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We investigate the clustering effects in light mass N = Z and N �= Z composite systems 20Ne∗, 28Si∗, 40Ca∗

and 21,22Ne∗, 39K∗, respectively, formed in low-energy heavy ion reactions at different excitation energies, within
the collective clusterization approach of the dynamical cluster-decay model (DCM) of Gupta and collaborators
based on quantum-mechanical fragmentation theory (QMFT). Considering quadrupole deformed and compact
orientated nuclei, a comparative decay analysis of these systems has been undertaken for the emission of different
intermediate mass fragments (IMFs) or clusters, specifically the IMFs having Z = 3, 4, and 5 (or Z = 7, 6, and
5 complimentary fragments from the 20Ne∗ and 21,22Ne∗ composite systems) which are having the experimental
data available for their Z distribution. Quite interestingly, the QMFT supports clustering in N = Z (20Ne∗ and
28Si∗) and N �= Z (21Ne∗ and 22Ne∗) nuclear systems at excitation energies corresponding to their respective
decay threshold or resonant-state energies for the 4α, 16O cluster and non-α cluster 14C (more so in 22Ne∗ N �= Z

composite system), supported by the Ikeda diagrams, taking into account the proper pairing strength in the
temperature-dependent liquid drop energies. Within the DCM, we notice that at higher excitation energies in
addition to xα-type (where x is an integer) clusters from N = Z composite systems and xn-xα-type clusters
from N �= Z composite systems, np-xα-type clusters are relatively quite dominant, with larger preformation
probability due to the decreased pairing strength at higher temperatures in the liquid drop energies. Also, the
study reveals the presence of competing reaction mechanisms of compound nucleus (fusion-fission, FF) and of
noncompound nucleus origin (deep inelastic orbiting, DIO) in the decay of very-light-mass composite systems
20,21,22Ne∗ and 28Si∗ at different excitation energies. The DIO contribution in the IMF cross section σIMF is
extracted for these composite systems, σIMF is given as the sum of FF cross section σFF and DIO cross section
σDIO. The DCM calculated FF cross sections σ DCM

FF are in good agreement with the available experimental data.

DOI: 10.1103/PhysRevC.95.014611

I. INTRODUCTION

An atomic nucleus remains the center of very exciting field
of research, with many interesting questions still unanswered.
Nuclear physics being even one of the very successful
disciplines for almost one century, still looking forward to
so many challenges on theoretical as well as experimental
fronts. One of the biggest challenges is the nucleon-nucleon
interaction inside the nucleus, which is not precisely known
as yet. Furthermore, on one hand too many particles to deal
with quantum mechanically and on the other hand, too few
particles to be treated statistically in an accurate way, makes the
matter more challenging. Theoretical physicists are expected
to be further brave for such facts with the upcoming fast
computational facilities and experimentalists are looking for
their data to be explained with nuclear models.

Nuclear cluster models are complementing other models
in the field, to explain successfully a number of nuclear phe-
nomena. According to the cluster models, these phenomena
could be understood keeping in view the fact that nucleons
lumped together into a cluster, for further interactions among
various nucleon clusters, rather than as free nucleons. The
tightly bound alpha particle (4He) with protons and neutrons,
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two each, makes a very special case of nuclear clustering
due to its much larger binding energy than that of other light
nuclei. In 1928, Gamow explained very well the spontaneous
formation of an alpha particle before its tunneling through
the potential barrier, while understanding the alpha decay of
trans-lead elements [1]. The most famous Hoyle state of 12C,
constituted of three alpha clusters, was predicted in 1953 [2]
to account for the abundance of carbon in the universe and
subsequently measured in 1957 [3]. Since then a number of
ideas have been explored to study the structure of various alpha
conjugate nuclei (xα, where x is integer) or N = Z nuclei from
12C to 40Ca [4]. These studies, specifically the Ikeda diagrams,
portray that these nuclei can be viewed as a combination of
alpha clusters or alpha plus heavier alpha conjugate clusters
depending on their excitation energy.

It is further being explored to understand the structure
of non-alpha conjugate nuclei (with added neutrons to alpha
conjugate nuclei) or N �= Z nuclei within the above picture.
The neutron-rich N �= Z nuclei are visualized in terms of
covalent exchanging of valence neutrons between the α cores
and by this way nuclear systems surmount the difficulty
of maximizing the interaction of valence or excess neutron
with the α-core nucleons [5]. The cluster structures are also
predicted in the case of N = Z and N �= Z nuclei from
16O to 40Ca. The cluster states are probed experimentally
through the quasi-elastic scattering, transfer or the cluster
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knockout reactions and electromagnetic transitions [6]. The
cluster structures have been studied experimentally in isotopes
of Be and B, 18O, 20,21,22Ne, 24Mg, 28Si, 32S, 40Ca [7,8].
Moreover, experimentally, Rogachev et al. [7] have worked
out successfully on the prediction of α + np + α clustering
for N �= Z, 10B nucleus.

Many more theoretical attempts have been made to explain
the clustering in such light nuclei. Two of us (S.K.P. and
R.K.G.) have studied [9] the clustering in light, stable,
and exotic nuclei within the relativistic mean-field approach
which explains the well established cluster structures in both
the ground and intrinsic excited states of these nuclei. In
this study, α clustering and halo structures have also been
explored for the 6–14Be and 11,13,15,17,19B isotopes, respectively,
having α + α + xn structures with α + α as the core and
α + α + p + xn structures with α + α + p as the core. Along
the same lines, Ebran et al. have studied [10] the clustering
in light N = Z, 20Ne nucleus within the density functional
theory and explored that the cause of cluster formation lies in
the effective nuclear interaction. Also, one of us (R.K.G.) and
collaborators have explored [11] the clustering prospects in
light neutron-rich 18,20O and 22Ne in the resonant excited states
within quantum-mechanical fragmentation theory (QMFT), by
taking into account the proper temperature-dependent pairing
strength [δ(T )] in the temperature-dependent liquid drop
energy. The results support the possibility of 14C (3α + 2n)
clustering, in addition to α clustering in these nuclei, which
supports the predictions of extended Ikeda diagram [5] for
n-rich nuclei.

