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Interaction of three fission fragments and yields of various ternary fragments
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The interaction potential energy of the three deformed fragments formed in fission of 252Cf is studied for
various combinations of three-fragment fission. The lowest height of the potential energy ridge between three
touching and separated deformed fragments is sought. The excitation energies of various three-deformed-fragment
configurations, at the lowest barrier heights related to the yield of the corresponding configuration, are considered
in detail. The most probable three-fragment fission configurations are discussed. The yields of various ternary
fragments in fission of 250Cf agree well with available experimental data.
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I. INTRODUCTION

The binary fission of excited nuclei was discovered in 1938
by Hahn and Strassmann [1] and the spontaneous binary fission
of nuclei was discovered in 1940 by Flerov and Petrzhak [2].
Since this time binary fission has been studied in detail [3,4].
Ternary fission is defined as the breakup of a fissioning nucleus
into three fragments. Usually, two fragments in ternary fission
have heavy masses, while the third fragment is an α particle or
very light nucleus [3–13]. The masses of the heavy fragments
are similar to the ones in binary fission of the same nucleus.
The heaviest isotopes observed as the third light fragment in
ternary fission of 250Cf are 37Si and 37S [10,11].

The study of the ternary fission with similar masses of frag-
ments is a very interesting process. This process was studied
experimentally in Refs. [14–28]; however, the experimental
situation is unclear and ambiguous. Very recent experimental
studies [29–31] suggest the existence of a new decay mode: the
collinear cluster three-partition decay channel. Ternary fission
with similar-mass fragments is studied in the framework of
various theoretical models; see Refs. [32–52] and papers cited
therein.

We discuss the potential energy surface related to inter-
action of the three separated deformed fragments formed at
fission of 252Cf in the framework of a simple macroscopic
model. We consider that three collinear touching deformed
fission fragments are formed during the three-fragment fission
after scission of necks. The three-fragment configurations with
necks are not considered in our approach. We consider the
collinear configuration of deformed fragments during ternary
fission because there is some experimental evidence related to
the collinear three-partition decay [29–31], and the collinear
configuration of the three deformed fragments has the lowest
value of the potential barrier height. The axial-symmetric
fragments are elongated along the line connecting their mass
centers at the collinear three-partition decay. The lowest
barrier height is the barrier of the potential energy surface
which separates three touching and well-divided deformed
fragments. We find the height of this barrier and the total
excitation energy of the three fission fragments on the barrier.

Different fragments are formed during the three-fragment
fission. We propose that the fission of the initial nucleus into

three fragments is going through the lowest barrier. Each three-
fragment partition has the corresponding value of the lowest
barrier height. Each barrier takes place at the specific values
of the surface deformation parameters of each fragment. Note
that this barrier point has not been studied for a full set of
three fragments in detail. Due to this and the reaction Q value,
the total intrinsic energies of fragments at the point of the
lowest barrier are different for various fragment partitions. The
yield of the three-fragment partition is proportional to the total
fragment intrinsic energy at the barrier point. By using such
an approach, we can analyze the fragment mass distribution in
the collinear three-partition decay.

Note that the interaction potential of three equal fission
fragments is considered in the framework of the liquid-
drop approach in Ref. [33]. The interaction potential energy
various combinations of three deformed fission fragments is
discussed in the framework of the dinuclear system model
in Refs. [43,51]. We use a recent approximation for the
nucleus-nucleus interaction, which describes well the values
of the empirical nucleus-nucleus potential barrier for various
systems [53].

Our model is presented in Sec. II. Section III is devoted to
a discussion of the results, and the conclusions are given in
Sec. IV.

II. THE HEIGHT OF THE BARRIER POINT

Let us consider the fission of a nucleus with A nucleons
and Z protons into three fragments. The fragments with
the nucleon and proton numbers A1,Z1, A2,Z2, and A3 =
A − A1 − A2, Z3 = Z − Z1 − Z2 formed after the scission
of two necks have well deformed shapes. The interaction
potential between deformed fission fragments consists of the
nuclear and Coulomb parts. As shown in Refs. [54–56], the
two axially symmetric nuclei, which are elongated along
the line connecting the mass centers (see Fig. 1), have the
lowest value of the barrier height of the nucleus-nucleus
potential. Therefore, we consider only such mutual orientation
of the axially symmetric fission fragments. Note that such
collinear orientation of fragments is also suggested by recent
experimental studies [29–31].
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FIG. 1. The collinear orientation of axial-symmetric deformed
fragments. The arrow is the axial-symmetric axis.

