this case the magnetic field affects mainly the ground
state. In Sec. III we compute the critical temperature as a
function of the particle density. We show that the magnetic
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field contributes to increase the critical temperature and that
the effect goes on top of that produced by a finite volume.
We use experimental pion multiplicities and fireball sizes
to test whether the enhanced critical temperature results in
temperatures close to kinetic freeze-out conditions in heavy-
ion collisions. We summarize and discuss the implications of
the results in Sec. IV and leave for the appendix the calculation
of the excited states’ contribution to the particle density in the
presence of the external magnetic field, showing that in the
weak field limit such a contribution is O(eB)2, where eB is
the intensity of the magnetic field, and is also suppressed by
extra inverse powers of the volume, and thus that it can be
ignored when the volume is finite but considered to be large.

II. CONDENSATION CONDITIONS IN A FINITE VOLUME

Consider a noninteracting gas of pions at finite temperature
T = 1/β. In the absence of magnetic field effects, the
occupation number of a state labeled by the pion’s momentum
�p is given by

〈np,j 〉 = 1

exp[β(
√

p2 + m2 − μj )] − 1
, (1)

where m is the pion mass, p = | �p| is the magnitude of the pion
momentum, and μj , with j = +,−, 0, represents the chemical
potential corresponding to the positive, negative, and neutral
pions, respectively. The chemical potentials are given by

μ+ = μ + μQ,

μ− = μ − μQ, (2)

μ0 = μ,

where μ is the chemical potential associated with the average
pion number and μQ is the chemical potential associated with
the electric charge. Hereafter we take the pion system to be
overall neutral, which means that the total number of positive
and negative pions is the same, therefore μQ = 0.

Let us now consider the same system of pions, this time
subject to the influence of a uniform magnetic field directed
along the ẑ direction, �B = Bẑ. The energy levels occupied
by the charged pions become discrete Landau levels and the
occupation number becomes

〈n±
pz

〉 = 1

exp
[
β
(√

p2
z + m2 + (2l + 1)eB − μ

)] − 1
,

(3)

where e is the absolute value of the pion’s charge, pz is the pion
momentum along the ẑ axis, and l � 0 labels the Landau level.
The neutral pions are still distributed according to Eq. (1).

The particle density can be written as

ρ(T ,μ; B) = ρ0(T ,μ; B) + ρ+(T ,μ; B) + ρ−(T ,μ; B)

= 1

V

∑
�p

1

eβ(
√

p2+m2−μ) − 1

+ 2
eB

2πL

∑
pz,l

1

eβ(
√

p2
z+m2+(2l+1)eB−μ) − 1

,

(4)

where we have used the fact that the expression for the number
of states for a given Landau level is the same for positive and
negative pions. Also, we have written that the length scale L
and the volume V are related by V = L3. The factor eB/2π
accounts for the (uniform) density of states for a given Landau
level.

In order to study the condensation conditions, we need
to separate the ground, or condensate state, ρ0(T ,μ; B)
contribution from the excited states ρ∗(T ,μ; B) contribution
to the particle density, namely

ρ(T ,μ; B) = ρ0(T ,μ; B) + ρ∗(T ,μ; B), (5)

where

ρ0(T ,μ; B) = 1

V

1

eβ(m−μ) − 1
+ 2

eB

2πL

1

eβ(
√

m2+eB−μ) − 1
(6)

and

ρ∗(T ,μ; B) =
∫ ∞

0

d3p

(2π )3

1

eβ(
√

p2+m2−μ) − 1

+ 2eB

(2π )2

∞∑
l=1

∫ ∞

0

dpz

eβ(
√

p2
z+m2+(2l+1)eB−μ) − 1

.

(7)

In writing Eq. (7) we have taken the continuum limit for the
sum over momenta and extended the lower limit of integration
to zero, since, as shown in Ref. [4], the particle number density
of the first of the momentum excited states is smaller than the
ground state contribution for large, though finite, V . The first
line on the right-hand side of Eq. (6) corresponds to the ground
state contribution of the neutral pions, whereas the second line
comes from the ground state contribution of the charged pions.