Low-energy heavy ion collisions provide a wonderful probe
to analyze the cluster structure in the decay of composite
systems formed in these reactions. The decay products of the
very-light-mass composite systems (A ∼ 20–40) have been
analyzed extensively, including N = Z as well as N �= Z
composite systems [12–14]. The structure of nucleus also plays
an important role in fragment or cluster emission. A lot of
effort has been made to study the effect of clustering on the
reaction mechanism of light N = Z composite nuclear sys-
tems, i.e., 16O + 12C [15], 20Ne + 12C [16], 24Mg + 12C [17],
and 28Si + 12C [18] reactions. In these cases, in addition to the
fusion-fission (FF) path of decay from equilibrated compound
nuclei (CN), the projectile and target nuclei have another possi-
bility to form a dinuclear composite with subsequent emission
of intermediate mass fragments (IMFs) or clusters prior to
equilibration; also referred to as deep inelastic orbiting (DIO).
Thus, observed fragments or clusters may result either from the
decay of equilibrated CN or from DIO prior to the formation
of CN. The competition between the two decay processes is
also interpreted in terms of number of open channels (NOC)
available for the decay [19]. Large NOC indicates that FF
process dominates with regard to the faster process of DIO
with the memory of entrance channel. In the light-mass region,
the systems studied having small NOC are 16O + 12C [15],
20Ne + 12C [16], 24Mg + 12C [17], and 28Si + 12C [18], and the
systems studied having large NOC include 10,11B + 16,17,18O,
31P + 16O, 35Cl + 12C, and 36Ar + 12C [20–22], which have
also been studied successfully within QMFT-based dynamical
cluster-decay model (DCM) [23] showing competing decay
modes for the system (20Ne + 12C) with the smaller value

of NOC and the only decay mode, i.e., fusion-fission for
the systems 31P + 16O and 19F + 12C having large NOC
values.

It is also relevant to note here that one of us (R.K.G.)
and others have studied [24] the clustering effects in case of
N = Z and N �= Z composite systems formed in the heavy ion
transfer collisions, within the QMFT. The study reveals that,
in case of N = Z, A = 4x colliding nuclei, the minima in the
potential-energy surface (PES) lie only at α-particle-like nuclei
whereas, upon adding the neutrons to either the projectile or
target or both, the colliding nuclei (i.e., N �= Z nuclei) lead
gradually to the disappearance or decrease in the depth of
minima at α clusters along with the appearance of minima at
non-α clusters. This well-established collective clusterization
approach of the DCM may also be further explored to study the
cluster structure of light-mass N = Z and N �= Z composite
nuclei formed in the heavy ion collision reactions.

Recall that the DCM has been applied successfully to study
the decay of the light-mass compound systems 28Al∗, 31P∗,
32S∗, 39K∗, 40Ca∗, 48Cr∗, and 56Ni∗ [23,25–27]. Also, the
DCM explains successfully the fragment emission or decay
characteristics of medium, heavy, and superheavy compound
systems. Within the DCM, the decay of a compound system is
studied as collective clusterization process for the emission of
light particles LPs, IMFs, heavy-mass fragments (HMFs), and
FF fragments while the statistical models treats the emission
of different processes on different footings for different mass
regions. The DCM incorporates the nuclear structure effects
through preformation probability P0 of different clusters in
the decaying composite system, an information missing in the
statistical models. The DCM is an extended version of the
preformed cluster model (PCM) of Gupta and collaborators
to study the excited-state decay of compound systems. The
cluster radioactivity, the manifestation of clustering in the
nuclei, has been studied successfully within the formalism of
the PCM [28]. Within the PCM, the cluster emission of mass
varying from 12C to 34Si in cluster radioactive decay process
of nuclei in the trans-lead mass region, have been examined
with inclusion of quadrupole and higher-order deformations
and noncompact orientations.

In the present work, within the QMFT, we have investigated
for α clustering in light-mass N = Z and N �= Z nuclear
systems 20Ne∗, 28Si∗, and 21,22Ne∗, respectively, in their
intrinsic excited state at resonant-state energies corresponding
to 4α, 16O cluster, and non-α cluster 14C (from 22Ne∗ N �= Z
composite system only), given by the Ikeda diagrams. It may
be pointed out here that we have confined ourselves to the
resonant-state energies of these nuclear systems, correspond-
ing to 16O and 14C (from 22Ne∗) clusters, only to explore
the effect of pairing strength in the liquid drop energies upon
clustering. As we will see in the following, with respect to
the higher excitation energies for these composite systems,
clustering effects get changed due to smaller pairing strength
in the liquid drop energy. Thus, the decay analysis of the above
composite systems formed in low-energy heavy ion reactions
at different excitation energies has been carried out within the
DCM.

The experimental data [12–14] for the excited composite
systems 20,21,22Ne∗, 28Si∗, 39K∗, and 40Ca∗ formed in the
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FIG. 1. Schematic configuration of two equal or unequal axially
symmetric deformed, oriented nuclei, lying in the same plane
(azimuthal angle φ = 0◦) for various θ1 and θ2 values in the range 0◦

to 180◦. The θi are measured anticlockwise from the collision axis
and angle αi clockwise from the symmetry axis.

reactions 10,11B + 10,11B, 16O +12C, 11B + 28Si, 12C + 27Al,
and 12C + 28Si, respectively, at different excitation energies
is available for the emission of IMFs having Z = 3, 4,
and 5 (or Z = 7, 6, and 5 complimentary fragments for
the 20Ne∗ and 21,22Ne∗ composite systems) with their Z-
distribution data. It is relevant to mention here that the decay of
extremely-light-mass systems 20,21,22Ne∗ formed in reactions
10,11B + 10,11B has been studied earlier [29] within the DCM
for the binary symmetric decay (BSD) only at Elab = 48 MeV.
We found that the FF is in competition with DIO for the
BSD and that, with the inclusion of quadrupole deformation
and orientation effects, the contribution of the FF process
increases in 20Ne∗ in comparison with 21,22Ne∗. The decay
of 39K∗ and 40Ca∗ composite systems have also been studied
earlier within the DCM, but for spherical consideration of
nuclei [25].

