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Multiplicity fluctuation and correlation of identified baryons in a quark combination model
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The dynamical multiplicity fluctuations and correlations of identified baryons and antibaryons produced by
the hadronization of a bulk quark system are systematically studied in a quark combination model. Starting
from the most basic dynamics of the quark combination which is necessary for multiplicity study, we analyze
moments (variance, skewness, and kurtosis) of inclusive multiplicity distributions of identified baryons, two-
baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of a
quark system with given quark number and antiquark number. We obtain a series of interesting results, e.g.,
binomial behavior of multiplicity moments, coinciding flavor-dependent two-baryon correlation, and universal
baryon-antibaryon correlation, which can be regarded as general features of the quark combination. We further
take into account correlations and fluctuations of quark numbers before hadronization and study their influence on
multiple production of baryons and antibaryons. We find that quark number fluctuations and flavor conservation
lead to a series of important results such as the negative p�̄+ multiplicity correlation and universal two-baryon
correlations. We also study the influence of resonance decays in order to compare our results with future
experimental data in ultrarelativistic heavy ion collisions at the Large Hadron Collider.
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I. INTRODUCTION

In ultrarelativistic heavy ion collisions, a new state of
matter—quark gluon plasma (QGP)—is created at the early
stage of collisions. The produced QGP expands, cools, and
changes into a hadronic system at a critical energy den-
sity [1]. Because of the nonperturbative difficulty of quantum
chromodynamics, the transition from QGP to hadrons (i.e.,
hadronization) can only be described currently by phenomeno-
logical models such as statistical hadronization models [2,3]
and quark (re)combination/coalescence models [4–10]. These
models have been tested against the available experimental
data of hadronic yields, momentum spectra, and flows.

Dynamical correlations and fluctuations of multihadron
production carry more sophisticated hadronization dynamics.
They are quantified by various covariances and moments
on multiplicities or momenta of identified hadrons, and
are measured in experiments via an event-by-event method.
Their studies can further test those existing phenomenological
models of hadron production at hadronization and yield deep
insights into the dynamics of a realistic hadronization process.
We can also obtain information on the correlations and
fluctuations of quarks and antiquarks just before hadronization
by studying their projection on hadronic observables. On the
other hand, study of identified hadrons is also helpful for the
investigation of correlations and fluctuations of conservative
charges, which has been a hot topic in both experimental and
theoretical studies recently [11–15]. There, one should know
how the conservative charges populate in various identified
hadrons, which depends on their coherent abundances and
thus is directly related to their multiple production dynamics
at hadronization.
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In the past few years, only data on fluctuations of the
pion, kaon, and proton have been reported [16–19], and the
available theoretical studies are usually based on statistical
models [20–26]. With the improvement of statistics and exper-
imental measurement precision, observation of more hadron
species such as �, �−, and �− can be expected in the near
future. Therefore, the corresponding theoretical predictions by
different hadron production models are necessary, in order to
guide the experimental data analysis, reveal the underlying
dynamics of the observation, and test these models.

In this paper, we study the multiplicity fluctuations and
correlations of various identified baryons and antibaryons
produced directly by hadronization. We focus on the JP = 1

2
+

and 3
2

+
baryons in the flavor SU(3) ground state, with particular

emphasis on various strange baryons. There are obvious
advantages in measuring these baryons: (1) The baryon is
a sensitive probe of the hadron production mechanism at
hadronization. (2) The rapidity shift in baryon productions and
resonance decays is small, which is suitable for experimental
observation at finite rapidity window size.

We use the quark combination mechanism (QCM) to
describe the production of hadrons at quark system hadroniza-
tion. QCM has been used to reproduce lots of low and inter-
mediate transverse momentum data at the Relativistic Heavy
Ion Collder (RHIC) and the Large Hadron Collider (LHC), in
particular the data of yields and rapidity distributions [10,27–
29]. The related entropy and pion production issues have been
extensively addressed in the literature [30–33]. Explaining
fluctuations and/or correlations of hadron production is very
intuitive in QCM. When a quark hadronizes, it can come into
either a baryon or a meson, which leads to the fluctuation
of global baryon multiplicity; it can come into either a
specific baryon (e.g., a proton for a u quark hadronization)
or another specific baryon (e.g., a �+), which leads to the
multiplicity fluctuations of the proton and �+ and also an
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anticorrelation between two baryons. In addition, correlations
and fluctuations of quarks and antiquarks will pass to hadrons
after hadronization.

Concretely, we calculate various moments of inclusive
multiplicity distributions of baryons, e.g., variance, skewness
and kurtosis, the correlations between two baryons, and
correlations between baryons and antibaryons. We analyze the
dominant dynamics among these correlations and fluctuations
and give predictions of QCM which can be tested by
future experimental data. This paper mainly discusses baryon
production at zero baryon number density at LHC, and the
extension to RHIC energies and the meson sector is the goal
of future work.

The paper is organized as follows. In Sec. II, we introduce
a working model which includes the necessary dynamics
of QCM for multiplicity study and discuss the dynami-
cal sources of the multiplicity correlations and fluctuations
in baryon production. In Sec. III, we study multiplicity
fluctuations and correlations of baryons and antibaryons
which are produced from a quark system with given numbers of
quarks and antiquarks. In Sec. IV, we take into account fluctu-
ations and correlations of quark numbers before hadronization
to study their influence on baryon and antibaryon production.
In Sec. V, we further take into account effects of resonance
decays. A summary and discussion are given in Sec. VI.

II. A WORKING MODEL

Due to the difficulty of nonperturbative QCD, a widely
accepted theoretical framework of QCM has not yet been
established that can self-consistently describe the whole
picture of hadronization dynamics. In this paper, we need a
working model which includes the necessary dynamics of
QCM for multiplicity study and to obtain correlations and
fluctuations of the produced hadrons. We will present the
assumptions and/or inputs explicitly whenever necessary and
make the study as independent of the particular model as
possible. Because there are no relevant works in the literature,
the purpose of this paper is to focus on results of the most
basic QCM dynamics, which will serve as a preliminary test
of the model using future experimental data and a baseline for
sophisticated hadronization dynamics.

We consider a system consisting of various quarks and
antiquarks with constituent masses, corresponding to the
“dressed” quarks and antiquarks in the nonperturbative QCD
regime. We denote the number of quarks of flavor qi in the
system by Nqi

and that of antiquarks by Nq̄i
. Three flavors,

up, down, and strange, are considered in this paper. As
the system hadronizes, these quarks and antiquarks combine
with each other to form color singlet hadrons. Finally, the
system produces, in an event, various hadrons with numbers
{Nhi

} where i = π,K,ρ,K∗, . . . ,p,�,�,�− up to all included
hadron species. Here, we consider only the ground state
JP = 0− and 1− mesons and JP = 1

2
+

and 3
2

+
baryons in

the flavor SU(3) group. The numbers of these hadrons are
varied event-by-event around their average values and follow
a certain distribution P({Nhi

}; {Nqj
,Nq̄j

}) which is governed
by hadronization dynamics.

The precise form of P({Nhi
}; {Nqj

,Nq̄j
}) depends on the

full knowledge of hadronization dynamics. Among all the
available QCM models, few can give specific solutions of P.
In addition, the high dimensionality feature of P makes the
analytic solution quite difficult to get. In this paper, we gen-
eralize the quark combination simulation in SDQCM [10] to
focus only on multiplicity properties of the produced hadrons
and obtain P({Nhi

}; {Nqj
,Nq̄j

}), considering that this model
has reproduced lots of experimental data of multiplicities of
various hadrons in relativistic heavy ion collisions at different
energies [10,27–29].

The main idea of the quark combination simulation in
SDQCM is as follows: (1) Assign all quarks and antiquarks
in the system into an abstract one-dimensional sequence. The
relative distance between any two quarks and/or antiquarks in
the sequence represents their map in realistic phase space.
(2) Combine these quarks and antiquarks in the sequence
into hadrons according to a quark combination rule (QCR).
A schematic example is as follows:

q1q2q3q4q5q6q7q8q9q10q11q12q13q14q15q16q17q18q19q20

QCR→ M(q1q2) B(q3q4q5) M(q6q7) M(q8q11) B(q9q10q12)

×M(q13q15) B(q14q16q17) B(q18q19q20). (1)

QCR depends on the combination dynamics. As shown
directly by the above example, QCR should first satisfy two
basic dynamics: (1) Baryon formation is by the combination of
three quarks which are close to each other in phase space, and
meson formation is by a quark and an antiquark. Therefore,
a neighboring or next-nearest neighboring quark combination
in the sequence is needed. (2) After hadronization, there are
no free quarks and antiquarks left.

Considering the fact that the produced baryons are much
fewer than mesons after hadronization, the key content of
QCR is how to describe the production of baryons relative
to that of mesons for a given quark configuration. We adopt
the following procedure. For the local quark populations such
as qq̄ and qqq̄, we can assign qq̄ → M and qqq̄ → M + q
with relative probability 1. When the case of possible baryon
production qqq occurs, we give a probability or conditional
criterion. If the nearest neighbor of qqq is still a quark,
the opportunity of baryon formation should be significantly
increased, and we can assign qqqq → B + q with relative
probability 1. In contrast, if the nearest neighbor of qqq
is an antiquark q̄, then this q̄ can have the chance of
capturing one q to form a meson and two quarks are left
to combine with other quarks and antiquarks. We denote
the probability of this channel by Pqqqq̄→M+qq ≡ P0. The
baryon formation probability in the qqqq̄ configuration is then
P1 ≡ Pqqqq̄→B+q̄ = 1 − P0.