The total interaction potential energy of these fission
fragments is

V (R12,R23,β1,β2,β3)

= V C
13(R13,β1,β3) + V n

12(R12,β1,β2)

+ V C
12(R12,β1,β2) + V n

23(R23,β2,β3)

+ V C
23(R23,β2,β3) + Edef

1 (β1)

+ Edef
2 (β2) + Edef

3 (β3). (1)

Here V n
ij (Rij ,βi,βj ) and V C

ij (Rij ,βi,βj ) are, respectively, the
nuclear and Coulomb interactions between fragments i and
j , Edef

i (βi) is the deformation energy of fragment i, and βi

is the surface quadrupole deformation parameter of fragment
i. The distances between the nuclei are shown in Fig. 1. The
deformation parameter βi relates to the surface radius of a
deformed nucleus:

Ri(θi) = R0i[1 + βiY20(θi)], (2)

where R0i is the radius of spherical nucleus i and Y20(θi)
is the spherical harmonic function. The angle θi is specified
in Fig. 1. We take into account the quadrupole deformation
of each fragment, because the quadrupole deformations of
surfaces of interacting nuclei play a crucial role in the
nucleus-nucleus interaction [54,55]. The higher-multipolarity
deformation leads to smaller influence on the nucleus-nucleus
potential energy than the quadrupole one. We neglect the
nuclear interaction between 1 and 3 fragments, because the
nuclear interaction of nuclei is short-range.

According to the proximity theorem [57], the nuclear part
of the interaction potential between deformed nuclei can be
approximated as [55,58]

V n
ij (Rij ,βi,βj ) ≈ S(βi,βj ) V n

0ij

(
d0ij

(
R

sph
ij ,R0i ,R0j

))
. (3)

Here S(βi,βj ) is the factor related to the modification of the
strength of nuclear interaction of the deformed nuclei induced
by the surface deformations, V n

0ij (d0ij (Rsph
ij ,R0i ,R0j )) is the

nuclear part of the interaction potential between the same
nuclei, but with spherical shapes, R0i and R0j are the radii
of the spherical nuclei, and d0ij (Rsph

ij ,R0i ,R0j ) is the smallest
distance between the surfaces of spherical nuclei. The smallest
distances between the surfaces of spherical and deformed
interacting nuclei are also the same, i.e.,

d0ij

(
R

sph
ij ,R0i ,R0j

) = dij (R,R0i ,R0j ,βi,βj ), (4)

where d(Rij ,R0i ,R0j ,βi,βj ) is the smallest distance between
the surfaces of deformed nuclei; see Fig. 1. The corresponding
smallest distances are

dij (R,R0i ,R0j ,βi,βj ) = Rij − Ri(0) − Rj (0), (5)

d0ij

(
R

sph
ij ,R0i ,R0j

) = R
sph
ij − R0i − R0j , (6)

where Rij and R
sph
ij are the distances between mass centers

of deformed and spherical nuclei, respectively; see also
Fig. 1. Here we take into account the orientation of deformed
fragments along the line connecting their mass centers.

The expression for factor S(βi,βj ) related to the surface
curvatures of slightly deformed nuclei was obtained in
Ref. [54,55]. The expression for this factor, which is valid
for large deformations of nuclei, was found in Ref. [59]:

S(βi,βj ) =
R2

i (π/2)R2
j (π/2)

R2
i (π/2)Rj (0)+R2

j (π/2)Ri (0)

R0iR0j

R0i+R0j

. (7)

We use the parametrization of the nuclear part of the interac-
tion potential between spherical nuclei from Ref. [53] without
any modifications of the corresponding parameters. This
parametrization of the nucleus-nucleus potential describes the
empirical barrier heights between various combinations of
spherical nuclei with high precision [53]. Note that the value
of R0i (i = 1,2,3) in Eqs. (2)–(7) is determined by a simple
expression in Ref. [53].