Let us first concentrate on the ground state contributions.
Introducing the expression for the elemental flux

�0 ≡ hc

e
= 2π

e
, (8)

and expressing the magnetic flux going through the pion
system as

� = V 2/3B, (9)

one gets

ρ0(T ,μ; B) = 1

V

1

eβ(m−μ) − 1

+ 2
�

�0

1

V

1

eβ(
√

m2+eB−μ) − 1
. (10)

Let us now work in the weak field limit, that is, in the case
where eB < mT . We thus can write

√
m2 + eB

T
≈ m

T
+ eB

2mT
, (11)

and therefore

ρ0(T ,μ; B) = 1

V

1

eδ − 1
+ 2

�

�0

1

V

1

eδ+ eB
2mT − 1

, (12)
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where we defined δ ≡ β(m − μ). Let us now work in the
situation where δ > eB/2mT . On the other hand, when
the system is close to condensation, we also have δ 
 1.
Expanding to leading order in δ and in the weak field limit,
Eq. (12) becomes

ρ0(T ,μ; B) � 1

V δ
+ 2

�

�0

1

V δ
, (13)

where we have discarded terms of order eB(�/�0)/V ∼
(�/�0)2/V 5/3, which are suppressed by extra inverse powers
of the system’s volume. In writing Eq. (13) we are setting the
problem to work in the so called “� scheme,”that is, where
the flux, and not the field intensity alone, is what matters
throughout the evolution of the system.

Let us now look at the contribution from the excited states,
Eq. (7). As we show in the Appendix, when working in the
weak field limit, we can use the Euler-Maclaurin expansion to
perform the sum over the Landau levels, with the result

2
2eB

(2π )2

∞∑
l=1

∫ ∞

0

dpz

eβ
(√

p2
z+m2+(2l+1)eB−μ

)
− 1

= 2
∫

d3p

(2π )3

1

eβ(
√

p2+m2−μ) − 1
− (eB)2

48π2

√
2

mT δ3
. (14)

When expressing the second term in Eq. (14) as proportional
to (�/�0)2, its contribution is also suppressed by extra inverse
powers of the system’s volume and becomes subleading.
Therefore, the contribution from the excited states coming
from the charged pions, in the weak field limit, is equivalent to
the contribution from two neutral pions. Overall, Eq. (7) can
be approximately written as

ρ∗(T ,μ) � 3
∫

d3p

(2π )3

1

eβ(
√

p2+m2−μ) − 1
. (15)

Notice that in this approximation the effect of the magnetic
field for the description of the condensation conditions comes
only from the ground state.

We now follow Ref. [4] to find an expression for Eq. (15) in
the limit where δ 
 1. An approximate expression for Eq. (15)
is obtained by looking at the difference between ρ∗(T ,μ) and
ρ∗(T ,m), that is, the density in excited states and the same
object evaluated at μ = m:

ρ∗(T ,m) − ρ∗(T ,μ)

= 3

2π2

∫ ∞

0
dp p2

{
1

eβ(
√

p2+m2−m) − 1

− 1

eβ(
√

p2+m2−μ) − 1

}
. (16)

To carry out the integration in Eq. (16), we use the procedure
described in Ref. [3], changing the variable

p = x
√

(2m)(m − μ), (17)

and the identity

1

exp(y) − 1
= coth(y/2) − 1

2
. (18)

Expanding for small δ and using the series expansion

coth(ay) ∼ 1

ay
+ ay

3
, (19)

valid for small y, and the value of the integral
∫ ∞

0
dx x2

(
1

x2
− 1

x2 + 1

)
= π

2
, (20)

we obtain

ρ∗(T ,μ) � ρ∗(T ,m) − 3(mT )3/2

√
2π

δ1/2. (21)