A naive analysis gives P0/P1 ∼ (3 × 1
9 )/(1 × 1

27 ) = 9
where the factor 3 is the number of the possible combinations
for meson formation in the qqqq̄ configuration, and factor 1 is
for baryon formation. Factors 1

9 and 1
27 are the color weights of

forming a color singlet meson and baryon in the stochastically
colored quark combination, respectively. Therefore, baryon
formation probability P1 in the qqqq̄ case should be a small
value ∼0.1. In practice, a value of about 0.04 for P1 can well
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explain the observed baryon yields in relativistic heavy ion
collisions.

The above consideration of baryon formation is one kind
of nonisolation approximation for the quark combination
process; i.e., baryon formation is nontrivially influenced by
the environment (the surrounding quarks and antiquarks). It
is different from those (re)combination/coalescence models
which were popular in early RHIC experiments [5–9]. They
apply the sudden hadronization (i.e., isolation) approximation
for the combination probability by the overlap between quark
wave functions and the hadron they form.

The remaining quarks and antiquarks in qqq̄ → M + q,
qqqq̄ → M + qq, and qqqq̄ → B + q̄ processes will subse-
quently combine with the following quarks and antiquarks
in the sequence to form hadrons, until at last all quarks
and antiquarks are combined into hadrons. This procedure
reflects, to a certain extent, the spread of the hadronization in
space-time.

Another point of QCR is the order of the combination. As
long as the quark number is large, different orders such as from
left to right, from right to left, and from middle to sides are
equivalent and give the same result.

Based on the above discussions, we give the following
combination algorithm for the hadronization of a quark
system:

(i) Start from the first parton (q or q̄) in the sequence.
(ii) If the first and second partons are either q̄q or qq̄,

they combine into a meson and are removed from the
sequence, then go back to (i). If the first two are qq or
q̄q̄, then go to the next.

(iii) Look at the third parton. If three partons are qqq̄ or
q̄q̄q, and the first and third partons combine into a
meson and are removed from the sequence, then go
back to (i). If three partons are qqq or q̄q̄q̄, then go to
the next.

(iv) Look at the fourth parton. If four partons are qqqq or
q̄q̄q̄q̄, the first three partons combine into a baryon
or an antibaryon and are removed from the sequence,
then go back to (i). If four partons are qqqq̄ or q̄q̄q̄q,
there are two choices: (a) The first and fourth partons
combine into a meson with probability P0 and are
removed from the sequence, then go back to (ii). (b)
The first three partons combine into a baryon or an
antibaryon with probability P1 and are removed from
the sequence; then go back to (i).

The above algorithm does not differentiate quark flavors
in consideration of the flavor blind of strong interactions.
Compared with the combination rule in Ref. [10], this
algorithm addresses more explicitly the baryon production
by the addition of step (iv) to better tune baryon meson
production competition. In essence, it can be regarded as
the generalization of the combination rule in Ref. [10] in a
multiplicity description of the produced baryons.

For a given q1q̄2 which is known to form a meson by the
above combination algorithm, it can form either a Jp = 1−
vector (V) meson or a Jp = 0− pseudoscalar (PS) meson.
Similarly, a q1q2q3 (except for three identical qqq case) can

form either a Jp = ( 1
2 )+ baryon or a Jp = ( 3

2 )+ baryon.
Following previous works [10,28], we use the parameter RV/P

to denote the relative production ratio of vector mesons to
pseudoscalar mesons and RO/D the ratio of octet baryons
to decuplet baryons. Then we get the branch ratio of each
hadronization channel for a q1q̄2 combination,

CMj
=

{
1/(1 + RV/P ) for JP = 0− mesons,

RV/P /(1 + RV/P ) for JP = 1− mesons,

and for a q1q2q3 combination,

CBj
=

{
RO/D/(1 + RO/D) for JP = (1/2)+ baryons,

1/(1 + RO/D) for JP = (3/2)+ baryons.

As in previous works, we can apply the above combination
algorithm to relativistic heavy ion collisions by considering
some properties of the produced quark system. It is observed
that (1) the longitudinal expansion is predominant both in
momentum space and in spatial space; (2) the longitudinal
velocity of quarks is closely correlated to their spatial position;
(3) the rapidity density of quark numbers is very large
and is relatively slowly varied. Therefore, we can sort all
quarks and antiquarks according to their rapidities into a
one-dimensional sequence, and then combine neighboring
quarks and antiquarks into hadrons. In the transverse direction,
the transverse momentum (pT ) distribution of quarks is
exponential decreased. Therefore, one cannot directly combine
neighboring quarks because their relative intervals �pT expo-
nentially increase with pT of quarks/antiquarks. So we use
the statistical combination approach; i.e., the pT distribution
of a hadron is the convolution of quark pT distributions
and combination kernel, where the combination kernel is
mainly dependent on �pT between two quarks/antiquarks.
It is thus similar to those inclusive recombination/coalescence
approaches using the hadron wave function [5–9]. But our
model is different from those inclusive methods in the proper
treatment of unitarity in hadronization and the ability to well
explain hadronic yield and longitudinal rapidity distributions
observed in relativistic heavy ion collisions [10,27–29].

Let us summarize the origin of correlations and fluctuations
of the produced baryons and antibaryons. First, local qqq
aggregation in phase space is stochastic for a system consisting
of free quarks and antiquarks. Second, the qqq → B process is
probabilistic under the surrounding noise (i.e., stochastic pop-
ulated quarks and antiquarks in the neighborhood). Together
with the branch ratio of a given q1q2q3 to a specific hadron
state, they lead to multiplicity fluctuations of the produced
identified baryons. The conservation of baryon number in the
quark combination process constrains the global production of
baryons and antibaryons and also the production of identified
baryons and their antiparticles. The production correlation be-
tween two baryons mainly comes from a so-called “exclusion”
effect; i.e., once a quark enters into a Bi at hadronization it
is consumed and therefore cannot be recombined into Bj .
These effects lead to a nontrivial and complex multihadron
multiplicity distribution P({Nhi

}; {Nqj
,Nq̄j

}).
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III. BARYON PRODUCTION FROM A GIVEN
QUARK SYSTEM

In this section, we study fluctuations and correlations of
baryons and antibaryons which are produced from a quark
system with a given number of quarks and antiquarks. This
enables us to learn more clearly the properties of baryon
production from the quark combination process itself. Ana-
lytical results of various moments (mean, variance, skewness,
kurtosis) of the inclusive multiplicity distributions of identified
baryons are given first, according to the basic dynamics
of the quark combination discussed in previous section.
Then two-baryon multiplicity correlations, baryon-antibaryon
correlations, and multibaryon multiplicity correlations are
studied systematically.

A. Moments of multiplicity distributions of baryons

First, we discuss properties of inclusive multiplicity distri-
butions of various identified baryons calculated from the above
combination algorithm. As a demonstration, Fig. 1 shows
multiplicity distribution of total baryons and those of identified
p, �, �0, as a quark system with Nq = Nq̄ = 500 hadronizes.
Here, the relative ratios of different quark flavors are set to
be Nu : Nd : Ns = 1 : 1 : 0.43. We see that the distribution of
total baryons is close to a Gaussian distribution while those
of identified baryons are close to a Poisson distribution to a
certain extent. In the following text, we study the production
property of these identified baryons by analyzing moments of
their multiplicity distributions.

FIG. 1. Normalized multiplicity distribution of total baryons (a)
and those of identified baryons p (b), � (c), �0 (d) produced by
hadronization of a quark system with Nq = Nq̄ = 500. Here, the
relative ratios of different quark flavors are set to be Nu : Nd : Ns =
1 : 1 : 0.43. Symbols are numerical results of the QCM algorithm in
Sec. II and the dashed line is a Poisson distribution.

For the average multiplicity of identified baryons,

NBj
=

∑
{Nhi

}
NBj
P({Nhi

}; {Nqi
,Nq̄i

}), (2)

we have obtained the empirical solution in previous stud-
ies [10,28]

NBj
= PBj

NB, (3)

where NB = ∑
i NBi

is the average number of total baryons
and PBj

denotes the production weight of Bj in all baryons.
PBj

can be decomposed to CBj
Pq1q2q3,B where Pq1q2q3,B is the

probability that, as a baryon is known to be produced, the flavor
content of this baryon is q1q2q3. Considering that every q1, q2,
and q3 in the system can have the chance of entering into
Bj at hadronization, we get Pq1q2q3,B = N

(q)
Bj

/Nqqq . Nqqq =
Nq(Nq − 1)(Nq − 2) is the possible total number of three-
quark combinations where Nq = ∑

f Nf is the total quark

number in the system. N
(q)
Bj

= Niter
∏

f

∏nf,Bj

i=1 (Nf − i + 1) is
the possible number of q1q2q3 combinations, where nf,Bj

is
the number of valance quarks f contained in hadron Bj . Here
index f runs over all quark flavors. Niter is the iteration factor,
taken to be 1, 3, and 6 for the case of three identical flavors,
two different flavors, and three different flavors contained in a
baryon, respectively.

We have used Eq. (3) to reproduce the experimental
data of yields and yield ratios of various identified baryons
in relativistic heavy ion collisions at different collision en-
ergies [10,27–29]. For detailed discussions of the average
yield formula of identified baryons as well as those of
antibaryons we refer readers to Refs. [27–29]. We argue
that, just based on the good performance of the combina-
tion algorithm in Sec. II on the event-average yields, we
make a further test of fluctuations and correlations in this
paper.

We further study the variance, skewness, and kurtosis of the
multiplicity distribution for various identified baryons. Their
definitions are

σ 2
Bj

= δNB2
j

= (
NBj

− NBj

)2

=
∑
{Nhi

}
(NBj

− NBj
)2 P({

Nhi

}
;
{
Nqj

,Nq̄j

})
(4)

and similarly

SBj
=

δN3
Bj

σ 3
Bj

, KBj
=

δN4
Bj

σ 4
Bj

− 3. (5)

Note that we always use an overline to denote the aver-
age hadronic quantities by hadronization of a given quark
system.

