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Coulomb and nuclear effects in breakup and reaction cross sections
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We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear
effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of
square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in
a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering
wave functions. We present two different methods to separate both effects. Then, we apply this separation to
breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role
of the α + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear
effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections,
since both techniques, although providing the same total breakup cross sections, strongly differ for the individual
components. We suggest a third method which could be efficiently used to address convergence problems at large
angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is
dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section
which exist in the literature and which may induce small, but significant, differences in the numerical values.
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I. INTRODUCTION

The development of radioactive facilities has opened
many new perspectives in the physics of exotic nuclei [1,2].
Radioactive beams are now available with high intensities
and purities [3,4]. Historically, the first experiments were
aimed at measuring reaction cross sections [5], which provide,
through simple model assumptions, the interaction radius of
the projectile. This technique lead to the discovery of halo
nuclei, where one or two nucleons are weakly bound to the
core, and therefore contribute to a radius much larger than
expected from the usual A1/3 law.

Breakup is a fundamental process in reactions involving
exotic nuclei, since they present a low separation energy [6].
Even the investigation of elastic scattering requires simulating
breakup effects to obtain a fair theoretical description of the
data. This requirement is well addressed by the continuum
discretized coupled channel (CDCC) method, introduced in the
seventies to analyze deuteron scattering on heavy targets [7,8].
In the CDCC method, the breakup of the projectile is simulated
by approximate continuum states [9,10]. The couplings of
the elastic channel to these continuum channels modify the
scattering matrices and therefore the elastic cross sections.

The theoretical description of elastic scattering is relatively
well understood, even for two-neutron halo nuclei [11,12]. The
competing breakup process, however, is more complicated and
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has been investigated by different authors (see, for example,
Refs. [13–20]). In particular, the interplay between Coulomb
and nuclear effects in breakup reactions is of great interest
[21–23]. In the CDCC approach, the breakup cross section
involves transitions to pseudostates (or to bins). The cross
section is therefore a multiple sum over several quantum
numbers: total spin and parity of the system, and energy and
angular momentum of the projectile. These specific breakup
problems are on top of the traditional numerical aspects of
CDCC (convergence against the space truncation parameters).
The description of the breakup process is therefore a delicate
problem, which deserves careful analyses.

The main goal of the present work is to address 7Li + 208Pb
breakup and reaction cross sections in the CDCC framework.
We essentially focus on the separation between the nuclear
and Coulomb contributions. Knowing whether a breakup cross
section is dominated by Coulomb effects or not is an important
issue to analyze experiments involving exotic nuclei. This
problem has been investigated in the past in simpler models
(see, for example, Refs. [23,24]), but CDCC approaches are
treated in an approximate way [20,22,25]. In contrast with
the total breakup cross sections, the individual nuclear and
Coulomb contributions (as well as interferences terms) require
the availability of the wave functions. A usual approxima-
tion consists in determining the individual contributions by
neglecting either Coulomb couplings or nuclear couplings.
This approach, however, implicitly assumes that the coupling
between the elastic and breakup channels is weak, so that the
distorted wave Born approximation (DWBA) is valid.

The paper is organized as follows. In Sec. II, we briefly
present the main properties of the CDCC model. Section III
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addresses the separation of nuclear and Coulomb components
in the scattering matrices and in the cross sections. The appli-
cation to 7Li + 208Pb breakup is presented in Secs. IV and V.
We not only discuss the nuclear and Coulomb contributions but
also other important aspects, such as the angular-momentum
distribution, the contribution of the different α + t continuum
channels, or the convergence against the CDCC truncation
parameters. Conclusion and outlook are discussed in Sec. VI.

II. OUTLINE OF THE CDCC METHOD

The CDCC method has been presented in many papers and
reviews (see, for example Refs. [9,10]). Here we present a
short outline, and define our notations.