Therefore, combining Eqs. (13) and (21), the expression for
the density of states to leading order in the magnetic field and
the system’s volume, close to the condensation transition, can
be written as

ρ(T ,μ) = ρ∗(T ,m) − 3√
2π

(mT )3/2δ1/2

+ 1

V

(
1 + 2

�

�0

)
δ−1. (22)

Upon defining

a(T ) = (mT )3/2

√
2π

,

b(T ) = ρ(T ,μ) − ρ∗(T ,m)

3
, (23)

c = 1

3

(
1 + 2

�

�0

)
,

and multiplying Eq. (22) by δV/3, we obtain an algebraic
equation for δ written as

a(T )V δ3/2 + b(T )V δ − c = 0. (24)

We seek the solution to Eq (24) for δ in the limit where V is
large but finite for the cases where T is (i) less than, (ii) equal
to, or (iii) larger than Tc.

(i) T < Tc: In this case, when the temperature becomes
small, we can neglect a(T ) and the solution is

δT <Tc
= c

b(T )V
. (25)

(ii) T = Tc: In this case, right at the onset of condensation,
we can consider that the contribution to the particle
density comes only from the excited states, in which
case we can take b(T ) = 0 and the solution becomes

δT =Tc
=

(1 + 2 �
�0

3a(T )V

)2/3

. (26)

(iii) T > Tc: In this case the total density comes from
excited states and the quantity ρ∗(T ,m) is larger than
ρ(T ,μ), since the former is evaluated at the maximum
value of μ. This means that b(T ) < 0 and the solution
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becomes

δT >Tc
= b2(T )

a2(T )
−

1 + 2 �
�0

3b(T )V
� b2(T )

a2(T )
. (27)

Notice that since � is bound from below by �0, the limit for the
minimum possible magnetic flux is obtained from �/�0 →
1+. In this limit, the expression for all δ’s, and in particular
for δT =Tc

, reduce to the ones obtained in Ref. [3]. For a finite
� larger than the elemental flux �0, Eq. (26) shows that the
critical value of the chemical potential μ�

c is smaller than the
corresponding value μc in the absence of the magnetic field,
and that the former is given by

μ�
c = m − 1

m

(
2π2

V 2

)1/3(1 + 2 �
�0

3

)2/3

. (28)

Let us now explore the consequences for the critical
temperature.

III. CRITICAL TEMPERATURE

When T = Tc, the density comes from the contribution
of the excited states, that is ρ(Tc,μc; B) = ρ∗(Tc,μc; B). The
density for the excited states can be approximated in the
continuum limit, at leading order in the magnetic field, as

ρ∗(T ,μ) = 3
∫ ∞

0

d3p

(2π )3

1

eβ(
√

p2+m2−μ) − 1

= 3T m2

2π2

∞∑
n=1

1

n
K2(nm/T )exp(nμ/T ), (29)

where the second line on the right-hand side comes from
expanding the denominator of the integrand in a geometrical
series, such that the integration over the momentum can be
carried out term by term [8]. At criticality, we have

ρ
(
Tc,μ

�
c

) = 3Tcm
2

2π2

∞∑
n=1

1

n
K2(nm/Tc)exp

(
nμ�

c /Tc

)
,

(30)

where for μ�
c we use Eq. (28). Notice that, in the thermody-

namic limit, the condition for the critical chemical potential
becomes just μc = m, irrespective of the magnetic flux.
Equation (30) gives the critical temperature Tc as a function
of the particle density for different ratios �/�0. The solution
is shown in Figs. 1 and 2. Figure 1 shows the effect of varying
the size of the system for the case where no magnetic field
effects are present, namely the case �/�0 = 1. Notice that
for a given value of ρ, the critical temperature increases as the
system’s volume decreases. For comparison we also show the
case where the volume is taken to infinity. Figure 2 shows
the effects of varying the ratio �/�0 for a fixed volume.
Notice that for a given value of ρ the critical temperature
increases as the flux of the external magnetic field increases
[12]. This means that the magnetic field catalyzes the onset of
condensation. For comparison we again show the case where
the volume is taken to infinity in the absence of magnetic field
effects.