To analyze their properties, we have to consider joint
production of multibaryons. Taking variance, for example,
two-Bj pair production is given by

NBj
(NBj

− 1) = P2Bj
NB(NB − 1), (6)
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FIG. 2. The square root of variance, skewness, and kurtosis of the multiplicity distributions of various identified baryons with respect to
their production weights Pi = NBi

/NB . The size of the quark system before hadronization is chosen to be Nq = Nq̄ = 500 and the relative
ratios of different quark flavors are set to be Nu : Nd : Ns = 1 : 1 : 0.43. Symbols are full results and lines are leading terms of full results
which have the form of a binomial distribution with parameters (NB,Pi).

where the production probability of a two-Bj pair can be
evaluated by P2Bj

= C2
Bj

N
(q)
2Bj

/N6q , with the number of six-

quark clusters possible for two-Bj pair production N
(q)
2Bj

=
N2

iter

∏
f

∏2nf,Bj

i=1 (Nf − i + 1) and that for any two-baryon

pair production N6q = ∏6
i=1(Nq − i + 1). Rewriting P2Bj

=

P 2
Bj

(1 − A1), we finally have

σ 2
Bj

=NBPBj
(1−PBj

)+P 2
Bj

[
(1−A1)σ 2

B −A1NB(NB − 1)
]

(7)

where the first term in the right-hand side of the equation is
the dominant part. Similarly, we have

SBj
= 1

σ 3
Bj

{
NBPBj

(1 − PBj
)(1 − 2PBj

) + 3P 2
Bj

[
(1 − A1)σ 2

B − A1NB(NB − 1)
]

+P 3
Bj

[
(1 − A2)SBσ 3

B + 3(A1 − A2)NBσ 2
B − 3(1 − A2)σ 2

B + NB(NB − 1)[(3A1 − A2)NB + 2A2]
]}

, (8)

and

KBj
+ 3 = 1

σ 4
Bj

{
NBPBj

(1 − PBj
)
[
1 − 6PBj

(1 − PBj
) + 3NBPBj

(1 − PBj
)
] + 7P 2

Bj

[
(1 − A1)σ 2

B − A1NB(NB − 1)
]

+ 6P 3
Bj

[
(1 − A2)SBσ 3

B + [
(1 − 3A2 + 2A1)NB − 3(1 − A2)

]
σ 2

B + NB(NB − 1)[(2A1 − A2)NB + 2A2]
]

+P 4
Bj

[
(1 − A3)(KB + 3)σ 4

B + [
4(A2 − A3)NB − 6(1 − A3)

]
SBσ 3

B

+ [
(12A2 − 6A3 − 6A1)N

2
B + (18A3 − 12A2 − 6)NB + 11(1 − A3)

]
σ 2

B

+ (4A2 − 6A1 − A3)N
4
B + (6A1 + 6A3 − 12A2)N

3
B + (8A2 − 11A3)N

2
B + 6A3NB

]}
, (9)

where three coefficients A1, A2, and A3 are

AL = 1 −
L∏

k=1

⎛
⎝

∏
f

∏nf,Bj

i=1

(
1 − k

nf,Bj

Nf −i+1

)
∏3

m=1

(
1 − k 3

Nq−m+1

)
⎞
⎠ (10)

with L = 1,2,3.
In the above formulas of variance, skewness, and kurtosis,

the first term in right-hand side of the equation is always the
dominant part, and we find that it is just the result of a binomial
distribution with parameters (NB,PBj

). In Fig. 2, we plot σBj
,

SBj
, and KBj

of various identified baryons as functions of their
production weights PBj

. Symbols are full results and lines are
binomial distributions as leading approximations. The size of
the quark system here is chosen to be Nq = Nq̄ = 500 and the

relative ratios of different quark flavors are set to be Nu :
Nd : Ns = 1 : 1 : 0.43. In addition, at large NB and small
PBi

, the binomial distribution converges toward a Poisson
distribution. For multistrange hyperons such as � and �∗, their
multiplicity distributions are well approximated by a Poisson
distribution because of quite small production weights ∼0.01.
However, multiplicity distributions of the proton and � cannot
be well approximated by a Poisson distribution because of their
relatively large production weights ∼0.1.

The multiplicity distribution of total baryons shows some
slightly different properties from those of identified baryons.
The variance of the total baryon multiplicity is proportional
to system size via σ 2

B/NB ≈ 0.35 at current baryon-meson
competition, and skewness is inversely proportional to sys-

tem size via SBN
1/2
B ≈ 0.37. These properties are general
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expectations of a stochastic combination process. But pro-
portional coefficients cannot to be explained in terms of the
binomial distribution. This is easily understood. The number
of quarks consumed by total baryon formation is about 20%
of the total quark number in the system. This fact causes the
deviation from the independent and stochastic feature of the
binomial trial in each baryon production.

B. Two-baryon correlations

Production of two different kinds of baryons is usually
anti-associated in the hadronization of quark system with fixed
quark numbers, characterized by the negative covariances of
their multiplicities. The multiplicity covariance is defined as

CBiBj
= δNBi

δNBj
= NBi

NBj
− NBi

NBj
. (11)

We consider two-baryon joint production,

NBi
NBj

= PBiBj
NB(NB − 1), (12)

where the joint production probability of BiBj pair can be
evaluated by PBiBj

= N
(q)
BiBj

/N6q with the number of six-

quark clusters possible for BiBj pair production N
(q)
BiBj

=
Ni

iterN
j
iter

∏
f

∏nf,Bi
+nf,Bj

i=1 (Nf − i + 1) and that for any two-

baryon pair production N6q = ∏6
i=1(Nq − i + 1).

Substituting Eqs. (2) and (12) into the covariance of two
baryons, we get

CBiBj

NBi
NBj

= PBiBj

PBi
PBj

NB(NB − 1)

N
2
B

− 1, (13)

in which

PBiBj

PBi
PBj

=
∏

f

∏nf,Bi

k=1

(
1 − nf,Bj

Nf −k+1

)
∏3

m=1

(
1 − 3

Nq−m+1

)
= 1 −

∑
f

nf,Bi
nf,Bj

1

Nf

+ 9

Nq

+ O(
N−2

q

)
, (14)

where the product and summation of index f runs over all
quark flavors and nf,Bi

is the number of valance quarks f
contained in hadron Bi . Finally, we have

CBiBj

NBi
NBj

= −
∑
f

nf,Bi
nf,Bj

Nf

−
(

1

NB

− σ 2
B

N
2
B

− 9

Nq

)

+O(
N−2

q

)
. (15)

The first part in the right-hand side of the equation is the
leading order contribution. It essentially originates from the
fact that, at hadronization, once a quark enters into a Bi it is
consumed and therefore cannot recombine into Bj . This part is
inversely proportional to the quark number of the coinciding
flavor in two baryons, so the relative anticorrelation among
strange baryons is usually greater than those of light flavor
baryons. The part in parentheses is the next-to-leading order
contribution, which is usually a few percent of the first part. It is
negligible in correlations for most baryon pairs with coinciding
valance quark content but becomes important for correlations
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FIG. 3. Multiplicity covariance between two identified baryons.
Different two-baryon pairs are distinguished in the horizontal axis
by their multiplicity products. The size of the quark system before
hadronization is chosen to be Nq = Nq̄ = 500 and the relative ratios
of different quark flavors are set to be Nu : Nd : Ns = 1 : 1 : 0.43.
Symbols are numerical results of the QCM algorithm in Sec. II and
short solid lines are analytic results in Eq. (15).

between baryon pairs with totally different quark flavors, such
as Cp�− , C�++�− , etc.

In Fig. 3, we show results of the relative covariance
CBiBj

/(NBi
NBj

) of identified baryons produced from quark
system hadronization with Nq = Nq̄ = 500. Here, the relative
ratios of different quark flavors are set to be Nu : Nd :
Ns = 1 : 1 : 0.43. Results of different two-baryon pairs are
distinguished in the horizontal axis by their multiplicity
products. Symbols are numerical results of the QCM algorithm
in Sec. II and the short solid lines are analytic results in
Eq. (15). As discussed above, we see that the production
of ��− and other hyperon pairs which share more strange
content is the most anti-associated while those containing
coinciding light flavors are less anti-associated, such as pn. For
p�−, ��−, �0�− etc, there is no coinciding flavor between
two baryons but their productions are still anti-associated,
although quite weakly. This is due to the second term in the
right-hand side of Eq. (15); the physical origin is that the
successive baryon production in the combination process is
suppressed by the baryon number conservation.

C. Baryon-antibaryon correlations

It is generally expected that baryons and antibaryons are
associated in their production, characterized by the positive
covariance CBiB̄j

= δNBi
δNB̄j

= NBi
NB̄j

− NBi
NB̄j

of their
multiplicities. One main reason for this association comes from
the global baryon number conservation in hadronization which
is denoted by the quark number conservation NB − NB̄ =
1
3 (Nq − Nq̄) in the combination process. This causes the
following correlation between baryon and antibaryon:

CBiB̄j
= pBi

pB̄j
δNB δNB̄ = pBi

pB̄j
σ 2

B, (16)

014901-6
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FIG. 4. Multiplicity covariance between identified baryons and
antibaryons. Different baryon-antibaryon pairs are distinguished in
the horizontal axis by their multiplicity products. The size of the quark
system before hadronization is chosen to be Nq = Nq̄ = 500 and the
relative ratios of different quark flavors are set to be Nu : Nd : Ns =
1 : 1 : 0.43. Symbols are numerical results of the QCM algorithm in
Sec. II and the dashed line is the scaling given by Eq. (17).

where we use δNB δNB̄ = σ 2
B = σ 2

B̄
at fixed quark numbers.