In the following, a comparative decay analysis of the
light-mass N = Z (20Ne∗, 28Si∗, 40Ca∗) and N �= Z (21,22Ne∗,
39K∗) composite systems has been made within the DCM,
at different excitation energies, where experimental data are
available for the IMFs. The competitive decay modes of DIO in
the yields of measured IMFs have been evaluated empirically,
for the light composite systems under study, since we focus
here mainly on the clustering effects in the equilibrated
composite systems in the form of FF contribution in the yields
of IMFs. The calculations of the DIO process will be taken up
in future studies. Also, it is important to understand how the FF
process evolves with increasing energies. It is quite important
to explore and compare the clustering effects in these N = Z
α conjugate and N �= Z non-α conjugate composite systems
as these have also been studied experimentally and are widely
in need of a more theoretical interpretation.

Section II presents in brief the QMFT-based collective
clusterization approach of the DCM, where the deformation
effects are included up to quadrupole deformations (β2i) with
“compact orientations” (θi , i = 1,2), for the case of coplanar
nuclei (azimuthal angle φ = 0◦), shown schematically in Fig. 1
(see also Table 1 of Ref. [30]), and obtained as in Ref. [31]
for the hot fusion process. The calculations and results are

discussed in Sec. III. Finally, the conclusions are given in
Sec. IV.

II. THE DYNAMICAL CLUSTER-DECAY MODEL

The DCM, based on QMFT [32–34], is used to study
the decay of hot and rotating compound systems formed in
heavy ion reactions and is an extended version of the PCM, as
already mentioned in the introduction. It involves the two-step
process of cluster preformation followed by the penetration
through the interaction barrier, analogous to the α decay where
preformation was taken to be unity. It is worked out in terms of
(i) the collective coordinate of mass (and charge) asymmetry
η = (A1 − A2)/(A1 + A2) [and ηZ = (Z1 − Z2)/(Z1 + Z2)]
and (ii) relative separation R, (iii) multiple deformations
βλi

, λ = 2, 3, 4, and (iv) orientations θi of two nuclei in
the same plane. These coordinates η and R, respectively,
characterize the nucleon division (or exchange) between
outgoing fragments and the transfer of kinetic energy of
incident channel (Ec.m.) to internal excitation [total excitation
(TXE) or total kinetic energy (TKE)] of the outgoing channel.
The TKE and TXE of fragments is related to CN excitation
energy as E∗

CN + Qout(T ) = TKE(T ) + TXE(T ).
The decay cross section of equilibrated CN, using the

decoupled approximation of R and η motions, is defined in
terms of 
 partial waves as [35,36]

σ = π

k2


c∑

=0

(2
 + 1)P0P, k =
√

2μEc.m.

�2
, (1)

where the preformation probability P0 and the penetrability P
refers to η and R motion, respectively, and 
c is the critical
angular momentum:


c = Ra

√
2μ[Ec.m. − V (Ra,ηin,
 = 0)]/�.

Ra is the first turning point, defined later, where the penetration
starts. The structure effects of the CN, a distinct advantage of
the DCM over the statistical models, enters the model via the
preformation probabilities P0 of the fragments. In case, the
noncompound nucleus (nCN) component, i.e., DIO, were not
measured in the yield of IMF, it can be estimated empirically,
σDIO = σ

Expt
IMF − σ DCM

FF , where σDIO, σ
Expt
IMF , and σ DCM

FF are,
respectively, the DIO, experimental IMF, and DCM-calculated
FF cross sections.

The P0 is given by the solution of stationary Schrödinger
equation in η, at a fixed R = Ra ,{

− �
2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η,T )

}
ψν(η) = Eνψν(η),

(2)

with ν = 0,1,2,3, . . . referring to ground-state (ν = 0) and
excited-state solutions summed over as a Boltzmann-like
function

|ψ |2 =
∞∑

ν=0

|ψν |2 exp(−Eν/T ). (3)
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Then, the probability of cluster preformation is

P0(Ai) = |ψ(η(Ai))|2 2

A∗
CN

√
Bηη, (4)

where i = 1 or 2 and Bηη are the smooth hydrodynamical mass
parameters [37].

For clustering effects in nuclei we look for the maxima
in P0(Ai) (as shown in Fig. 2) or the energetically fa-
vored potential-energy minima in the fragmentation potential
VR(η,T ). VR(η,T ) in Eq. (2), for fixed βλi

, is the potential
energy for all possible mass combinations Ai , corresponding
to the given charges Zi minimized for each mass fragmentation
coordinate η. The fragmentation potential is defined as

VR(η,T ) =
2∑

i=1

[VLDM(Ai,Zi,T )] +
2∑

i=1

[δUi] exp

(
− T 2

T0
2

)

+Vc(R,Zi,βλi
,θi,T ) + VP (R,Ai,βλi

,θi,T )

+V
(R,Ai,βλi
,θi,T ), (5)

where Vc, Vp, Vl are temperature-dependent Coulomb, nuclear
proximity, and angular-momentum-dependent potentials for
deformed and oriented nuclei. Bi = VLDM(Ai,Zi,T ) + δUi ,
i = 1,2, are the binding energies of two nuclei, where δU are
the “empirical” shell corrections, i.e., the microscopic part [38]
of the binding energy, and VLDM is the liquid drop energy, i.e.,

FIG. 2. Variation of the preformation probability P0 with frag-
ment or cluster mass (Ai , i = 1,2) for the decay of N = Z or
α conjugate systems (a) 20Ne∗ and (b) 28Si∗, and N �= Z or non-
α conjugate systems (c) 21Ne∗ and (d) 22Ne∗, at T values of
their corresponding excited resonant states and the experimentally
available excited state [13].

the macroscopic part. The T -dependent liquid drop part of the
binding energy VLDM(T ) is taken from Davidson et al. [39],
based on the semi-empirical mass formula of Seeger [40], as

VLDM(A,Z,T ) = α(T )A + β(T )A
2
3

+
(

γ (T ) − η(T )

A
1
3

)(
I 2 + 2|I |

A

)