FIG. 1. Critical temperature for BEC as a function of the system’s
density in the absence of magnetic field effects. For a given value of
the density, the critical temperature increases as the system’s size
decreases. For comparison we also show the case where the volume
is taken to infinity.

We now proceed to use current experimental data on pion
multiplicities and source sizes as well as commonly accepted
values for magnetic field strengths to test whether these
numbers produce a critical temperature close to reported values
for the kinetic freeze-out temperature.

FIG. 2. Critical temperature for BEC as a function of the density
for a fixed system’s radius R = 7 fm and several values of the
magnetic flux. For a given value of the density, the critical temperature
increases as the magnetic flux increases. For comparison we also
show the case where the volume is taken to infinity in the absence of
a magnetic field.
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Let us first estimate values of the parameter �/�0 inferred
from heavy-ion collisions. For simplicity, let us assume that
the system’s volume is a sphere of radius R. In peripheral
heavy-ion collisions, where magnetic fields are produced, the
initial overlap region is better described as having an “almond”
shape. Nevertheless, for our purposes, where what matters is
the transverse (to the direction of the magnetic field) area, the
description in terms of a sphere suffices. From Eqs. (8) and
(9), and expressing the field intensity as a multiple ζ of the
pion mass squared, namely, eB = ζm2, we can write

�

�0
=

(
πR2

2π

)
(eB)

� ζ

(
1

4

)
[R (fm)]2, (31)

where we have expressed the factor m2 in units of inverse
fm2 using that 1 fm � (1/197) MeV−1, and R is to be given
in fm. In a peripheral collision of symmetric systems, the
semiminor axis of the almond-shape interaction region (R for
our purposes) is related to the nuclear radius RN and to the
impact parameter b by

R = RN − b/2. (32)

For example, for semicentral collisions, taking b = RN , we
see that R = RN/2. For heavy ions, RN ∼ 6-7 fm. Therefore,
a magnetic field whose initial strength is given by ζ ∼ 1/2
is able to produce fluxes with �/�0 > 1. In high energy
heavy-ion collisions, magnetic fields of intensity ζ ∼ 1–10
in early stages have been estimated [10]. Therefore �/�0 can
definitely be larger than 1 at the beginning of the reaction. If the
magnetic flux does not decrease much throughout the system’s
evolution, up to the hadronic phase, these intense initial fields
can leave an imprint on the final hadronic spectra. Whether an
initial flux is at least partially preserved or not depends on the
transport properties of the plasma produced after the reaction, a
subject of intense research over the last years. For the purposes
of this work, we assume that the flux can approximately be
preserved, though we use conservative values for the ratio
�/�0. Next, we estimate the density of the pion system. We
use the simple model of Ref. [13], where one can read out
that a semicentral collision with b = RN ∼ 7 fm corresponds
a centrality of about 30%. From the data of Ref. [14], which
correspond to Pb + Pb collisions at

√
sNN = 2.76 TeV, we can

read that the acceptance corrected average number of charged
pions within a pseudorapidity interval |η| < 0.8 is 〈N ch〉 =
426. It has been estimated that about 1/2 of these pions come
from decays of long-lived hadronic resonances [15]. Pions
from these resonances can hardly be considered thermal, and
therefore they cannot be included for the determination of the
critical temperature. We thus correct the above number, taking
out the contribution of these resonances, and estimate the
number of thermal charged pions as 〈N ch

th 〉 ∼ 213. Considering
also that about one third of the total number of pions are
neutral, we estimate that, for this system and at these energies,
the average total number of thermal pions in the femptoscopic
source is 〈Nth〉 ∼ 320. From the same Ref. [13] one can also
read that 〈N ch〉 = 426 corresponds a source radius R ∼ 7 fm.
Therefore, the average density of thermal pions comes to