Inserting posterior production weight pBi
= 〈NBi

〉/〈NB〉, we
get a scaling property

CBiB̄j

NBi
NB̄j

= σ 2
B

NBNB̄

(17)

for baryon-antibaryon multiplicity correlations.
In Fig. 4, we compare the above formula with numerical

results obtained from the algorithm in Sec. II with the
quark system Nq = Nq̄ = 500, in which the relative ratios
of different quark flavors are set to be Nu : Nd : Ns = 1 :
1 : 0.43. The good agreement suggests that global baryon
number conservation is the dominant reason for the production
correlation between identified baryons and antibaryons. One
interesting result is that both CBiB̄i

and CBiB̄j
(i 	= j ) follow

the same scaling line, which indicates that the production of
baryon-antibyaron pairs does not have a greater constraint
than that of two different baryons. This is reasonable in the
case of free combination of quarks and antiquarks. Using
NB/NM ≈ 1/12 and Ns/Nu ≈ 0.43, which reproduce yield

data in relativistic heavy ion collisions, we can estimate NB ≈
1
6Nu ≈ 1

3Ns , which means the baryon number conservation is
the strongest constraint in baryon-antibaryon joint production.
The production of identified baryon Bi and antibaryon B̄j

consumes only a small fraction of total quarks and antiquarks
and thus does not reach the conservation threshold of specific
quark flavors.

D. Multibody correlations

Following a similar procedure, we also get multibaryon
correlations due to the exclusion effect of successive baryon
production discussed in Sec. III B and baryon number con-
servation in baryon-antibaryon production in Sec. III C. The
three-baryon correlation is

Cαβγ = δNαδNβδNγ

= NαNβNγ −NαNβNγ −NαCβγ −NβCαγ −Nγ Cαβ

(18)

and the four-baryon correlation is

Cαβγ ε = δNαδNβδNγ δNε

= NαNβNγ Nε − NαNβNγ Nε − NαCβγ ε − NβCαγ ε

−Nγ Cαβε − NεCαβγ − NαNβCγε − NαNγ Cβε

−NαNεCβγ −NβNγ Cαε −NβNεCαγ −Nγ NεCαβ.

(19)

The average multiplicity product of three baryons (αβγ ∈
baryon) can be written as

NαNβNγ = (1 − Aαβγ ) NαNβNγ

× δN3
B + 3σ 2

B(NB −1)+NB(NB −1)(NB −2)

N
3
B

+ δαβ (1 − δαγ )(Cαγ + NαNγ )

+ (δαγ + δβγ )(1 − δαβ)(Cαβ + NαNβ)

+ δαβ δαγ

[
3σ 2

α + 3Nα(Nα − 1) + Nα

]
, (20)

where δαβ is Kronecker delta function and δN3
B ≡ SBσ 3

B is the
third moment of total baryons. For that of two baryons and one
antibaryon, e.g., αβ ∈ baryon, γ̄ ∈ antibaryon, we have

NαNβNγ̄ = (1 − Aαβ) NαNβNγ̄ × δN3
B + σ 2

B(3NB + 2c − 1) + NB(NB − 1)NB̄

N
2
BNB̄

+ δαβ(Cαγ̄ + NαNγ̄ ). (21)

Here, c = NB − NB̄ is the number of net baryons and was taken to be zero at LHC.
The average multiplicity product of four baryons (αβγ ε ∈ baryon) can be written as

NαNβNγ Nε = (1 − Aαβγ ε) NαNβNγ Nε

1

N
4
B

× {
δN4

B + (4NB − 6)δN3
B + σ 2

B

(
6N

2
B − 18NB + 11

)
+NB(NB − 1)(NB − 2)(NB − 3)

} + δαβδαγ δαε

(
6N3

α − 11N2
α + 6Nα

) + δαβδαγ (1 − δαε)
(
3N2

αNε − 2NαNε

)
+ δαβδαε(1 − δαγ )

(
3N2

αNγ − 2NαNγ

) + (δαγ δαε + δβγ δβε)(1 − δαβ)
(
3N2

αNβ − 2NαNβ

)
014901-7
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+ δαβδγ ε(1 − δαγ )
(
N2

αNγ + NαN2
γ − NαNγ

) + (δαγ δβε + δαεδβγ )(1 − δαβ)
(
N2

αNβ + NαN2
β − NαNβ

)
+ δαβ(1 − δαγ )(1 − δαε)(1 − δγ ε)NαNγ Nε + (δαγ + δβγ )(1 − δαβ)(1 − δαε)(1 − δβε)NαNβNε

+ (δαε + δβε + δγ ε)(1 − δαβ)(1 − δαγ )(1 − δβγ )NαNβNγ , (22)

where δN4
B ≡ (KB + 3)σ 4

B is the fourth moment of total baryons. The average multiplicity product of three or two baryons can
be read from Eqs. (20) and (12). For that of three baryons and one antibaryon, e.g., αβγ ∈ baryon, ε̄ ∈ antibaryon, we have

NαNβNγ Nε̄ = (1 − Aαβγ ) NαNβNγ Nε̄

1

N
3
BNB̄

× {
δN4

B + (4NB̄ + 3c − 3)δN3
B + σ 2

B

[
6N

2
B̄ + 9(c − 1)NB̄ + 3c2 − 6c + 2

]
+NB(NB −1)(NB −2)NB̄

}+δαβδαγ

(
3N2

αNε̄ −2NαNε̄

)+δαβ (1−δαγ )NαNγ Nε̄ +(δαγ +δβγ )(1−δαβ )NαNβNε̄,

(23)

and for that of two baryons and two antibaryons, e.g., αβ ∈ baryon, γ̄ ε̄ ∈ antibaryon, we have

NαNβNγ̄ Nε̄ = (1−Aαβ )(1−Aγ̄ ε̄)NαNβNγ̄ Nε̄

1

N
2
BN

2
B̄

× {
δN4

B +(4NB̄ +2c−2)δN3
B +σ 2

B

[
6N

2
B̄ +6(c−1)NB̄ +c2−3c+1

]
+NB(NB −1)NB̄(NB̄ −1)

}+δαβδγ̄ ε̄

(
N2

αNγ̄ +NαN2
γ̄ +NαNγ̄

)+δαβ (1−δγ̄ ε̄) NαNγ̄ Nε̄ +δγ̄ ε̄ (1−δαβ ) NαNβNγ̄ .

(24)

Coefficients Aαβ , Aαβγ , and Aαβγ ε are extensions of Eq.(10),

Aαβγ ε = 1 −
∏

f

∏ε
h=β

∏nf,h

i=1

(
1 −

∑h−1
h′=α

nf,h′
Nf −i+1

)
∏nh−1

k=1

∏3
m=1

(
1 − k 3

Nq−m+1

) . (25)

Here nh in the denominator denotes the number of involved
baryons, i.e., nh = 4 for αβγ ε and 3 for αβγ . nf,h is the
number of valance quarks of flavor f contained in hadron
h. h − 1 in the numerator denotes the hadron before h in
combination αβγ ε. Taking the charge conjugation operation,
we get coefficients of antibaryons.

We can check that the following normalization is satisfied:∑
αβγ∈B

Cαβγ = δN3
B,

∑
αβγ ε∈B

Cαβγ ε = δN4
B, (26)

and ∑
αβγ∈B,B̄

(−1)mCαβγ = δ(NB − NB̄)3 = 0,

∑
αβγ ε∈B,B̄

(−1)mCαβγ ε = δ(NB − NB̄)4 = 0, (27)

where m denotes the number of antibaryons in αβγ and αβγ ε
combinations.

IV. BARYON PRODUCTION FROM THE QUARK SYSTEM
WITH VARIATIONAL QUARK NUMBERS

In this section, we take into account effects of fluctuations
and correlations of quark numbers in the system before
hadronization on multiple production of baryons and an-
tibaryons. We first give the general procedure for including
quark number fluctuations and correlations in hadronic observ-
ables and then show the specific formulas for moments and
two-body correlations of baryons and antibaryons. Then we
discuss properties of quark number fluctuations and correla-
tions in the context of ultrarelativistic heavy ion collisions, and
we show numerical results of baryon moments, two-baryon
correlations, and baryon-antibaryon correlations.

A. General formulas for including variational quark numbers

The produced quark system in heavy ion collisions at a
specific collision energy is always varied in size event-by-
event, and the number of quarks and that of antiquarks in the
system at hadronization should follow a certain distribution
P({Nqi

,Nq̄i
}; {〈Nqi

〉,〈Nq̄i
〉}) around the event-average quark

numbers 〈Nqi
〉 and antiquark numbers 〈Nq̄i

〉, where qi = u,
d, s are considered in this paper. In QCM, the distribution
includes also the possible contribution of small-amount dy-
namical production of newborn quarks and antiquarks during
the hadronization process due to the requirement of exact
energy conservation and entropy increase [33]. The event
average of a hadronic physical quantity Ah is

〈Ah〉 =
∑
{Nhj

}
AhP({Nhj

}; {〈Nqi
〉,〈Nq̄i

〉}) =
∑

{Nqi
,Nq̄i

}

∑
{Nhj

}
Ah P({Nhj

}; {Nqi
,Nq̄i

})P({Nqi
,Nq̄i

}; {〈Nqi
〉,〈Nq̄i

〉})

=
∑

{Nqi
,Nq̄i

}
Ah P({Nqi

,Nq̄i
}; {〈Nqi

〉,〈Nq̄i
〉}). (28)
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If Ah is known already, we can expand it as a Taylor series at the event average of quark numbers {〈Nqi
〉,〈Nq̄i

〉}:

Ah = Ah

∣∣〈Nqi
〉

〈Nq̄i
〉
+

∑
f1

∂Ah

∂Nf1

∣∣∣∣∣〈Nqi
〉

〈Nq̄i
〉

δNf1 + 1

2

∑
f1,f2

∂2Ah

∂Nf1∂Nf2

∣∣∣∣∣〈Nqi
〉

〈Nq̄i
〉

δNf1δNf2

+ 1

3!