+ Z2

R0(T )A
1
3

(
1−0.7636

Z
2
3

− 2.29

[R0(T )A
1
3 ]2

)

+ δ(T )
f (Z,A)

A
3
4

, (6)

where

I = aa(Z − N ), aa = 1.0, (7)

and f (Z,A) = (−1,0,1), for even-even, even-odd, and odd-
odd nuclei, respectively. The temperature-dependent binding
energies are obtained from Ref. [39] with its constants at T = 0
refitted [35,36] to give the ground state (T = 0) experimental
binding energies [41] and, where the data are not available,
the theoretical binding energies are taken from Ref. [42]. It
is important to point out here that one of us (R.K.G.) and
co-workers have shown [11,43] that for both the α-nucleus and
14C clustering in nuclei, a modified temperature dependence
of the pairing energy coefficient δ(T ) is essential in the
temperature-dependent liquid drop energy (refer to Fig. 3 of
Ref. [11]). In the following, we have further highlighted the
significance of an appropriate δ(T ) in the present calculations
while comparing the clustering effects in the N = Z, 20Ne∗,
28Si∗ (or α conjugate) and N �= Z, 21,22Ne∗ (or non-α
conjugate) nuclear systems (refer to Fig. 2, discussed in detail
in the next section).

The Coulomb potential Vc for deformed and oriented nuclei
is defined as

Vc(R,Zi,βλi
,θi,T )

= Z1Z2e
2/R(T ) + 3Z1Z2e

2
∑

λ,i=1,2

Rλ
i (αi,T )

(2λ + 1)Rλ+1

×Y
(0)
λ (θi)

[
βλi

+ 4

7
β2

λi
Y

(0)
λ (θi)

]
. (8)

The deformation parameters βλi
of the nuclei are taken from

the tables of Möller et al. [42], and the orientations θi are the
“optimum” [30] or “compact” orientations [31] of the “hot”
fusion process.

The nuclear proximity potential

Vp(s0(T )) = 4πR̄(T )γ b(T )�(s0(T )), (9)

where γ , the nuclear surface energy constant, is given by

γ = 0.9517

[
1 − 1.7826

(
N − Z

A

)2]
MeV/fm2, (10)

and b(T ) = 0.99(1 + 0.009T 2) is the nuclear surface thickness
and R̄(T ) is the root mean square radius of the Gaussian
curvature and �(s0(T )) is the universal function, independent
of the geometry of the system but dependent on the minimum
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separation distance s0(T ) depicted in Fig. 1, as

�(s0(T ))

=
{

− 1
2 (s0−2.54)2−0.0852(s0−2.54)3, s0�1.2511

−3.437 exp
(− s0

0.75

)
, s0 � 1.2511.

(11)

The minimum distance s0, for a fixed R, is defined (see Fig. 1)
as

s0 = R − X1 − X2

= R − R1(α1) cos(θ1 − α1) − R2(α2) cos(180◦ + θ2 − α2),

(12)

where, for s0 to be minimum, the conditions on s0 are [44]

∂s0

∂α1
= ∂s0

∂α2
= 0, (13)

resulting in

tan(θ1 − α1) = −R
′
1(α1)/R1(α1), (14)

tan(180◦ + θ2 − α2) = −R
′
2(α2)/R2(α2). (15)

Here, R
′
i(αi) is the first-order derivative of Ri(αi) with respect

to αi . Note that the above conditions refer to perpendiculars
(normal vectors) at the points P1 and P2 in Fig. 1, and hence
minimum s0 defines the so-called optimum [30] or compact
configuration [31], respectively, for small (positive or negative,
including zero value) or large positive β4i . Thus, s0(T ) gives
the minimum separation distance along the colliding Z axis be-
tween any two deformed, coplanar nuclei, denoted as the neck-
length parameter �R(η,T ) in the following [refer to Eq. (21)].

The angular-momentum-dependent potential is given by

V
(T ) = �
2
(
 + 1)

2I (T )
, (16)

where

I (T ) = Is(T )

= μR2 + 2
5A1mR1

2(α1,T ) + 2
5A2mR2

2(α2,T ) (17)

is the moment of inertia for the sticking limit. This limit is
defined for the separation distance �R to be within the range
of nuclear proximity (∼2 fm). The penetration probability P in
Eq. (1) is calculated by using the Wenzel–Kramers–Brillouin
(WKB) integral as

P = exp

[
−2

�

∫ Rb

Ra

{2μ[V (R) − Qeff]}1/2dR

]
, (18)

where V (R) is the scattering potential at each R value,
calculated as sum of Coulomb, proximity, and angular-
momentum-dependent potential, with Ra and Rb as the first
and second turning point, satisfying

V (Ra,
) = V (Rb,
) = Qeff(T ,
). (19)

The 
 dependence of Ra is defined by

V (Ra,
) = Qeff(T ,
 = 
min), (20)

which means that Ra , given by equation above is the same for
all 
 values and that V (Ra,
) acts like an (effective) Q value

[Qeff(T,
)] for the decay of a hot compound system. The 
min

value refers to the minimum value that starts contributing to
WKB integral. As the 
 value increases, the Qeff(T ) value in-
creases and hence V(Ra,
) increases (see Fig. 3). Equation (18)
is solved analytically [45], as shown in Fig. 3 for the illustrative
case of symmetric decay of N = Z composite systems.

The first turning point Ra of the penetration path is given
as

Ra = R1(α1,T ) + R2(α2,T ) + �R(η,T ), (21)

with the radius vector Ri(αi,T ) defined as

Ri(αi,T ) = R0i(T )

[
1 +

∑
λ

βλi
Y

(0)
λ (αi)

]
, (22)

where

R0i(T ) = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2),

(23)

with T calculated by using E∗
CN = (A

8 )T 2 − T . The choice of
parameter Ra , for a best fit to the data, allows us to relate in a
simple way the V(Ra) to the top of the barrier VB for each 
,
by defining their difference �VB as the effective “lowering of
the barrier”:

�VB = V (Ra) − VB.