The expression for the Coulomb interaction of the two
deformed arbitrarily oriented axial-symmetric nuclei is ob-
tained in Ref. [55]. Taking into account the orientation of
axial-symmetric nuclei when seeking the value of the lowest
barrier height, we rewrite the expression from Ref. [55] in a
very simple form:

V C
ij (Rij ,βi,βj ) = ZiZje

2

Rij

[
1 + 3

(
R2

0iβi + R2
0jβj

)
2
√

5πR2
ij

+ 3
(
R2

0iβ
2
i + R2

0jβ
2
j

)
7πR2

ij

+ 9
(
R4

0iβ
2
i + R4

0jβ
2
j

)
14πR4

ij

+ 27R2
0iβiR

2
0jβj

10πR4
ij

]
. (8)

Here e is the charge of a proton. This expression takes
into account linear and quadratic terms of the quadrupole
deformation parameters of interacting nuclei. Here we take
into account the volume correction appearing in the second
order on the quadrupole deformation parameter.

We neglect by the influence of shell structure on the surface
deformation energies of the interacting fragments. These
energies of fragments are approximated macroscopically in
the framework of the liquid-drop model. Thus, the surface
deformation energy of the fragment consists of the surface
and Coulomb contributions induced by deviation from the
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spherical equilibrium shape [60]:

Edef
i (βi) =

[
bsurf(Ai,Zi)A

2/3
i

π
− 3e2Z2

i

10πR0i

]
β2

i

2
= Cββ2

i

2
.

(9)

Here bsurf(Ai,Zi) is the surface coefficient of the mass formula,
which is taken from Ref. [61], and Cβ is the stiffness of the
surface to deformation.

We can evaluate the total interaction potential energy of
three fission fragments, V (R12,R23,β1,β2,β3), for various
values R12, R23, β1, β2, and β3. As often takes place in
multidimensional space, there are two barrier points related to
the coordinates R12 and R23. The corresponding barrier heights
B12(Rb1

12 ,R23,β1,β2,β3) and B23(R12,R
b2
23 ,β1,β2,β3) of the total

interaction potential energy for fragments with deformation
parameters β1, β2, and β3 are defined by conditions

∂V (R12,R23,β1,β2,β3)

∂R12

∣∣∣∣
R12=Rb1

12

= 0, (10)

∂2V (R12,R23,β1,β2,β3)

∂R2
12

∣∣∣∣
R12=Rb1

12

< 0, (11)

and

∂V (R12,R23,β1,β2,β3)

∂R23

∣∣∣∣
R23=Rb2

23

= 0, (12)

∂2V (R12,R23,β1,β2,β3)

∂R2
23

∣∣∣∣
R23=Rb2

23

< 0, (13)

respectively. These barriers are evaluated for distances near the
touching points of corresponding fragments and various values
of deformation parameters β1,β2,β3. The lowest barrier height
for given fragment partition A1,Z1, A2,Z2, and A − A1 −
A2, Z − Z1 − Z2 is found by the comparison of the barrier
heights evaluated numerically for different distances R23 or
R12 and deformation parameter values β1, β2, and β3. So,
the lowest barrier for fragments partition A1,Z1, A2,Z2, and
A3 = A − A1 − A2, Z3 = Z − Z1 − Z2,

BA1,Z1,A2,Z2 = V
(
Rl

12,R
l
23,β

l
1,β

l
2,β

l
3

)
(14)

takes place at corresponding distances between fragments
Rl

12,R
l
23 and deformations of each fragment βl

1,β
l
2,β

l
3.

The total excitation energy of fragments at the lowest barrier
point is

E∗ = ε∗ + Q − BA1,Z1,A2,Z2 . (15)

Here ε∗ is the excitation energy of the fissioning nucleus and
Q is the ternary fission reaction Q value, which is evaluated
by using data from Ref. [62]. Note that the shell effects related
to the binding energies of fragments are important for our
consideration, because the binding energies of fragments relate
to the fission reaction Q value and, therefore, the excitation
energies of the fragments.