∑
f1,f2,f3

∂3Ah

∂Nf1∂Nf2∂Nf3

∣∣∣∣∣〈Nqi
〉

〈Nq̄i
〉

δNf1δNf2δNf3 + O(δ4), (29)

where indexes f1, f2, and f3 run over all quark and antiquark flavors and δNf1 = Nf1 − 〈Nf1〉. The subscript 〈Nqi
〉,〈Nq̄i

〉 denotes
the evaluation at the event average point. Substituting it into Eq. (28), we get

〈Ah〉 = Ah

∣∣〈Nqi
〉

〈Nq̄i
〉
+ 1

2

∑
f1,f2

∂2Ah

∂Nf1∂Nf2

∣∣∣∣∣〈Nqi
〉

〈Nq̄i
〉

Cf1f2 + 1

3!

∑
f1,f2,f3

∂3Ah

∂Nf1∂Nf2∂Nf3

∣∣∣∣∣〈Nqi
〉

〈Nq̄i
〉

Cf1f2f3 + O(δ4), (30)

where Cf1f2 = 〈δNf1δNf2〉 and Cf1f2f3 = 〈δNf1δNf2δNf3〉 are
two-body and three-body correlation functions of quarks and
antiquarks, respectively. Then the influence of quark number
distribution on hadronic quantities can be taken into account
by the mean, two-body, and multibody correlations of quark
numbers. In the following equations we drop the subscript
〈Nqi

〉,〈Nq̄i
〉 for convenience.

B. Formulas of identified baryons

Using Eq. (30), we first get the event average of baryon
multiplicity

〈NBi
〉 = NBi

+ 1

2

∑
f1,f2

∂2NBi

∂Nf1∂Nf2

Cf1f2 + O(
N−2

f

)
. (31)

The effect of two-quark correlations on baryon multiplicity
is the order of magnitude of 1/〈Nf 〉, which is only a few
percent of the leading term due to the large quark number (i.e.,
hundreds of quarks and antiquarks per unit rapidity at RHIC
and LHC energies). The influence of three-body and four-body
correlations of quarks and antiquarks is suppressed further by
1/N2

f . Therefore, effects of quark number correlations and
fluctuations can be safely neglected in studies of inclusive
multiplicities of identified hadrons in relativistic heavy ion
collisions, as we did in previous works.

For moments of multiplicity distributions of identified
hadrons, we have

σ 2
Bi

= σ 2
Bi

+
∑
f1,f2

(
∂1NBi

∂2NBi
+ 1

2
∂12σ

2
Bi

)
Cf1,f2 + O(

N−2
f

)
, (32)

SBi
= SBi

⎧⎨
⎩1 +

∑
f1,f2

[
∂12δN

3
Bi

+ 3∂1NBi
∂2σ

2
Bi

+ 3∂2NBi
∂1σ

2
Bi

2δN3
Bi

− 3
(∂1NBi

)(∂2NBi
) + 1

2∂12σ
2
Bi

2σ 2
Bi

]
Cf1f2 + O(

N−2
f

)⎫⎬
⎭, (33)

KBi
= KBi

+(KBi
+3)

⎧⎨
⎩

∑
f1,f2

[
∂12δN

4
Bi

+8∂1δN
3
Bi

∂2NBi
+12σ 2

Bi
∂1NBi

∂2NBi

2δN4
Bi

− 2
∂1NBi

∂2NBi
+ 1

2∂12σ
2
Bi

σ 2
Bi

]
Cf1f2 +O

(
N−2

f

)⎫⎬
⎭.

(34)

Here, we have used ∂1 ≡ ∂
∂Nf1

and ∂12 ≡ ∂2

∂Nf1 ∂Nf2
for abbrevi-

ation. Because higher order contributions of quark correlations
and fluctuations are usually suppressed by the factor 1/〈Nf 〉,
here we only show effects of second-order correlations and
fluctuations of quark numbers on the directly produced
baryons.

For two-body correlations of baryons and antibaryons, we
have

Cαβ =Cαβ + 1

2

∑
f1,f2

[2∂1Nα∂2Nβ +∂12Cαβ]Cf1f2 +O
(
N−2

f

)
.

(35)

Here, the contribution of second-order quark correlations is
the same order as Cαβ , and they might cancel with each
other significantly. The influence of higher order contribu-
tions of quark correlations is about few percent at LHC
and is neglected here. As α = β, we obtain Eq. (32),
which is also hardly influenced by higher order quark
correlations.

In the Appendix, we supplement the procedure of
obtaining the full expression of Eqs. (32)–(35) up
to the four-body quark correlations for the readers’
convenience and for decay calculations in the next
section.
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C. Quark number correlations and fluctuations

We first determine the size of the quark system before
hadronization, which is consistent with that produced in
relativistic heavy ion collisions at LHC energy. By fitting the
rapidity density of hadronic yield in central Pb+Pb collisions
at

√
sNN = 2.76 TeV, we obtain 〈Nq〉 = 〈Nq̄〉 = 1710 and

the strangeness content 〈Ns〉/〈Nu〉 = 〈Ns〉/〈Nd〉 = 0.43 for
the quark system in unit rapidity window yw = 1 in the
central rapidity region. We note that the obtained strangeness
suppression factor λs ≡ 〈Ns〉/〈Nu〉 = 〈Ns〉/〈Nd〉 = 0.43 is in
agreement with the Wroblewski parameter calculated by lattice
QCD [34,35]. In the following sections, we use it as the default
size of the quark system. If a different yw is selected, quark
numbers in the system are multiplied by factor yw because we
always focus on the central rapidity plateau region yw < 1.5
where the rapidity distribution of quark numbers is uniform.

For two-body correlation Cf1f2 of quarks and antiquark,
using the charge conjugation symmetry and isospin symmetry
between u and d quarks for the quark system produced at LHC,
there are only eight relevant quark correlations, i.e.,

two variances Cuu ≡ σ 2
u and Css ≡ σ 2

s ,

two pair correlations Cuū and Css̄ ,

four off-diagonal correlations Cud , Cus , Cud̄ and Cus̄ .

Variances of quark numbers are usually approximated to
follow Poisson statistics σ 2

u ≈ 〈Nu〉 and σ 2
s ≈ 〈Ns〉 for a ther-

malized quark system with grand canonical ensemble. Lattice
QCD calculations at vanishing chemical potential provide an
important constraint on the above quark correlations [36],
which show the weak off-diagonal flavor susceptibilities
of quark numbers χus/χss ≈ −0.05 and χud/χuu ≈ −0.05
as temperature approaches the confinement phase bound-
ary. Here, χus ≡ Cus + Cūs̄ − Cus̄ − Cūs = 2(Cus − Cus̄), and
others are similarly defined. Because of the lack of further
theoretical constraints on those quark number correlations
at present, we have to adopt some symmetry approxima-
tions on quark correlations, i.e., Cus̄/Cus = Cud̄/Cud = λ1

and Cuū/σ
2
u = Css̄/σ

2
s = λ2 where λ1 and λ2 are treated as

parameters of this work. The value of λ2 is smaller than
1 if we consider a slice of the quark system, e.g., the
mid-rapidity region, produced in heavy ion collisions. The
off-diagonal flavor correlations are usually expected to be
much smaller than variances of quark numbers. Inspired by
the weak off-diagonal flavor susceptibilities in lattice QCD
calculations, we assume Cud/Cuu ∼ 0.05 (correspondingly
λ1 ∼ 2.0) with some arbitrariness in this work to study effects
of the weak flavor off-diagonal quark correlations on baryon
and antibaryon production.

Since this work focuses on the baryon sector, we introduce
the total baryon number balance coefficient ρ(q)

B as one physical
characteristic of the quark system,

ρ
(q)
B =

∑
f1,f2

1
3Cf1f̄2

N
(q)
B

= λ2 − 0.1λ1
1 − λ2

1 − λ1

1 + 2λs

2 + λs

, (36)

where indexes f1,f2 run over all flavors of quarks and N
(q)
B =

1
3 (〈Nu〉 + 〈Nd〉 + 〈Ns〉). Note that the factor 1/3 before Cf1f̄2

denotes the balanced baryon number if f1 and f̄2 are correlated.
The second equality uses the above approximated quark
correlations. We also introduce the electric charge balance
coefficient of the quark system, which is defined as

ρ
(q)
C = 1

N
(q)
C

∑
f1,f2

min(Qf1 ,Qf2 ) Cf1f̄2
, (37)

where indexes f1,f2 = u,d̄,s̄ run over all positively charged
quarks with electric charges Qf1 and Qf2 , respectively, and
N

(q)
C = 1

3 (2〈Nu〉 + 〈Nd̄〉 + 〈Ns̄〉). The balanced charge for the
f1f̄2 pair is the minimum of their electric charges. The
above approximated quark two-body correlations guarantee
the correct boundary behavior of conserved charge for the
quark system; i.e., as λ2 goes to 1, both ρ

(q)
B and ρ

(q)
C

go to 1. Using the measured charge balance function of
thermal particles in central Pb+Pb collisions at

√
sNN = 2.76

TeV [37], we can roughly constrain ρ
(q)
C of the quark system,

ρ
(q)
C (yw) ≈

∫ yw

0
B(δη) dδη, (38)

if we expect a small change of the charge balance property of
the system during hadronization [38]. By ρ

(q)
C (yw) we can fix

λ2 and other off-diagonal elements of two-body correlations
which are also dependent on yw.