Note that �VB is defined as a negative quantity because the
barrier actually used is effectively lowered which is an inbuilt
property of the DCM. This ensures that V (Ra) (= Qeff) lies
below the barrier, as illustrated in Fig. 3 for 
min and 
c values.
It shows that the magnitude of �VB decreases with increase
in 
 value.

III. CALCULATIONS AND DISCUSSION

In this section we first present the calculations and discus-
sion within the QMFT, for the decay of light-mass N = Z
(20Ne∗ and 28Si∗) and N �= Z (21Ne∗ and 22Ne∗) nuclear
systems with considerations of quadrupole deformations and
“hot” compact orientations of nuclei. The calculations have
been done at T = 0 as well as the corresponding excitation
energies of the nuclear systems for their respective decay
threshold or resonant-state energies for the 4α, i.e., 16O cluster,
except for the 22Ne∗ system where the chosen threshold or
resonant-state energy is for the 14C cluster, given by the
Ikeda diagram. Second, we present here the calculations and
discussion within the QMFT-based DCM, for the decay of
highly excited light-mass N = Z (20Ne∗, 28Si∗, and 40Ca∗) and
N �= Z (21Ne∗, 22Ne∗, and 39K∗) composite systems formed
in heavy ion collisions. We intend to analyze the effects
of the rising temperature on the clustering in these systems
under study, specifically, 20Ne∗, 28Si∗, 21Ne∗, and 22Ne∗

from ground state T = 0 to the corresponding resonant-state
temperature (as mentioned above) and beyond at the higher
excitation energies. At higher excitation energies, the available
experimental data for the IMFs or clusters having Z = 5,6,7
(for 20Ne∗, 21Ne∗, 22Ne∗) and Z = 3,4,5 for 28Si∗ will be
compared with the DCM calculations.

It is quite important to explore and compare the clustering
effects in these N = Z or α conjugate and N �= Z or non-α
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FIG. 3. Scattering potential V (R) for the symmetric decay of α conjugate systems (a) 20Ne∗, (b) 28Si∗, and (c) 40Ca∗ at 
min and respective

c values.

conjugate composite systems at different excitation energies
and to compare the available experimental data [12–14] with
the DCM calculations. Figure 2 presents the results for cluster-
ing effects, showing the largest preformation probability, i.e.,
maxima in P0 with respect to the cluster mass (Ai , i = 1,2) for
the decay of N = Z [Fig. 2(a)] 20Ne∗, [Fig. 2(b)] 28Si∗, and
N �= Z [Fig. 2(c)] 21Ne∗, [Fig. 2(d)] 22Ne∗ nuclear systems.
Figure 2(a) shows that, for N = Z, 20Ne∗ at T = 1.59 MeV
(with pairing constant δ = 32.73 MeV), the most probable
cluster configurations are α + 16O and 8Be + 12C. At T =
4.94 MeV (pairing constant δ = 0.77 MeV), in addition to the
most probable xα-type clusters at T = 1.59 MeV, np-xα-type
clusters; namely, 6Li, 10B, and 14N clusters also appear as
prominent clusters. For 28Si∗ at T = 2.33 MeV (with pairing
constant δ = 31.19 MeV), Fig. 2(b) shows that 4He + 24Mg is
the most probable cluster configuration (largest P0), followed
by the 8Be + 20Ne and 12C + 16O cluster configurations. At
T = 4.51 MeV (pairing constant δ = 2.11 MeV), in addition
to the most probable clusters at T = 2.33 MeV, 6Li, 10B, 14N ,
18F, and 22Na (np-xα-type clusters) also appear as prominent
clusters.

On the other hand, for the cases of N �= Z systems, 21Ne∗

[Fig. 2(c)] at T = 2.29 MeV (with pairing constant δ =
31.30 MeV), 4He + 17O (≡ α + n + 16O) cluster configura-
tion competes with 8Be + 13C (≡ 2α + n + 12C) clustering. At
T = 4.67 MeV (pairing constant δ = 1.53 MeV), in addition
to the most probable clusters at T = 2.29 MeV, 6,7Li, 14,15N
clusters also appear as prominent clusters. For 22Ne∗ [Fig. 2(d)]
at T = 2.59 MeV (with pairing constant δ = 30.43 MeV),
4He + 18O (≡ α + 2n + 16O) cluster configuration competes
with 8Be + 14C clustering. At T = 4.46 MeV (pairing constant
δ = 2.34 MeV), in addition to the most probable clusters
at T = 2.59 MeV, 10,12B clusters also appear as prominent
clusters. Quite interestingly, these results show that the QMFT
supports clustering in N = Z (20Ne∗ and 28Si∗) and N �= Z
(21Ne∗ and 22Ne∗) nuclear systems at excitation energies
corresponding to their respective decay threshold or resonant-

state energies for the 4α, i.e., 16O cluster and non-α cluster
14C (for N �= Z 22Ne∗ composite system only), given by
the Ikeda diagrams [4,5], for taking into account the proper
pairing strength in the temperature-dependent liquid drop
energies [11,43]. Thus, we observe that the clusters remain
same for 20Ne∗, 28Si∗, and 21Ne∗ at all excitation energies
as shown in Fig. 2, but for 22Ne∗, the clusters changes at
higher excitation energy of 50.36 MeV. This happens because
of the change in Z distribution with increasing temperature, as
shown in Fig. 4. Figure 4 shows the variation of fragmentation
potential with fragment charge Z for A2 = 4 for the decay
of non-α conjugate system 22Ne∗. At E∗ = 15.89 MeV [with
δ(T ) = 30.43 MeV], 4He is energetically minimized while at
higher experimental excitation energy E∗ = 50.36 MeV [with
δ(T ) = 2.34 MeV], n-rich 4H is energetically minimized, and
hence the corresponding heavy clusters for 22Ne∗ in Fig. 2 are
18O and 18F, respectively.