III. RESULTS AND DISCUSSION

Let us consider the triple fission of 252Cf, which is studied
experimentally in Refs. [29–31]. The fragment partitions

FIG. 2. The differences of the potentials �V (dt
12,d

t
23) at the

values of deformation parameters at the lowest barrier point for the
fission of 252Cf into fragments 98Zr +22O +132Sn.

A1,Z1, A2,Z2, A3,Z3 and A3,Z3, A2,Z2, A1,Z1 are equivalent
to each other. We evaluate the total excitation energy of
fragments E∗ at ε∗ = 0 and ε∗ = 10 MeV, see Eq. (15), for
all nuclei with known values of the binding energies [62] with
A1,Z1, A2,Z2, and A3,Z3 in the intervals 16 � A1,2,3 � 220,
8 � Z1,2,3 � 82, and 2Zi � Ai , where i = 1,2,3. Note that
A1 + A2 + A3 = 252 and Z1 + Z2 + Z3 = 98.

It is useful to consider the variation of the three-fragment
potential with the distances Rt

12 + d12 and Rt
23 + d23 relative to

the potential value at the touching configuration of fragments
with the values of deformation parameters at the lowest barrier.
Here Rt

12 and Rt
23 are the distances between the touching

fragments. This variation of potentials is

�V (d12,d23) = V
(
Rt

12 + d12,R
t
23 + d23,β

l
1,β

l
2,β

l
3

)
− V

(
Rt

12,R
t
23,β

l
1,β

l
2,β

l
3

)
. (16)

The potential surfaces �V (dt
12,d

t
23) for systems

98Zr +22O +132Sn and 72Ni +48Ca +132Sn are presented
in Figs. 2 and 3, respectively. The two barriers related to
the coordinates d12 and d23 take place in these surfaces.
The lowest barrier takes place when the middle and heaviest
fragments are separated and other fragments are touching. For
example, the lowest barrier for partition 98Zr +22O +132Sn
takes place when nuclei 98Zr and 22O are touching, while
nuclei 22O and 132Sn are separated. The nucleus 132Sn is
the most deformed (β = 0.21), while nucleus 98Zr is the
least deformed (β = 0.16). The middle nucleus 22O is very
neutron-rich and well deformed (β = 0.18). The values of
fragment deformation parameters at the lowest barrier point
for system 72Ni +48Ca +132Sn are 0.12, 0.21, and 0.22,
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FIG. 3. The differences of the potentials �V (dt
12,d

t
23) at the

values of deformation parameters at the lowest barrier point for the
fission of 252Cf into fragments 72Ni +48Ca +132Sn.

respectively. Note that the system with a heavier middle
fragment has a larger difference between the barriers related
to the variation of coordinates d12 and d23.

Let us consider the spontaneous fission of 252Cf into
three fragments. The excitation energy of fissioning nuclei
ε∗ equals zero in this case. We present dependencies of the
total excitation energy of fragments E∗ > 0 at the lowest
barrier on the masses of the first A1 and third A3 nuclei
(external fragments) in Fig. 4 and on the masses of the first
A1 and second (middle) A2 nuclei in Fig. 5. We evaluate
these surfaces for systems with the lightest fragment being
16O or heavier. Note that there are several nuclei with various
numbers of protons and neutrons for each set of values A1

and A3 or A1 and A2, therefore the averaging on various
values of E∗ takes place at each point of Figs. 4 and 5. The
maximal values of the total excitation energy of fragments are
located around the double-magic nucleus 132Sn and close to
nuclei with number of nucleons 94–98. The middle nuclei are
very neutron-rich isotopes of oxygen. The mass of the middle
nucleus is close to 22. The partition with maximal value of
the total excitation energy of fragments is 98Zr +22O +132Sn
(or 132Sn +22O +98Zr). We stress that the spontaneous ternary
fission of 252Cf accompanied by oxygen is experimentally
observed in Ref. [9].