Let us first consider the projectile description. The Hamil-
tonian is denoted as H0(ξξξ ), where ξξξ is a general notation,
involving the internal coordinates. For example, ξξξ is the
relative distance in a two-body description; it can represent two
coordinates in a three-body model. In a microscopic approach,
ξξξ stands for all nucleon coordinates [26]. For a partial wave j
(parity is implied), the Schrödinger equation of the projectile
reads

H0(ξξξ )�jm
0,n(ξξξ ) = E

j
0,n�

jm
0,n(ξξξ ), (1)

where n is the excitation level in partial wave j .
In the CDCC method, the wave functions �

jm
0,n are ex-

panded, either over a basis (such a Lagrange [27] or Gaussian
[28] functions) or over bins [29]. Equation (1) represents
a standard eigenvalue problem, where negative solutions
correspond to physical states (in 7Li, the j = 3/2− and the
j = 1/2− bound states). The positive eigenvalues do not have
a physical meaning but correspond to approximations of the
continuum.

In the projectile + target system with relative coordinate RRR,
the total wave function is given by the Schrödinger equation(

− �
2

2μ
�R + H0(ξξξ ) + V (RRR,ξξξ )

)
�JMπ

ω = E�JMπ
ω , (2)

where ω is the entrance channel, μ is the reduced mass,
and V (RRR,ξξξ ) represents the total interaction between the
constituents of the projectile and the target. We define a channel
function as

ϕJMπ
jnL (
R,ξξξ ) = [

�
j
0,n(ξξξ ) ⊗ YL(
R)

]JM
, (3)

where J and π are the total angular momentum and parity
and L is the relative orbital momentum. As usual in CDCC
calculations, excitations of the target are neglected.

With the channel functions (3) we expand the total wave
function of the system as

�JMπ
ω (RRR,ξξξ ) = 1

R

∑
c

gJπ
ω,c(R)ϕJMπ

c (
R,ξξξ ), (4)

where J and π are the total spin and parity of the system
and index c stands for (j,n,L). The summation is truncated in
two ways: �max (and therefore jmax) determines the maximum
angular momentum in 7Li, and Emax is the maximum energy
of the pseudostates, which, in practice, limits the number of n

values. Stability tests against these two truncation parameters
are required to guaranty the reliability of CDCC calculations.

At center-of-mass (c.m.) energy E, the radial functions
gJπ

ω,c(R) are obtained from the standard coupled-channel
system

(TL + Ec − E)gJπ
ω,c(R) +

∑
c′

V Jπ
c,c′ (R)gJπ

ω,c′(R) = 0, (5)

where Ec are the threshold energies of channels c, defined
from the projectile energies as Ec = E

j
0,n − E

jω

0,1. The kinetic-
energy operator reads

TL = − �
2

2μ

(
d2

dR2
− L(L + 1)

R2

)
, (6)

and the coupling potentials V Jπ
c,c′ (R) are determined from

matrix elements of the fragment-target interactions between
channel functions (3).

At large distance R, the radial functions tend to a combina-
tion of Coulomb functions as

gJπ
ω,c(R) → v−1/2

c

[
Ic(kcR)δcω − Oc(kcR)UJπ

ω,c

]
, (7)

where Ic(x) and Oc(x) are the incoming and outgoing Coulomb
functions [30], kc and vc are the wave number and velocity in
channel c, and UJπ

ωc is an element of the scattering matrix. It is
used to compute the various cross sections.

In the present work, the scattering problem (5) is solved
with the R-matrix method (see Refs. [31,32]) where coordinate
R is split in two regions, separated by the channel radius a.
In the external region, a is chosen large enough so that the
asymptotic behavior (7) is valid. In the internal region, the
radial functions gJπ

ω,c(R) are expanded over a Lagrange mesh
[27]. This technique permits a fast and accurate calculation of
the scattering matrix. Notice that neither the channel radius
a, nor the number of basis functions N , should affect the
scattering matrices, provided these parameters are properly
chosen. The stability of the scattering matrices and of the cross
sections against variations of a and N is a strong constraint
on the correctness and precision of the method. We refer the
reader to Refs. [27,31,32] for more information.