FIG. 3. Critical temperature for BEC as a function of the system’s
density. For comparison we show a range of freeze-out temperatures
from central to semicentral collisions and a range of densities
and magnetic fluxes in semicentral collisions (R ∼ 7 fm) at LHC
energies. Notice that even for moderate magnetic fluxes the critical
temperatures obtained are above the freeze-out temperature range.

be about 〈ρ〉 = 〈Nth〉/(4πR3/3) ∼ 0.22 fm−3. Accounting for
the lowest and highest numbers of (acceptance and resonance
corrected) pions corresponding to the same centrality, it can
also be inferred from Ref. [13] that the density of the thermal
pion system varies in the range 0.2 < ρ < 0.25 fm−3. Figure 3
shows the range of critical temperatures corresponding to
the range of densities achieved by the pion system created
in semicentral heavy-ion collisions at Large Hadron Collider
(LHC) energies for different values of the ratio �/�0. Also
shown is the range of pion thermal freeze-out temperatures
95 < Tth < 106 MeV, reported in Ref. [16] and obtained from
a blast-wave fit to the pion low pt distributions. The range
corresponds to centrality classes of 0–40%. Note that, even
in the absence of a magnetic field (�/�0 = 1), the thermal
freeze-out temperatures are slightly below the values for
the condensation critical temperature. Also, even a moderate
magnetic flux makes Tc increase further with respect to Tth.

IV. SUMMARY AND DISCUSSION

In this work we have found the BEC conditions for a
relativistic pion gas occupying a finite volume and subject
to the influence of a magnetic field. The field effects are
encoded in the flux � across the pion system, referred to the
elemental flux �0. We have shown that values of �/�0 > 1
can be achieved in heavy-ion collisions when the intensity of
the field at the beginning of the reaction is higher than half
the pion mass squared. Also, under the assumption that this
flux is still such that �/�0 > 1 up to the hadronic phase,
we have shown that the critical temperature for pion BEC
increases above the increase caused by finite-size effects.
Using experimentally reported values for the system’s size and
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multiplicities, we have shown that this critical temperature is
above the thermal freeze-out temperature extracted from the
pion spectra. We emphasize that the chemical potential we
work with corresponds to the particle density and not to the
baryon density. Although at top energies at the Relativistic
Heavy Ion Collider (RHIC) and at the LHC the baryon
chemical potential is low, the particle number density is high,
and this translates into a high pion density. Nevertheless, since
the field strength is a fast decreasing function of time, one
expects that by the time pions are formed the strength of the
magnetic field has already decreased such that the highest of
the energy scales is the temperature, with the magnetic field
strength becoming the smallest of these energy scales, which
justifies the weak field approximation we use.

The picture that emerges for the evolution of the thermal
component of the pion system created in high energy heavy-ion
collisions is as follows: At the initial stages of a peripheral
collision, a strong magnetic field is generated. This field
permeates through the system formed in the reaction zone.
The evolution of matter proceeds to chemical freeze-out where
particle abundances are established, and continues evolving
toward thermal freeze-out. However, if the matter generated
is able to sustain at least part of the initially crated magnetic
flux throughout the evolution up to the hadronic a phase, the
finite-size pion system meets conditions appropriate for a part
of it to occupy the condensate state before it finally reaches
kinetic freeze-out. Such partial transit through the condensate
state can leave an imprint, for example on the chaoticity
parameter measured in interferometry studies [6,14], where
a partially coherent emission is not discarded.

Notice that in this work we use the approximation where
the pion system is treated as a pion gas; namely, we neglect
interactions that change, in particular, the pion number. Thus,
although the magnetic field breaks isospin invariance, in this
approximation its sole effect is its influence on the pion density
in the condensed state. What we have shown is that for a
given temperature the critical (density) chemical potential
decreases from the value it would have had in the absence of
the magnetic field, thus aiding condensation. Also, notice that,
in an interacting theory that accounts for charge conservation,
one needs to describe the evolution of the isospin chemical
potential. It has been shown in Ref. [17] that for the isospin
chemical potential the effect is the opposite: when a condensate
is to be produced in a pion system with a charge imbalance,
in the presence of a magnetic field, in order to sustain the
condensate one needs to have a higher charge imbalance than
in the absence of the field. This happens because one requires
more pions (of a given species) to have a denser system in
order to overcome the electrical repulsion of the excess, same
sign charge.