Figures 5 and 6 present the clustering effects in the N = Z
composite systems [Figs. 5(a) and 6(a)] 20Ne∗, [Figs. 5(b)
and 6(b)] 28Si∗, and [Figs. 5(c) and 6(c)] 40Ca∗ at the higher
excitation energy E∗

CN or T values, respectively, for the
energetically favored potential-energy minima in the fragmen-
tation potential V(η,T ) and the largest preformation factor or
maxima in the cluster preformation probability P0(Ai), at 
 =
0 as well as at respective 
c. Surprisingly, at higher excitation
energies clustering get changed drastically in these systems,
due to decreasing pairing strength. Figures 2(a) and 6(a) for
20Ne∗ system at different T values clearly demonstrate the
probable binary symmetric cluster configuration with the IMF
10B (≡2α + p + n) at higher T value showing the large
preformation yield in comparison to at the lower T values,
as observed also in the relativistic mean-field calculations
for intrinsic excited states of 20Ne [9], and also for the
calculations within formalism of energy density functionals
which clearly presents the similar kind of results for 20Ne [10].
Moreover, the IMF 14N (≡3α + p + n) appear as the most
probable cluster followed by IMF or α clusters 12C and 16O
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FIG. 4. Variation of the fragmentation potential V with fragment
charge Z for A2 = 4 fragment, for the decay of non-α conjugate
system 22Ne∗ at T values of their corresponding excited resonant
state and the experimentally available excited state [13].

which are anyhow most probable at resonant state energies.
Also, 18F (≡4α + p + n) is in strong competition with the α
clusters. Figures 2(b) and 6(b) for another N = Z composite
system 28Si∗ system at different T values present the most
probable binary symmetric cluster configuration with the IMF
14N (≡3α + p + n) at higher T value showing the largest
preformation yield in comparison to at the lower T values. The
α clusters 16O and 20Ne, respectively, have strong competition
from 18F (≡4α + p + n) and 22Na (≡5α + p + n). It is
interesting to note that another N = Z composite system 40Ca∗

[Fig. 6(c)] also presents a similar kind of picture with binary

symmetric decay (20Ne) in competition with α as well as non-α
clusters (xα + p + n).

For the N �= Z composite system 21Ne∗, Figs. 2(c) and 7(a),
at different T values, demonstrate that the 13C (≡3α + n)
cluster is still dominant at higher T value with competing
binary near symmetric cluster configuration with the IMFs 10B
(≡2α + p + n) and 11B (≡2α + p + 2n) and 17O (≡4α + n)
cluster configuration is now not favored. Other clusters or IMFs
14N (≡3α + p + n) and 15N (≡3α + p + 2n) are strongly
competing with other new possibilities. Figures 2(d) and 7(b)
for another N �= Z composite system 22Ne∗ system at different
T values present the most probable binary near-symmetric
cluster configuration with the IMFs 10B (≡2α + p + n) and
12B (≡2α + p + 3n) at higher T value showing the largest
preformation yield in comparison to ones at the lower T values.
Now, the non-α cluster 14C is replaced by the IMF 14N (≡3α +
p + n) competing strongly with the binary decay. The IMF 15N
(≡3α + p + 2n), 16N (≡3α + p + 3n) and 18F (≡4α + p +
n) are also having small maxima. Note that 18O (≡4α + 2n) is
replaced by 18F (≡4α + p + n) at higher excitation energies.
Another N �= Z composite system 39K∗ [Fig. 6(c)] presents
asymmetric decay with 6Li (≡α + p + n) the most probable
IMFs followed by 10B (≡2α + p + n), 13C (≡3α + n) and 14N
(≡3α + p + n) along with α clusters 12C and 16O.

Thus, at higher excitation energies, we notice from
Figs. 6(a)–6(c) that, for N = Z composite systems, xα-type
clusters are preformed in addition to the (xα + p + n)-type
clusters, which is due to smaller pairing strength at higher
temperatures in the liquid drop energies. On the other hand,
for the N �= Z composite systems we find from Figs. 7(a)–7(c)
that, at higher excitation energies, (xα + xn)- and (xα +
p + xn)-type clusters are preformed, specifically for 21,22Ne∗

systems, whereas for 39K∗, in addition, the α clusters also come
into the picture. These results are of important consequences

FIG. 5. Variation of fragmentation potential V with fragment mass (Ai , i = 1,2) for the decay of α conjugate systems (a) 20Ne∗ (b) 28Si∗,
and (c) 40Ca∗ at 
 = 0 and respective 
c values. The values of fitted �R for the excitation energies in the figure for 20Ne∗ are 2.12, 2.02, 1.781
(for Z = 5,6,7, respectively), for 28Si∗ they are 1.223, 1.542, 1.585 (for Z = 3,4,5, respectively), and for 40Ca∗ they are 1.14, 1.14, 1.34 (for
Z = 3,4,5, respectively); also given in Table I.
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FIG. 6. Variation of preformation probability P0 with fragment mass (Ai , i = 1,2) for the decay of α conjugate systems (a) 20Ne∗, (b) 28Si∗,
and (c) 40Ca∗ at 
 = 0 and respective 
c values, calculated for fragmentation potentials in Fig. 5.

for the observed yields of IMFs having Z = 3,4,5 from
28Si∗, 40Ca∗, and 39K∗ composite systems (or Z = 7,6,5
complimentary fragments from 20Ne∗ and 21,22Ne∗ composite
systems) which have the experimental data available for their
Z distribution.

Next, in the following, we compare the decay of N = Z or α
conjugate and N �= Z or non-α conjugate composite systems
into the measured IMFs in terms of preformation profile of
clusters or fragments, i.e., P0, penetrability through interaction
potential, i.e., P and the calculated σ DCM

FF , followed by
empirical evaluation of DIO contribution in the experimental
yield, i.e., σDIO = σ

Expt
IMF − σ DCM

FF .