Three-body and four-body correlations of quarks and
antiquarks have relatively less influence on the physical
quantities of initial baryons in the previous subsection than
the two-body correlations of quark numbers. But they will
influence those of final baryons through resonance decays
(as shown in next section), so we need them also. Because
there are no theoretical calculations at present which we
can borrow, we take the following approximation for three-
body quark correlations: i.e., Cfff ≡ 〈δN3

f 〉 = 〈Nf 〉 and off-
diagonal correlations Cf1f2f3 = 0, where f1, f2, and f3 are
different flavors. For four-body correlations, we approximate
them using two-body correlations

Cf1f2f3f4 ≈ Cf1f2Cf3f4 + Cf1f3Cf2f4 + Cf1f4Cf2f3

+ 3δf1f3δf2f4Cf1f2 + 3δf1f4δf2f3Cf1f2

+ 3δf1f3δf2f4Cf1f3 , (39)

Cf̄1f2f3f4
≈ Cf̄1f2

Cf3f4 + Cf̄1f3
Cf2f4 + Cf̄1f4

Cf2f3

+ 9δf2f3δf2f4Cf̄1f2
, (40)

Cf̄1f̄2f3f4
≈ Cf̄1f̄2

Cf3f4 + Cf̄1f3
Cf̄2f4

+ Cf̄1f4
Cf̄2f3

+ 9δf̄1f̄2
δf3f4Cf̄1f3

. (41)

By this approximation, the kurtosis of net baryons has the
property KnetBσ 2

netB = 1, which is suggested in ultrarelativis-
tic heavy ion collisions [11].

D. Numerical results of multiplicity moments
of identified baryons

Figure 5 shows moments of various identified baryons after
taking into account effects of quark number correlations and
fluctuations. The system size is taken to be the default value of
unit yw. In order to clearly present effects of quark correlations
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FIG. 5. Moments of identified baryons after considering quark number fluctuations (QNF) and quark number flavor conservation (QFC)
with parameter λ2. The value λ2 = 0.91 is chosen to be consistent with the observed charge balance function of thermal particles in the unit
pseudorapidity window observed in Pb+Pb collisions at 2.76 TeV [37].

and fluctuations, the variance σ 2
i , skewness Si , and kurtosis Ki

of identified baryons are multiplied by factors 1/〈Ni〉,
√〈Ni〉,

and 〈Ni〉, respectively, to make them the order of 1. Here, the
usage of 〈Ni〉 as the scaling factor is due to its insensitivity
to correlations and fluctuations of quark numbers. We present
results caused by the quark combination process (marked by
“ini”), results including effects of quark number fluctuations
(marked by “ini+QNF”), and results further including effects
of quark flavor conservation (marked by “ini+QNF+QFC”).
The last case is the physical result. The purpose of such a
presentation is to show the contributions of different sources
in the final physical results.

Solid circles in Fig. 5(a) are the variances of initial baryons
directly produced by hadronization. As discussed previously,
σ 2

i /〈Ni〉 of identified baryons, roughly following a binomial
distribution, is always smaller than 1 and usually decreases
with the increase of multiplicity or production weight. For
�− it is only 2% smaller than 1 while for protons it is
about 10% smaller. But there are several exceptions to such
a decreasing trend. For example, variance of �++ is smaller
than its isospin partner �+ although their multiplicities are
nearly the same. This is due to the effect of identical quark
flavors in baryon production encoded via coefficient AL in
their variance formula in Eq. (7). Others exceptions, including
those between � and �∗ and those between �+ and �,
are due to the same reasons either in the strange or light
flavor sector. These properties are also observed in baryon
skewness, Fig. 5(b), and kurtosis, Fig. 5(c), with larger
amplitude.

Open circles show the baryon moments after considering
effects of quark number fluctuations. We can see that fluc-
tuations of quark numbers obviously increase the baryon’s
multiplicity fluctuations. σ 2

i /〈Ni〉 of various baryons exceeds
1. For the proton it is about 3% greater than 1 while for �−
it also slightly exceeds 1. Skewness and kurtosis of baryons
are also greater than 1, and they are more sensitive to quark
number fluctuations; e.g., proton skewness increases about 5%
and kurtosis about 10%, respectively. The numerical reason for
such rapid increase, taking variance for example, is that quark
number fluctuations contribute to baryon variance mainly via

the
∑

f (∂NBi
/∂Nf )2σ 2

f term in Eq. (32) but contribute to

baryon yield via the
∑

f (∂2NBi
/∂N2

f )σ 2
f term in Eq. (31),

which is much smaller than the former. We emphasize that
these results are not the final physical predictions of baryon
moments because we should always consider the effect of
flavor (or charge) conservation in the studied rapidity window
in the context of relativistic heavy ion collisions.

Solid up-triangles show baryon moments after considering
further effects of quark flavor conservation with parameter
λ2 = 0.91, as well as quark number fluctuations. Here the
value of parameter λ2 is chosen so that the electric charge
balance coefficient ρ

(q)
C of the quark system, according to

Eq. (38), is consistent with the measured charge balance
function in the unit pseudorapidity window in central Pb+Pb
collisions at

√
sNN = 2.76 GeV [37]. The pair association of

quarks and antiquarks will facilitate meson production and
suppress baryon production. Comparing the open circles, we
therefore observe a significant decrease of proton variance,
skewness, and kurtosis. Such influence of flavor (or charge)
conservation has been studied in Ref. [39]. For baryons with
small multiplicities such as �− and �∗, they are weakly
influenced by flavor conservation of quark numbers and their
moments are always almost 1. If we choose a smaller flavor
conservation parameter λ2 = 0.18, which corresponds to the
observed charge balance in small rapidity window yw ≈ 0.15,
we can observe almost unitary baryon moments, shown as star
symbols, which is similar to a Poisson distribution. However,
for such small yw, particle exchange in the window boundary
due to the rapidity shift in hadronization, resonance decays,
and particle rescatterings is significant, and therefore the
statistic effect is dominant. The Poisson distribution is then
usually expected but the microscopic dynamics of hadron
production is lost at such small yw.

E. Numerical results of two-baryon correlations

Figure 6 shows two-baryon multiplicity correlations after
considering effects of quark number fluctuations and corre-
lations. The system size is taken to be the default value of
unit yw. Solid circles show initial two-baryon correlations
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FIG. 6. Two-baryon multiplicity correlations after considering
the effects of quark number fluctuations (QNF) and quark flavor
conservation (QFC) just before hadronization. The labels for solid
circles are the same as those in Fig. 3.

due to the hadronization of a quark system with given quark
and antiquark numbers. They exhibit a sensitive dependence
on baryon species, as discussed in detail in Sec. III B. After
taking into account effects of quark number fluctuations, all
two-baryon correlations, open circles, flip sign and become a
positive and almost universal value. The positive value means
the production of two baryons is associated, which is because
both baryons jointly respond to the change of quark numbers
or that of antiquark numbers. This association is suppressed
and/or canceled by further taking into account the flavor
conservation of quark numbers. With small flavor conservation
parameter λ2 = 0.18, all two-baryon correlations, open up-
triangles, tend to be zero. With practical λ2 = 0.91 for unit
rapidity window size, we get the physical prediction of
two-baryon correlations shown as open squares. We see a
strong production anti-association between two baryons, and
interestingly we see a universal value for all two-baryon
correlations. This is a striking characteristic of two-baryon
production in QCM.

Figure 7 shows two-body correlations of stable baryons
p, �, �−, �− at different rapidity window sizes yw. In
order to closely relate to the experimental measurement at
specific yw, we have introduced the electric charge balance
coefficient of the quark system, ρ

(q)
c , defined in Eq. (37), and

we estimate its value by Eq. (38) using the data of the charge
balance function [37]. After obtaining the ρ

(q)
c (yw), we fix

the flavor conservation parameter λ2(yw). The value of λ2

as a function of yw is shown as an auxiliary horizontal axis
on top of the figure. Note that the average quark numbers
of the quark system are also linearly changed with yw. We
see a nonmonotonic behavior of two-baryon correlations with
respect to yw, which is due to the competition between the

w
y
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FIG. 7. Rapidity window size dependence of two-baryon corre-
lations after taking into account effects of quark number correlations
and fluctuations before hadronization. The auxiliary horizontal axis
on top of the figure shows the corresponding value of flavor
conservation parameter λ2.

changed flavor conservation and the changed quark numbers of
system. As yw increases from 0.3 to 0.6, the flavor conservation
coefficient λ2 increases rapidly up to about 0.7, and this leads to
the increased anti-association between two baryons. However,
as yw continues to enlarge, the effect of increased flavor
conservation is overwhelmed by that of the increased quark
numbers, and we see a decreased anti-association between two
baryons. We also see that with the increased yw the difference
between different two-baryon correlations decreases, and we
have an almost universal correlation magnitude for all two-
baryon correlations, as shown in Fig. 6.

F. Numerical results of baryon-antibaryon correlations

Figure 8 shows various baryon-antibaryon multiplicity
correlations after considering effects of quark number fluc-
tuations and correlations. The system size is taken to be the
default value of unit yw. Solid circles show baryon-antibaryon
correlations for the hadronization of a quark system with
given quark and antiquark numbers. They exhibit a universal
behavior; see Sec. III C. After taking into account effects of
quark number fluctuations, all baryon-antibaryon correlations,
open circles, flip sign and become a negative and universal
value. The negative value means production of a baryon
and antibaryon is anti-associated. This is because that the
increase (decrease) of quark numbers will enhance (suppress)
the baryon formation and suppress (enhance) antibaryon
formation. It is contrary to the case of two-baryon production
discussed in the above subsection.