The yield of partition y(A1,A2) can be related to the number
of states of the three-fragment system at the lowest barrier.
Therefore, the yield of the three-fragment partition connects
to the energy level density of the three-fragment system at the
lowest barrier:

y(A1,A2) ∝
∫ ε∗

1

0
dε∗

1

∫ E∗−ε∗
1

0
dε∗

2 ρ(A1,ε
∗
1 )

× ρ(A2,ε
∗
2 ) × ρ(A3,E

∗ − ε∗
1 − ε∗

2 ). (17)

FIG. 4. The dependence of the total excitation energy of frag-
ments E∗ for the triple spontaneous fission of 252Cf on the masses the
first and third fragments.

Here ρ(A,ε∗) ∝ exp (
√

aε∗) is the energy level density of a
nucleus with A nucleons at excitation energy ε∗, and a ≈
A/10 is the level density parameter. Taking into account the
properties of the integrand and the mass of fissioning nucleus
near A ≈ 250, we get

y(A1,A2) ∝ ρ

(
A1,

A1E
∗

A

)
× ρ

(
A2,

A2E
∗

A

)
ρ

(
A3,

A3E
∗

A

)

∝ exp (
√

(A/10)E∗) ≈ exp (5
√

E∗). (18)

FIG. 5. The dependence of the total excitation energy of frag-
ments E∗ for the triple spontaneous fission of 252Cf on the masses the
first and second fragments.
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So, the fragment partition with the highest value of the
excitation energy at the lowest barrier E∗ is the most favorable
for observation in experiments. Using this estimate we can
easily analyze the relative partition yield.

The fragment partition 98Zr +22O +132Sn is the most
favored for spontaneous fission of 252Cf for the case of a middle
nucleus with Z � 8. Note that nucleus 132Sn is indicated as the
most favorable fragment in the collinear cluster three-partition
experiment of spontaneous fission of 252Cf [31]. The nuclei
of this fragment partition are neutron rich and short-lived.
The partitions with heavier middle nucleus are less probable.
However, the partitions with masses of light fragments around
A ≈ 40 have E∗ > 0 and, therefore, can be experimentally
observed in the framework of the proposed mechanism of
three-fragment formation.

The fission channels 70Ni +50Ca +132Sn and
72Ni +48Ca +132Sn are, respectively, considered best
candidates for the spontaneous fission of 252Cf in Refs. [52]
and [45]. These channels are not favored in our approach,
because E∗ < 0 at ε∗ = 0 for these channels. Note that the
height of the lowest barrier depends on the strength of the
nuclear part of the nucleus-nucleus potential. The strongly
attractive potentials lead to the lower barrier height. We point
out that the nucleus-nucleus potential proposed in Ref. [53]
describes well the empirical barrier heights between various
spherical nuclei. The fission channels 70Ni +50Ca +132Sn
and 72Ni +48Ca +132Sn may appear in the framework of
other mechanisms of the three-fragment formation. [The
fission fragments can be formed by any trajectories which
satisfy the conservation laws (energy, momentum, parity,
etc.). We consider that the trajectories of ternary fission
are going through the configuration of touching deformed
fragments. The fragments are elongated along the symmetry
axis connecting the fragment mass centers. The values of
deformation of each fragment are moderate in our approach.
The other mechanisms can relate to other possible trajectories
and other values of deformations of fragments and/or mutual
orientation.]

For the case of excitation energy ε∗ = 10 MeV of 252Cf,
the number of nuclei with E∗ > 0 increases; see Figs. 6
and 7 and compare with Figs. 4 and 5. Figures 6 and 7 are
similar to Figs. 4 and 5, respectively. The variety of possible
fragment partitions increases with rising ε∗. The fragment
partitions with the lightest outside fragments and the heaviest
middle fragment appear with increasing excitation energy of
the fissioning nucleus. Note that the maxima of distributions
in Figs. 6 and 7 are located at the same positions as the
ones in Figs. 4 and 5. Therefore, the most favorable fragment
partitions are the same as in the case of spontaneous fission.
The channels 70Ni +50Ca +132Sn and 72Ni +48Ca +132Sn have
E∗ > 0 at ε∗ = 10 MeV. So, these channels are reasonably
favored for the triple fission of excited nucleus 252Cf. The
mass distribution of three-fragment fission is going towards
the equal-fragment-mass direction with increasing excitation
energy ε∗. The appearance of three fission fragments of very
similar masses can be possible at high excitation energy of the
fissioning nuclei.