Figures 5(a)–5(c) show that, in the case of 20Ne∗ for
Z = 5,6,7, the energetically favoured or the cluster at the
minima are 10B, 11,12C, and 13,14,15N, respectively, and in case
of 28Si∗ and 40Ca∗ for Z = 3,4,5, the energetically favored
clusters are 5,6,7Li, 8Be, and 9,10B, respectively. Also, here
we see that at 
 = 0�, the LPs (1 � A � 4) or equivalently,
evaporation residue (ER) are competing with the IMFs or
clusters. At higher 
 values, IMFs are the dominant mode
of decay. As discussed earlier, at 
 = 
c, there is a strong
minima for the symmetric decay of N = Z (20Ne∗ and 28Si∗)
or α-conjugate systems. As shown in Figs. 6(a)–6(c), the
energetically favored clusters are stable and thus have higher
P0. Similarly, Figs. 7(a)–7(c) present that the highly preformed

FIG. 7. Variation of preformation probability P0 with fragment mass (Ai , i = 1,2) for the decay of non-α conjugate systems (a) 21Ne∗,
(b) 22Ne∗, and (c) 39K∗ at 
 = 0 and respective 
c values. The values of fitted �R for the excitation energies in the figure for 21Ne∗ are 2.0,
1.92, 1.78 (for Z = 5,6,7 respectively), for 22Ne∗ they are 1.765, 2.0, 1.82 (for Z = 5,6,7 respectively), for 39K∗ they are 0.97, 1.16, 1.78 (for
Z = 3,4,5, respectively). See also Table II.
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FIG. 8. Variation of penetration probability P with cluster mass (Ai , i = 1,2) for the decay of α conjugate systems (a) 20Ne∗, (b) 28Si∗, and
(c) 40Ca∗ at 
min and respective 
c values.

clusters in the case of N �= Z composite systems 21Ne∗ for
Z = 5,6,7 are 10,11B, 12,13C, and 14,15N , respectively, and in
case of 22Ne∗, for Z = 5,6,7 are 10,11B, 13C, and 14,15,16N,
respectively, and in case of 39K∗, for Z = 3,4,5, are 5,6,7Li,
8,9Be, and 10,11B, respectively.

Figures 8(a)–8(c) depict the penetration of different IMFs or
clusters for N = Z composite systems and, in general, we see
that their P → 1 at 
 = 
c, while at low angular momentum
in the case of 20Ne∗ [Fig. 8(a)], the 10B cluster has the smallest
P while it is preformed strongly and 11,12C and 13,14,15N have
the higher value of P . In the case of 28Si∗ [Fig. 8(b)], at
low angular momentum, the 7Li has the smallest P and other
clusters 5,6Li, 8Be, 9,10B have higher P . In the case of 40Ca∗

[Fig. 8(c)] also, at low angular momentum, the 7Li has a
smaller P value in comparison to 5,6Li, 8Be, and 9,10B, whereas

the 20Ne cluster has the smallest P although it has a high value
of P0. Figures 9(a)–9(c) present a similar kind of picture but
for the N �= Z composite systems, with the exception that of
39K∗ [Fig. 9(c)], the symmetric fragments have very high P

values contrary to their low P0 values.
Following the above results, the calculations for σ DCM

FF

and their comparisons with σ
Expt
IMF for the N = Z and N �= Z

composite systems are presented, respectively, in Tables I
and II. The empirically evaluated σDIO are also presented here
for 20,21,22Ne∗ and 28Si∗ systems. Note that the experimental
data are fit by adjusting the neck-length parameter (�R)
simultaneously within the proximity range. Table I shows that,
in the case of 20Ne∗, Z = 5, 10B has the highest P0 but has
smallest penetrability P (see Figs. 6 and 8) which is in line with
the experimental cross section (σ Expt

IMF ) which is least for Z = 5

FIG. 9. Variation of penetration probability P with cluster mass (Ai , i = 1,2) for the decay of non-α conjugate systems (a)21Ne, (b) 22Ne∗,
and (c) 39K∗ at 
min and respective 
c values.
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TABLE I. The DCM-calculated FF cross sections σ DCM
FF for the decay of 20Ne∗, 28Si∗ and 40Ca∗ summed up to 
c, and the σDIO estimated

empirically and compared with experimental data.

Ec.m. E∗
CN T 
c �R (fm) σ DCM

FF (mb) σ
Expt
IMF (mb) σ

emp
DIO (mb)

(MeV) (MeV) (MeV) (�) Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7

10B + 10B → 20Ne∗

12 43.14 4.35 12 2.118 2.2 2.171 77.37 48.33 312.73 77.37 192.90 313.25 144.57
15 46.14 4.50 13 2.13 2.2 2.14 115.56 57.45 337.98 115.01 427.10 482.41 369.65 144.43
20 51.14 4.72 15 2.112 2.10 1.9 214.69 70.75 275.18 214.33 376.40 334.83 305.65 59.65
24 55.14 4.90 16 2.1 2.0 1.8 254.56 62.13 234.79 268.70 472.06 247.33 14.14 409.93 12.54
25 56.14 4.94 16 2.12 2.02 1.781 252.42 60.89 205.72 303.0 510.75 205.33 50.58 449.86

Ec.m. E∗
CN T 
c �R (fm) σ DCM

FF (mb) σ
Expt
IMF (mb) σ

emp
DIO (mb)

(MeV) (MeV) (MeV) (�) Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5
16O + 12C → 28Si∗

50.14 66.89 4.51 26 1.223 1.542 1.585 17.06 12.72 38.34 42.68 14.20 60.28 25.62 1.48 21.94
53.57 70.32 4.62 26 1.24 1.56 1.61 16.79 11.86 37.38 44.12 17.32 63.95 27.33 5.46 26.57
62.14 78.89 4.92 26 1.31 1.625 1.67 16.56 10.98 34.24 68.34 21.53 83.31 51.78 10.55 49.07
68.57 85.32 5.08 25 1.47 1.75 1.792 20.36 11.58 32.02 95.16 33.13 126.48 74.80 21.55 94.46
Ec.m. E∗

CN T 
c �R (fm) σ DCM
FF (mb) σ

Expt
FF (mb)

(MeV) (MeV) MeV) (�) Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5
12C + 28Si → 40Ca∗

53.90 67.20 3.77 29 1.14 1.14 1.34 4.08 2.81 3.82 3.7+5.4
−1.7 2.7+4.1

−1.2 3.4+5.1
−1.5

among Z = 5,6,7. For Z = 5, the decay mode is FF while
the DIO comes into picture at two higher energies. For Z = 7,
the dominant decay mode is FF at the lowest energy and at
higher energies DIO is present. The percent-age contribution
of DIO is maximum near the entrance channel, i.e., Z = 6. In
the case of 28Si∗, for Z = 4 the percent-age FF contribution

is comparatively more than in Z = 3,5 clusters. There is an
enhanced yield near the entrance channel, i.e., Z = 5. For
Z = 3, the percent-age DIO is greater and increases with
increasing energy. For 40Ca∗, the FF cross sections are well
reproduced for Z = 3,4,5 and are compared with experimental
data.