After further taking into account the flavor conservation
of quark numbers with parameter λ2 = 0.91, we get the
physical prediction of baryon-antibaryon correlations shown
as open squares in Fig. 8. We find that most baryon-antibaryon
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FIG. 8. Baryon-antibaryon multiplicity correlations after consid-
ering effects of quark number fluctuations (QNF) and quark flavor
conservation (QFC) with parameter λ2 = 0.91.

correlations return to the positive case, which means their
production is associated. In particular, hyperon-antihyperon
correlations, e.g., �−�̄+ and �−�̄0, are much larger than pp̄
correlation. This suggests that strangeness conservation plays
an important role in hyperon-antihyperon joint production.
Surprisingly, in Fig. 8(b), some baryon-antibaryon pairs, e.g.,
p�̄+, p�̄+, have negative values. This is because these
baryon-antibaryon pairs do not involve, or involve to a
lesser degree, the matched uū, dd̄ , ss̄ pairs, and thus flavor
conservation less directly constrains their joint production and
therefore the effect of quark number fluctuations is dominant.
With small flavor conservation parameter λ2 = 0.18, all
baryon-antibaryon correlations tend to zero (with maximum
deviation about 0.002) and we do not show them in Fig. 8 for
clarity.

In Fig. 9, we show the rapidity window size yw dependence
of some baryon-antibaryon correlations. The relationship
between λ2 and yw is the same as that in the above subsection.
We observe from panel (a) that Cp�̄+ is always negative at
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FIG. 9. The rapidity window size dependence of baryon-
antibaryon correlations after taking into account quark number
fluctuations and correlations just before hadronization. The auxiliary
horizontal axis on top of panel (b) shows the corresponding value of
flavor conservation parameter λ2.

different yw and Cp�̄+ is negative at small yw and tends to
zero with increasing yw due to the increasing effect of flavor
conservation λ2. For pp̄, ��̄ correlations in Fig. 9(a), �−�̄+,
�−�̄+ and other hyperon-antihyperon correlations in panel
(b) that largely involve the matched uū, dd̄ , ss̄ pairs, they are
all positive under the influence of quark flavor conservation.
We also observe that as yw � 0.6, pp̄, ��̄, �−�̄+, �−�̄+
correlations decrease with increasing yw, which is because of
the increasing quark numbers (or system size).

V. DECAY EFFECTS

Multiplicity of final baryons observed in experiments
usually contains the decay contribution of unstable resonances.
In this section, we study the effect of resonance decays on
the multiplicity correlations and fluctuations of final stable
baryons. We first derive formulas of decay influence on stable
baryons and then show numerical results of stable baryons p,
�, �−, and �−.
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A. Formulas of decay effects

For baryon resonance i, its stable daughter baryons are de-
noted as a,b,c, . . . with decay branch ratios Dia,Dib,Dic . . .,
respectively. Dij is taken from PDG [40]. The joint
multiplicity distribution of daughter baryons from the

parent baryon i of number Ni is taken to be the multino-
mial distribution f ({Ni

a,N
i
b,N

i
c, . . .},Ni,{Dia,Dib,Dic . . .}),

where Ni
a,N

i
b,N

i
c, . . . denote the numbers of decayed baryons

a,b,c, . . ., respectively. Recalling the joint distribution of
directly produced baryons in Sec. IV, we write the joint
multiplicity distribution of stable baryons

F (Na,Nb,Nc, . . .) =
∑
{Nhj

}
P({Nhj

}; {〈Nqi
〉,〈Nq̄i

〉})
∏

i

⎛
⎝∑

{Ni }
f

({
Ni

a,N
i
b,N

i
c, . . .

}
,Ni,{Dia,Dib,Dic, . . .}

)⎞
⎠ ∏

k=a,b,c,...

δNk,
∑

i Ni
k
,

(42)
where index i runs over all kinds of directly produced baryons and k runs over all stable hadrons we study.

The inclusive yield of final-state identified baryons includes the linear superposition of resonance decays,

〈Na〉 =
∑

{Na,Nb,...}
Na F (Na,Nb,Nc, . . .)

=
∑
{Nhj

}
P({Nhj

})
∏

i

( ∑
{Ni

a}
f

(
Ni

a,Ni,Dia

)) ∑
k

Nk
a

=
∑

k

( ∑
{Nhj

}
P({Nhj

}; {〈Nqi
〉,〈Nq̄i

〉}) NkDka

)

=
∑

k

〈Nk〉Dka. (43)

Note that we have used the abbreviation P({Nhj
}) ≡ P({Nhj

}; {〈Nqi
〉,〈Nq̄i

〉}) for the joint distribution of directly produced
baryons, and we have writtenDkk = 1 to obtain compact formulas. Similarly, we can calculate various moments of multiplicity
distributions of stable baryons as

〈
Nm

a

〉 =
∑

{Na,Nb,...}
Nm

a F (Na,Nb,Nc, . . .) =
∑
{Nhj

}
P({Nhj

})
∏

i

( ∑
{Ni

a}
f

(
Ni

a,Ni,Dia

))( ∑
k

Nk
a

)m

,

and finally we have

σ 2
a =

∑
m,n

CmnDmaDna +
∑
m

〈Nm〉Dma(1 −Dma), (44)

Sa = 1

σ 3
a

( ∑
k,m,n

CkmnDkaDmaDna + 3
∑
m,n

CmnDma(1 −Dma)Dna +
∑
m

〈Nm〉Dma(1 −Dma)(1 − 2Dma)

)
, (45)

Ka + 3 = 1

σ 4
a

( ∑
m,n,k,l

CmnklDmaDnaDkaDla + 6
∑
mnk

(Cmnk + Cnk〈Nm〉)Dma(1 −Dma)DnaDka

+ 4
∑
mn

CmnDma(1 −Dma)(1 − 2Dma)Dna + 3
∑
mn

(Cmn + 〈Nm〉〈Nn〉)Dma(1 −Dma)Dna(1 −Dna)

+
∑
m

〈Nm〉Dma(1 −Dma)[1 − 6Dma(1 −Dma)]

)
. (46)

The average of the multiplicity product of two stable baryons is evaluated by

〈NaNb〉 =
∑

{Na,Nb,...}
NaNb F (Na,Nb,Nc, . . .) =

∑
{Nhj

}
P({Nhj

})
∏

i

( ∑
{Ni

a,N
i
b}

f
({

Ni
a,N

i
b

}
,Ni,{Dia,Dib}

))( ∑
m

Nm
a

)( ∑
n

Nn
b

)

=
∑
{Nhj

}
P({Nhj

})
∏

i

( ∑
{Ni

a,N
i
b}

f
({

Ni
a,N

i
b

}
,Ni,{Dia,Dib}

))( ∑
m	=n

Nm
a Nn

b +
∑
m=n

Nm
a Nm

b

)

=
∑
m,n

〈NmNn〉DmaDnb −
∑
m

〈Nm〉DmaDmb. (47)
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Substituting it into the definition of two-body correlation we
get for a 	= b

Cab =
∑
m,n

[Cmn − δmn〈Nm〉]DmaDnb, (48)

which includes the coherent superposition of two resonance
correlations as well as the anti-association due to the possible
same parent resonance.

Following the spirit of Eq. (47), we obtain the three-body
correlation with different species Cabc,

Cabc =
∑
mnk

(Cmnk − (δmk + δnk)Cmn − δmnCmk

+ 2δmnδnk〈Nm〉)DmaDnbDkc, (49)

and Caac with one identical pair can be obtained by Caac =
(Cabc)a=b + Cac, and the four-body correlation with different
species Cabcd by

Cabcd =
∑
mnkl

CmnklDmaDnbDkcDld

−
∑
mkl

(Cmkl + Ckl〈Nm〉)D(211)
mkl (a,b,c,d)

+
∑
ml

(Cml + 〈Nm〉〈Nl〉)D(22)
ml (a,b,c,d)

+ 2
∑
ml

CmlD(31)
ml (a,b,c,d)

− 6
∑
m

〈Nm〉DmaDnbDkcDld . (50)

Here, D(211)
mkl (a,b,c,d)=DmaDmbDkcDld+DmaDmcDkbDld

+DmaDmdDkbDlc+DmbDmcDkaDld+DmbDmdDkaDlc+
DmcDmdDkaDlb denotes the summation over all possible
joint-decay probabilities for three resonances mkl into four
stable baryons, where the superscript (211) denotes that
one of the parent resonances has two decay channels to
two different stable baryons, respectively. Similarly, we
have D(31)

ml (a,b,c,d)=DmaDmbDmcDld+DmaDmbDmdDlc+
DmaDmcDmdDlb +DmbDmcDmdDla and D(22)

ml (a,b,c,d) =
DmaDmbDlcDld+DmaDmcDlbDld+DmaDmdDlbDlc. Other
four-body correlations of stable baryons with one identical
pair, two identical pairs, and three identical species can be
obtained as follows:

Caabd = (Cabcd )a=c + Cabd + 〈Na〉Cbd, (51)

Caaab = (Cabcd )a=c=d + 3Caab + (3〈Na〉 − 2)Cab, (52)

Caabb = (Cabcd )a=c,b=d + Caab + Cabb + 〈Na〉σ 2
b

+〈Nb〉σ 2
a − Cab − 〈Na〉〈Nb〉. (53)

B. Numerical results of stable baryons

Figure 10 shows multiplicity moments of the final proton,
�, and �− at different rapidity window sizes. Lines show
moments of baryons without including resonance decays.
Open symbols show results including weak decays, strong
decays, and electromagnetic decays. Solid symbols show
results including only strong and electromagnetic decays. We
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FIG. 10. Moments of final proton, �, and �− at different rapidity
window sizes yw . The auxiliary horizontal axis on top of panel (a)
shows the corresponding value of flavor conservation parameter λ2.
Lines show moments of baryons without including resonance decays.
Open symbols show results including weak decays, strong decays, and
electromagnetic decays. Solid symbols show results including only
strong and electromagnetic decays.

can see that, due to the large decay contribution to the final
proton and �, moments of the final proton and �, circle and
square symbols, are obviously smaller than those of initial
ones without including resonance decays, solid and dashed
lines, respectively. The decay contribution to �− multiplicity
is relatively small, and we see that both weak decays and
strong and electromagnetic decays weakly influence moments
of �−. In contrast to significant yw dependence of the moments
of proton and �, moments of �− are only weakly decreasing
with increasing yw, and the magnitudes are almost 1, which is
quite close to a Poisson distribution.