The results of this work are encouraging and open the
door for further studies to test the influence of the medium
conditions during the evolution of the pion system from
hadronization to kinetic freeze-out. In particular it is inter-
esting to test whether the interactions of the pion system with
the hadronic medium contribute to preserve or else destroy the
condensate state and also to study the evolution of the initial
magnetic flux from the initial stages to the hadronization phase
of the collision. Also interesting is the possibility to study

whether the magnetic flux in compact astrophysical objects
meets the conditions to aid the formation of a pion condensate
and the possible consequences if such is the case. Some of these
studies are currently being conducted and will be reported
elsewhere.
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APPENDIX

Here we show how to compute Eq. (14) in the weak field
limit. To simplify the expression, we extend the sum over over
Landau levels from the lowest value l = 0. This can be done
since the contribution of the ground state has already been
computed separately

2
2eB

(2π )2

∞∑
l=1

∫ ∞

0

dpz

eβ(
√

p2
z+m2+(2l+1)eB−μ) − 1

. (A1)

To approximate Eq. (A1), we use the Euler-Maclaurin formula.
Consider first the function

f (y) =
∫ ∞

0

dpz

eβ(
√

p2
z+m2+y−μ) − 1

. (A2)

Introducing the variable y defined as y = 2leB, we can write

∫ yf

yi

f (y)dy =
j∑

l=0

f (yi + 2leB) −
p∑

k=1

Bk

k!
[f k−1(yf )

− f k−1(yi)] + R, (A3)

where j = (yf − yi)/(2eB) and R is an error term. The
lowest-order approximation is obtained from considering
p = 2 and dropping R. Recalling that B1 = 1/2 and B2 =
1/6, we can rewrite Eq. (A3) as

∫ yf

yi

f (y)dy =
(

1

2
f (yi) + f (yi + 2eB) + . . .

+ f (yf − 2eB) + 1

2
f (yf )

)

− 1

12
[f ′(yf ) − f ′(yi)]. (A4)

We introduce the function g defined in terms of f as
f (y) = 2eBg(2leB). Notice that f ′(y) = (2eB)2g′(2leB) and
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therefore we can express Eq. (A3) as
∫ yf

yi

f (y)dy = 2eB

(
1

2
g(yi) + g(yi + 2eB) + · · ·

+ g(yf − 2eB) + 1

2
g(yf )

)

− (2eB)2

12
[g′(yf ) − g′(yi)]. (A5)

An analogous calculation using steps of length eB instead
of 2eB for the sum yields

∫ yf

yi

f (y)dy = eB

(
1

2
g(yi) + g(yi + eB) + · · ·

+ g(yf − eB) + 1

2
g(yf )

)

− (eB)2

12
[g′(yf ) − g′(yi)]. (A6)

Now, upon multiplying Eq. (A6) by 2 and subtracting
Eq. (A5) we notice that all terms of the function g evaluated
at even multiples of eB cancel, leaving only terms evaluated
at odd multiples of eB, namely
∫ yf

yi

f (y)dy = 2eB[g(yi + eB) + g(yi + 3eB) + · · ·

+ g(yf − eB)] + (2eB)2

24
[g′(yf ) − g′(yi)].