The absolute yields of various ternary particles emitted in
fission of 250Cf are measured in Ref. [10]. The compound

FIG. 6. The dependence of the total excitation energy of frag-
ments E∗ for the triple fission of 252Cf at excitation energy ε∗ =
10 MeV on masses of the first and third fragments.

nucleus 250Cf is formed at the capture of a thermal neutron by
249Cf. The absolute yield of 14C is accurately measured in this
reaction, because the value of this yield is high. Therefore,
we normalize the relative yield of 14C evaluated by using
Eq. (18) on the experimental value of the absolute yield of
14C emitted in ternary fission of 250Cf. Using the relative
yields obtained by Eq. (18) and the value of the norm, we
find the absolute yields of various ternary particles emitted
in the fission of 250Cf. The comparison of our results with

FIG. 7. The dependence of the total excitation energy of frag-
ments E∗ for the triple fission of 252Cf at excitation energy ε∗ =
10 MeV on masses of the first and second fragments.
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FIG. 8. Yield (probability per binary fission event) of ternary particles from 250Cf. The experimental data are taken from Ref. [10].

the experimental data is presented in Fig. 8. The calculated
values of the absolute yields of nuclei 11,12Be, 12,13,14,15B,
15,16,17,18C, 16,17,18,20,21N, 20,21,22,24O, 20,21,22,24F, 24,27,28Ne,
27,28,30Na, 30,32,34Mg, 30,32,33Al, and 32,33,34,37Si agree well
with the available experimental data. This strongly supports
our model.

Note that the calculated values of the absolute yields of
nuclei 8,9Li, 10Be, and 37S are deviate significantly from the
data. Our model is based on the liquid-drop model and the
proximity approach for the interaction potential of fragments,
therefore it is well founded for fragment systems, which consist
of medium and heavy nuclei. Due to this, the bad description
of the yields of very light ternary particles like 8,9Li and 10Be
is natural. Therefore, the results related to these light nuclei
can be considered estimates. The yield of 37S is considered to
be preliminary in Ref. [10].

Unfortunately, the evaluated values of yield of isotopes P,
S, Ar, and Ca are below the experimental sensitivity. However,
the experimental measurement of these isotopes’ yields is very
interesting from a physical point of view. For example, the
yield of 50Ca is related to the partition 68Ni +50Ca +132Sn,
which is very interesting for three-fragment collinear
fission.

We use the liquid-drop values of surface stiffness Cβ , see
Eq. (9), for all fragments. As mentioned earlier, the shell effects

related to the binding energies of fragments are important
for our consideration, because the excitation energy of the
fragment system at the barrier point depends on the binding
energies. However, the shell effect may also affect the value
of Cβ . If we use a two-times higher value of Cβ for fragment
nuclei with A = 50, then the yield of 50Ca is approximately
one order lower, because the deformation of 50Ca at the barrier
point of the corresponding fragment partitions decreases with
increasing Cβ . The height of the barrier is larger for smaller
values of deformation of fragments and, as the result, the
excitation energy of the fragment system is reduced. The yield
of fragments depends exponentially on the excitation energy
of the fragment system at the barrier point.

IV. CONCLUSION

The spontaneous and induced fissions of californium
isotopes into three collinear fragments with heavy middle
fragments are discussed in detail. The probability of emission
of heavy middle fragments rises with excitation energy of the
fissioning nucleus. The interaction of three fission fragments
has two barriers related to the distances between fragments. It
is shown that the lowest barrier takes place between deformed
fragments. The fragment partition 98Zr +22O +132Sn is most
favored for spontaneous fission of 252Cf for the case of a
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middle nucleus with Z � 8. A three-fragment partition with a
heavier middle nucleus can appear with reasonable probability
at high excitation energy of the fissioning nuclei. The good
agreement between experimental results and those evaluated
in the framework of our model yields of heavy nuclei in fission
of 250Cf support the mechanism of three-fragment separation,

wherein the heaviest and middle fragments are separated while
two other fragments are touching.
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