III. COULOMB AND NUCLEAR AMPLITUDES

A. Scattering matrices

The basic input to determine the cross sections is the
scattering matrix UUUJπ . It is computed in the R-matrix
formalism, as outlined in Sec. II. It is, however, possible to
express the scattering matrix in a fully equivalent way, based
on the wave function. From scattering theory [33], it can be
shown that an alternative definition of the scattering matrix is

UJπ
ωLω,αL = δωαδLωL + 1

�v
1/2
α

∫ ∞

0
FL(kαR)

×
∑
α′L′

Ṽ Jπ
αL,α′L′(R)gJπ

ωLω,α′L′(R)dR, (8)

where we have used normalization (7) of the wave function,
and where FL(x) is the regular Coulomb function (the
Sommerfeld parameter is implied). Throughout the text, either
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we use index c, or we specifically mention the channel α = j,n
and the angular momentum L when more appropriate. The
potentials Ṽ Jπ

c,c′ (R) are defined from

Ṽ Jπ
c,c′ (R) = V Jπ

c,c′ (R) − ZtZpe2

R
δcc′ , (9)

where Zte and Zpe are the charges of the target and of the
projectile, respectively. These potentials contain the nuclear
term and the nonmonopole Coulomb contributions and are
given by

Ṽ Jπ
c,c′ (R) = Ṽ

Jπ(C)
c,c′ (R) + V

Jπ(N)
c,c′ (R). (10)

The Coulomb terms are known to be important, as their range
can be quite large [34].

This method is referred to as method 1, and an element of
the scattering matrix is decomposed as

UJπ
c,c′ = U

Jπ(C1)
c,c′ + U

Jπ(N1)
c,c′ , (11)

where both contributions can be obtained from (8) by including
Ṽ

Jπ(C)
c,c′ or V

Jπ(N)
c,c′ independently.

Equation (8) does not treat the Coulomb and nuclear
interactions on an equal footing. An alternative expression for
the scattering matrix is based on solutions of the uncoupled
system [

TL + V Jπ
c,c (R) + Ec − E

]
gJπ

c (R) = 0, (12)

where the associated (single-channel) scattering matrices are

denoted as U
Jπ

c . Then the total scattering matrix can be written
as

UJπ
ωLω,αL = U

Jπ

c δωαδLωL + i

2�

∫ ∞

0
gJπ

αL(R)

×
∑
α′L′

V
Jπ

αL,α′L′(R)gJπ
ωLω,α′L′(R)dR, (13)

where potential V
Jπ

c,c′ (R) is now defined by

V
Jπ

c,c′ (R) = V Jπ
c,c′ (R) − V Jπ

c,c (R)δcc′ . (14)

In other words, potentials V
Jπ

c,c′ (R) only contain coupling
terms. In this method, referred to as method 2, the Coulomb
and nuclear potentials are considered in a symmetric way. The
scattering matrix is decomposed as

UJπ
c,c′ = U

Jπ(C2)
c,c′ + U

Jπ(N2)
c,c′ . (15)

Notice that the scattering matrix can also be written in a
fully symmetric way, involving the full CDCC wave functions
gJπ (R) only [35], but this is beyond the scope of the present
work.

Definitions (8) and (13) are exact and stem from the
Lippmann-Schwinger equation [notice that the scattering
matrix is implicitly present in the right-hand side through the
wave functions gJπ (R)]. On the one hand, they can be used to
test the consistency of the calculation. The direct calculation of
the scattering matrix and of its equivalent integral definitions
(8) and (13) are indeed based on different approaches, and the
equivalence represents a strong test of the calculation. On the
other hand, the integral definitions, although more complicated

since they require the scattering wave functions, permit a
separation between the nuclear and Coulomb amplitudes. They
are also used to develop numerical techniques for scattering
states [36].