(A7)

Setting yi = 0 and yf → ∞ we have

2
(2eB)

(2π )2

∞∑
l=0

g((2l + 1)eB)

= 2
(2eB)

(2π )2

∞∑
l=0

∫ ∞

0

dpz

eβ(
√

p2
z+m2+(2l+1)eB−μ) − 1

= 1

2π2

∫ ∞

0
f (y)dy − (eB)2

12π2
[g′(∞) − g′(0)]. (A8)

We now identify y = p2
⊥ and form the three-dimensional

momentum squared p2 = p2
z + p2

⊥. We thus can write

∫ ∞

0
f (y)dy = 1

2

∫ ∞

0
dy

∫ ∞

−∞

dpz

eβ(
√

p2
z+m2+y−μ) − 1

=
∫ ∞

0
dp⊥p⊥

∫ ∞

−∞

dpz

eβ(
√

p2
z+m2+p2

⊥−μ) − 1
.

(A9)

Using that d3p = p⊥dp⊥dpzdθ we get

∫ ∞

0
f (y)dy = 4π2

∫
d3p

(2π )3

1

eβ(
√

p2
z+m2+p2

⊥−μ) − 1
,

(A10)

from which it follows that

1

2π2

∫ ∞

0
f (y)dy = 2

∫
d3p

(2π )3

1

eβ(
√

p2
z+m2+p2

⊥−μ) − 1
.

(A11)

On the other hand, notice that

g′(y) = −2
∫ ∞

0

dpz

2π

eβ(
√

p2
z+m2+y−μ)

(eβ(
√

p2
z+m2+y−μ) − 1)2

× β√
p2

z + m2 + y
. (A12)

Therefore, g′(y = ∞) = 0 and

g′(y = 0) = −2
∫ ∞

0

dpz

2π

β√
p2

z + m2

×
[

1

(eβ(
√

p2
z+m2−μ) − 1)2

+ 1

eβ(
√

p2
z+m2−μ) − 1

]
.

(A13)

Using Eqs. (17) and (18) we can rewrite Eq. (A13) as

g′(y = 0) = −2

√
2m(m − μ)1/2

(2π )T

×
∫ ∞

0

dx√
m2 + 2m(m − μ)x2

×
[

coth
(

β
2 (m − μ)(x2 + 1)

) − 1

2

+
(

coth
(

β
2 (m − μ)(x2 + 1)

) − 1

2

)2]
.

(A14)

Simplifying the expression above, one gets

g′(y = 0) = −
√

2m(m − μ)1/2

2(2π )T

∫ ∞

0

dx

m
√

1 + 2T
m

δx2

× csch2

(
β

2
(m − μ)(x2 + 1)

)
. (A15)

Recall that we are working in the limit δ 
 1. Therefore,
the leading contribution for g′(y = 0) can be written as

g′(y = 0) = − 2
√

2mT δ

(2π )δ2mT

∫ ∞

0

dx√
1 + 2T

m
δx2

1

(x2 + 1)2
,

(A16)

from where, after preforming the integral, we get

g′(y = 0) = −1

4

√
2

mT δ3
(A17)

Combining all of these results, we finally obtain Eq. (14).
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[17] G. Endrödi, Phys. Rev. D 90, 094501 (2014).