TABLE II. The DCM-calculated FF cross sections σ DCM
FF for the decay of 21Ne∗, 22Ne∗, and 39K∗ summed up to 
c value, and the σDIO

estimated empirically and compared with experimental data.

Ec.m. E∗
CN T 
c �R (fm) σ DCM

FF (mb) σ
Expt
IMF (mb) σ

emp
DIO (mb)

(MeV) (MeV) (MeV) (�) Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7 Z = 5 Z = 6 Z = 7

10B +11B → 21Ne∗

13.09 39.54 4.07 12 1.987 2.2 2.2 17.29 142.15 171.92 17.36 802.48 600.83 660.33 428.91
15.71 42.16 4.20 13 2.09 2.2 2.2 45.85 183.10 219.05 46.31 739.95 732.66 556.85 513.16
20.95 47.40 4.44 15 2.19 2.12 2.05 111.86 241.13 201.36 111.16 881.22 743.16 640.09 541.80
26.19 52.64 4.67 17 2.0 1.92 1.78 109.28 231.53 168.24 159.80 713.31 484.10 50.52 481.78 315.86

11B +11B → 22Ne∗

12 37.36 3.87 12 1.75 2.2 2.2 3.93 13.82 80.86 3.99 288.33 80.43 274.81
15 40.36 4.02 14 1.782 2.2 2.11 30.29 25.12 166.86 30.26 378.54 166.30 353.42
20 45.36 4.25 15 1.86 2.2 2.02 61.17 19.46 142.56 61.09 493.31 220.10 473.85 77.54
24 49.36 4.42 17 1.73 1.96 1.81 82.14 14.91 130.49 82.21 537.27 298.91 522.36 168.42
25 50.36 4.46 17 1.765 2.0 1.82 88.70 15.16 124.63 88.49 560.68 410.86 545.32 286.23

Ec.m. E∗
CN T 
c �R (fm) σ DCM

FF (mb) σ
Expt
FF (mb)

(MeV) (MeV) MeV) (�) Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5 Z = 3 Z = 4 Z = 5

11B + 28Si → 39K∗

45.94 66.93 3.81 28 1.11 1.33 1.936 9.20 6.23 2.96 8.5+10.0
−5.8 5.3+8.0

−2.3 21.0+32.1
−9.2

12C + 27Al → 39K∗

50.53 67.14 3.81 30 0.97 1.16 1.78 9.30 5.06 2.53 8.5+10.6
−6.2 4.2+5.8

−3.0 9.+13.0
−5.2
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Table II shows that, in the case of 21Ne∗, Z = 5 10,11B
are preformed strongly having competition with 8Be and 13C
but have the least penetrability (see Figs. 7 and 9) which is
in line with the experimental cross section (σ Expt

IMF ) which is
least for Z = 5 among Z = 5,6,7. For Z = 5, the decay mode
is FF while the DIO comes into the picture at the highest
energy. In the case of Z = 6, 13C has the highest P0 and
good penetrability P (see Figs. 7 and 9) and has the highest
experimental cross section among Z = 5,6,7. For Z = 6,7, the
dominant decay mode is DIO which increases with increasing
energy. In the case of 22Ne∗, for Z = 5 the σ

Expt
IMF is the smallest

in comparison with Z = 6,7. Also, the results within the DCM
show that the symmetric breakup into 11B is least favored in
terms of P0 and P (refer to Figs. 7 and 9) and the FF is the
only decay mode at all experimental energies (for Z = 5).
For Z = 6 (i.e., near to the entrance channel), the DIO is
the significant decay mode. For 39K∗, the FF cross sections
are well reproduced for Z = 3,4 while for Z = 5 we are not
able to obtain a good agreement with experimental data. The
percent contribution of FF is more in α composite systems in
comparison with non-α composite systems. The results, within
the DCM, are in good agreement with the experimental data.

IV. SUMMARY

The clustering effects in the light-mass N = Z (20Ne∗,
28Si∗, and 40Ca∗) and N �= Z (21,22Ne∗ and 39K∗) composite
systems, with considerations of quadrupole deformations and
compact orientations of nuclei, have been studied within
the QMFT-based DCM and their comparative decay analysis
undertaken. The calculations at T = 0 and corresponding to
excitation energies near to decay threshold given by Ikeda
diagram, by taking into account the temperature-dependent
pairing-energy term in liquid drop energies reveal that, in
N = Z nuclear systems, xα-type (where x is an integer)
cluster configurations are dominant while in N �= Z nuclear
systems, xn-xα-type cluster configurations are dominant.

These results are in conformity with cluster configurations
given by the Ikeda diagram. However, the clustering scenario at
experimentally available excitation energies is changed due to
decreasing pairing strength at high energies. In addition
to xα configuration in N = Z composite systems and
xn-xα-type configuration in N �= Z composite systems, the
np-xα-type configurations are having comparatively higher
preformation probability in these systems.

Thus, the present study explores the role of nuclear
structure effects via preformation probability P0, which enters
the collision dynamics within the formalism of DCM. The
emission of different intermediate mass fragments or clusters
with Z = 3,4,5 (or complementary fragments Z = 5,6,7 in
20,21,22Ne∗) have also been studied in terms of fragmentation
potential V , preformation probability P0, and penetration P
through the interaction potential and IMF cross section by
fitting the only parameter (i.e., neck length parameter) within
the proximity range, in reference to available Z-distribution
data. The study shows the coexistence of competing reaction
mechanisms, i.e., FF and DIO in the decay of light-mass
composite systems under study. The contribution of DIO in
total cross section of IMFs has been evaluated empirically.
The percent contribution of FF is more in N = Z (α conjugate)
systems in comparison to N �= Z (non-α conjugate) systems.
The calculated cross sections, using the DCM, are in good
agreement with experimental data.
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