Figure 11 shows two-baryon correlations of the final
proton, �, �−, and �− at different rapidity window sizes.
Surprisingly, we see that they are almost unaffected by
resonance decays. However, we emphasize that the almost
unchanged quantities are relative correlations Cij/(〈Ni〉〈Nj 〉),
and for absolute correlations Cij they indeed change a lot.
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shows the corresponding value of flavor conservation parameter λ2.
Dashed lines show baryon-antibaryon correlations without including
resonance decays. Open circles show results including weak decays,
strong decays, and electromagnetic decays. Open up-triangles show
results including only strong and electromagnetic decays.

The nonmonotonic dependence of two-baryon correlations on
rapidity window size is also a striking behavior for future
experimental measurement.

Figure 12 shows baryon-antibaryon correlations of the
final proton, �, �−, and �− at different rapidity window
sizes. Open squares show results including only strong and
electromagnetic (S&EM) decays. Comparing to initial baryon-
antibaryon correlations without resonance decays (dashed
lines), we can see that all correlations except pp̄ are almost
unaffected by S&EM decays. However, for baryon-antibaryon
correlations except �−�̄+ and �−�̄+, after further including
weak decays, they (open circles) are significantly changed. In
addition, we observe that final pp̄, p�̄, p�̄+ and p�̄+ with
full decay contributions, open circles, have almost the same
correlations. This is because they all reflect such a baryon-
antibaryon production association; i.e., when an antibaryon,
either p̄, �̄, or �̄+ is produced, a baryon of any species (via
final the proton) should be produced with a certain associated
probability to balance the baryon quantum number.

There are some striking properties in the above decay
calculations which are suitable for future experimental mea-
surement. First, �−�̄+ and �−�̄+ correlations are almost
unaffected by resonance decays. Second, p�̄+ correlation
with only S&EM decays is negative, while that including weak
decays is positive at moderate and large rapidity window sizes.

Third, final p�̄ correlation changes sign around moderate
rapidity window size. Fourth, final p�̄+ correlation with full
decay contribution is positive, while with only S&EM decays
it tends to zero at moderate and large yw.

VI. SUMMARY AND DISCUSSION

We have studied dynamical multiplicity fluctuations and
correlations of identified baryons and antibaryons produced
by the hadronization of a bulk quark system in a quark combi-
nation model. We first developed a working model to discuss
the most basic dynamics of the quark combination which is
necessary for multiplicity study. Then, for the hadronization
of a quark system with given quark and antiquark numbers,
we derive moments (variance, skewness, and kurtosis) of
multiplicity distributions of produced baryons, two-baryon
multiplicity correlations, and baryon-antibaryon multiplicity
correlations. We obtain some interesting results about baryon
multiplicity as follows:

(1) Multiplicity moments of identified baryons exhibit the
behavior of a binomial distribution.

(2) Anti-association of two-baryon production is mainly
determined by the coinciding flavors of two baryons.

(3) All baryon-antibaryon correlations show a positive and
universal magnitude, which suggests that the joint
production of a baryon and antibaryon is mainly
constrained by baryon quantum number conservation
in combination.

These properties come from the basic dynamics of the quark
combination and, therefore, can be regarded as general features
of the quark combination mechanism.

We also take into account correlations and fluctuations of
quark numbers and antiquark numbers before hadronization
to study their effects on multiple production of baryons and
antibaryons. Supposing the weak off-diagonal flavor correla-
tions of quarks and antiquarks, we focus on effects of quark
number fluctuations and flavor conservation. In order to relate
the experimental measurement at specific rapidity window size
yw, we use the charge balance function of thermal particles
measured in central Pb+Pb collisions at

√
sNN = 2.76 TeV to

constrain the flavor conservation at different rapidity window
sizes. We calculate moments of inclusive baryon multiplicity,
two-baryon multiplicity correlations, and baryon-antibaryon
correlations at mid-rapidity with unit window size and at
different rapidity window sizes. Comparing with those results
directly from the quark combination, after including quark
number fluctuations and correlations we find

(1) Multiplicity moments of baryons deviate from bi-
nomial distribution, and at small flavor conservation
parameter we can observe the Poisson statistics.

(2) All two-baryon correlations at unit rapidity window
size tend to be a negative and universal value.

(3) Baryon-antibaryon correlations exhibit large species
difference. In particular, Cp�̄+ is negative, showing
the anti-association between p and �̄+ production. At
moderate rapidity window size we observe the negative
sign of p�̄+ correlation but at large window size
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FIG. 12. Baryon-antibaryon correlations at different rapidity window sizes yw . The auxiliary horizontal axis on top of the panels shows
the corresponding value of flavor conservation parameter λ2. Dashed lines show baryon-antibaryon correlations without including resonance
decays. Open circles show results including weak decays, strong decays, and electromagnetic decays. Open squares show results including
only strong and electromagnetic decays.

we observe the vanishing p�̄+ correlation. We also
observe the sign change of p�̄ correlation at moderate
window size.

We also study the influence of resonance decays. We
separately calculate the above quantities including strong and
electromagnetic (S&EM) decays and those further including
weak decays. Our final results of stable baryons p, �, �−, and
�− show several interesting properties as follows.

(1) Moments of final proton and � are obviously smaller
than those of directly produced baryons. However, the
scaled moments of final �− are weakly influenced
by resonance decays and are close to a Poisson
distribution.

(2) Two-baryon correlations are hardly influenced by ei-
ther S&EM decays or weak decays. In addition, they are
dependent on rapidity window size in a nonmonotonic
way.

(3) Effects of resonance decays on baryon-antibaryon cor-
relations are sophisticated. �−�̄+ and �−�̄+ correla-
tions are almost unaffected by S&EM and weak decays.
p�̄+ correlation with only S&EM decays is negative,
while with weak decays it is positive at moderate and
large rapidity window sizes. p�̄ correlation changes
sign around moderate rapidity window size.

They are striking phenomena which are suitable for the future
experimental measurement.

Some discussions related to experimental observation at
finite rapidity window size are in order. In Secs. III and IV,
we choose a quark system of specific size which corresponds
to a specific rapidity window of the quark system produced in
relativistic heavy ion collisions. Here we do not consider the
possible rapidity shift between (anti)quarks and the formed
(anti-)baryon, which may lead the produced baryons to fly out
of the studied window and baryons produced in other regions
to fly into this window. However, the effect of rapidity shift
in combination is quite small because of the following two
reasons. First, there is small discrepancy between the total
mass of three quarks and the mass of the formed baryon.
Note that we usually use the constituent quark mass in QCM,
i.e., mu ∼ 330 MeV and ms ∼ 500 MeV. Therefore, there is
no large rapidity shift in combination due to the mass (or
energy) mismatch between three neighboring quarks in phase
space and the baryon they form. Second, we apply the quark
combination rule as explained in Sec. II to longitudinal rapidity
direction to solve the unitary issue which is necessary for
multiplicity study. This approach has reproduced experimental
data of rapidity distributions of identified hadrons in relativistic
heavy ion collisions at different collisional energies. The ra-
pidity interval between neighboring quarks is only of the order
of 10−3 due to the high quark number density dN/dy ∼ 103 in
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ultrarelativistic heavy ion collisions. Therefore, rapidity shift
in baryon production is quite small and it hardly influences
results in this work. In Sec. V, we also neglect the rapidity
shift in resonance decays. Because the rapidity shift in baryon
decays is small (� 0.1), its influence is also expected to be
small.
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APPENDIX: DERIVATION OF EQS. (32)–(34)

Applying Eq. (30) and substituting the expansion〈
Nm

α Nn
β

〉 = Nm
α Nn

β + 1

2

∑
f1f2

∂12Nm
α Nn

β Cf1f2 + 1

3!

∑
f1f2f3

∂123Nm
α Nn

β Cf1f2f3 + 1

4!

∑
f1f2f3f4

∂1234Nm
α Nn

β Cf1f2f3f4 (A1)

into the definition of multiplicity moments

σ 2
α = 〈

N2
α

〉 − 〈Nα〉2,
〈
δN3

α

〉 = 〈
N3

α

〉 − 3〈Nα〉σ 2
α − 〈Nα〉3,〈

δN4
α

〉 = 〈
N4

α

〉 − 4
〈
δN3

α

〉〈Nα〉 − 6〈Nα〉2σ 2
α − 〈Nα〉4 (A2)

and two-body multiplicity correlation

Cαβ = 〈NαNβ〉 − 〈Nα〉〈Nβ〉, (A3)

we can get the expressions of Eqs. (32)–(34) up to two-body quark correlations. The complete expansions of Eqs. (A2) and (A3)
up to four-body quark correlations are too long to be shown. In addition, direct calculations according to Eqs. (A2) and (A3) are
numerically convenient.
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