014904-8

https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.70.074005
https://doi.org/10.1103/PhysRevD.70.074005
https://doi.org/10.1103/PhysRevD.70.074005
https://doi.org/10.1103/PhysRevD.71.094001
https://doi.org/10.1103/PhysRevD.71.094001
https://doi.org/10.1103/PhysRevD.71.094001
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1142/S0217751X1250162X
https://doi.org/10.1142/S0217751X1250162X
https://doi.org/10.1142/S0217751X1250162X
https://doi.org/10.1142/S0217751X1250162X
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1016/j.physletb.2016.01.001
https://doi.org/10.1016/j.physletb.2016.01.001
https://doi.org/10.1016/j.physletb.2016.01.001
https://doi.org/10.1016/j.physletb.2016.01.001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1016/S0370-2693(98)00837-5
https://doi.org/10.1016/S0370-2693(98)00837-5
https://doi.org/10.1016/S0370-2693(98)00837-5
https://doi.org/10.1016/S0370-2693(98)00837-5
https://doi.org/10.1016/j.physletb.2007.07.059
https://doi.org/10.1016/j.physletb.2007.07.059
https://doi.org/10.1016/j.physletb.2007.07.059
https://doi.org/10.1016/j.physletb.2007.07.059
https://doi.org/10.1103/PhysRevC.91.054909
https://doi.org/10.1103/PhysRevC.91.054909
https://doi.org/10.1103/PhysRevC.91.054909
https://doi.org/10.1103/PhysRevC.91.054909
https://doi.org/10.1103/PhysRevC.77.064903
https://doi.org/10.1103/PhysRevC.77.064903
https://doi.org/10.1103/PhysRevC.77.064903
https://doi.org/10.1103/PhysRevC.77.064903
http://arxiv.org/abs/arXiv:1307.7225
https://doi.org/10.1103/PhysRevC.93.054908
https://doi.org/10.1103/PhysRevC.93.054908
https://doi.org/10.1103/PhysRevC.93.054908
https://doi.org/10.1103/PhysRevC.93.054908
https://doi.org/10.1103/PhysRevC.60.054902
https://doi.org/10.1103/PhysRevC.60.054902
https://doi.org/10.1103/PhysRevC.60.054902
https://doi.org/10.1103/PhysRevC.60.054902
https://doi.org/10.1103/PhysRevC.62.041901
https://doi.org/10.1103/PhysRevC.62.041901
https://doi.org/10.1103/PhysRevC.62.041901
https://doi.org/10.1103/PhysRevC.62.041901
https://doi.org/10.1016/S0370-2693(97)00627-8
https://doi.org/10.1016/S0370-2693(97)00627-8
https://doi.org/10.1016/S0370-2693(97)00627-8
https://doi.org/10.1016/S0370-2693(97)00627-8
https://doi.org/10.1088/0954-3899/43/12/125103
https://doi.org/10.1088/0954-3899/43/12/125103
https://doi.org/10.1088/0954-3899/43/12/125103
https://doi.org/10.1088/0954-3899/43/12/125103
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1155/2014/193039
https://doi.org/10.1155/2014/193039
https://doi.org/10.1155/2014/193039
https://doi.org/10.1155/2014/193039
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevD.16.3437
https://doi.org/10.1103/PhysRevD.16.3437
https://doi.org/10.1103/PhysRevD.16.3437
https://doi.org/10.1103/PhysRevD.16.3437
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1103/PhysRevD.94.125012
https://doi.org/10.1103/PhysRevD.94.125012
https://doi.org/10.1103/PhysRevD.94.125012
https://doi.org/10.1103/PhysRevD.94.125012
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.86.076006
https://doi.org/10.1103/PhysRevD.86.076006
https://doi.org/10.1103/PhysRevD.86.076006
https://doi.org/10.1103/PhysRevD.86.076006
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevC.65.024905
https://doi.org/10.1103/PhysRevC.65.024905
https://doi.org/10.1103/PhysRevC.65.024905
https://doi.org/10.1103/PhysRevC.65.024905
https://doi.org/10.1016/j.physletb.2014.10.034
https://doi.org/10.1016/j.physletb.2014.10.034
https://doi.org/10.1016/j.physletb.2014.10.034
https://doi.org/10.1016/j.physletb.2014.10.034
https://doi.org/10.1016/S0375-9474(02)01165-X
https://doi.org/10.1016/S0375-9474(02)01165-X
https://doi.org/10.1016/S0375-9474(02)01165-X
https://doi.org/10.1016/S0375-9474(02)01165-X
https://doi.org/10.1103/PhysRevC.88.044910
https://doi.org/10.1103/PhysRevC.88.044910
https://doi.org/10.1103/PhysRevC.88.044910
https://doi.org/10.1103/PhysRevC.88.044910
https://doi.org/10.1103/PhysRevD.90.094501
https://doi.org/10.1103/PhysRevD.90.094501
https://doi.org/10.1103/PhysRevD.90.094501
https://doi.org/10.1103/PhysRevD.90.094501