It is interesting to observe that if the full radial wave
function gJπ (R) in Eq. (13) is approximated by the one-
channel wave function gJπ

ωLω
(R)δωαδLωL of Eq. (12), we obtain

the DWBA expression for nondiagonal part of the scattering
matrix,

UJπ
ωLω,αL − U

Jπ

αLδωαδLωL ≈ U
Jπ(DWBA)
ωLω,αL ,

U
Jπ(DWBA)
ωLω,αL = i

2�

∫ ∞

0
gJπ

ωLω
(R)V

Jπ

αL,ωLω
(R)gJπ

αL(R)dR.

(16)

The DWBA definition (16) is linear in the coupling potentials,
as the one-channel radial wave functions do not contain
coupling effects, except the average optical potential which

generates the elastic scattering matrix U
Jπ

c . The DWBA
method is normally used for very weak coupling effects, such
as in reactions where the Q value is large, found in tightly
bound nuclei. In reactions involving weakly bound nuclei,
however, the DWBA approximation is not expected to be
accurate, since couplings to the continuum are important.

B. Breakup cross sections

For a zero-spin target, the total breakup cross section is
defined from the scattering matrices as

σBU(E) = π

k2
ω

∑
Jπ

∑
αLLω

2J + 1

2Iω + 1

∣∣UJπ
ωLω,αL(E)

∣∣2
, (17)

where Iω is the spin of the projectile and where index α runs
over continuum channels only. This expression is a simple
extension of inelastic cross sections, where the final channels
α are bound states.

To emphasize the role of the angular momentum, we recast
the cross section (17) as

σBU(E) =
∑
Lω

σBU(Lω,E), (18)

with

σBU(Lω,E) = π

k2
ω

(2Lω + 1)TLω
(E), (19)

TLω
(E) =

∑
Jπ

∑
αL

gJ

∣∣UJπ
ωLω,αL(E)

∣∣2
, (20)

gJ = 2J + 1

(2Iω + 1)(2Lω + 1)
. (21)

As mentioned in the previous subsection, an element of the
scattering matrix can be decomposed in Coulomb and nuclear
components. Breakup cross sections obtained with these two
terms are referred to as the Coulomb and nuclear cross sections,
respectively. Definition (19) is therefore written as

σBU(Lω,E) = σ
(C)
BU (Lω,E) + σ

(N)
BU (Lω,E)

+ σ
(int)
BU (Lω,E), (22)
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which is valid for decompositions (11) and (15). Each partial-
wave contribution involves the coefficients

T
(C)
Lω

=
∑
Jπ

∑
αL

gJ

∣∣UJπ(C)
ωLω,αL

∣∣2
,

T
(N)
Lω

=
∑
Jπ

∑
αL

gJ

∣∣UJπ(N)
ωLω,αL

∣∣2
,

T
(int)
Lω

= 2Re
∑
Jπ

∑
αL

gJ

(
U

Jπ(N)
ωLω,αL

)∗
U

Jπ(C)
ωLω,αL. (23)

In the CDCC method, the breakup cross section is therefore
given by a multiple sum over several quantum numbers:
total spin and parity of the system, angular momentum, and
excitation level of the projectile. Our goal here is not to re-
produce experimental data, but to analyze in detail the various
components of the breakup cross section, and to discuss the
importance of the nuclear and Coulomb contributions.

Finally, let us point out that the terms nuclear and Coulomb
components in the scattering matrix (11) and (15) are partly
ambiguous. The reason is that, if the potentials can be
clearly decomposed, the scattering wave functions gJπ (R) are
obtained from the full Hamiltonian (5) and are affected by
the nuclear interaction as well as by the Coulomb interaction.
Also the existence of several possible ways to decompose the
breakup cross section raises the question of their equivalence.
This will be analyzed later for the 7Li + 208Pb breakup reaction.

In the literature, the separation between nuclear and
Coulomb contributions is not well established. An approxi-
mate method, which does not make use of the wave functions,
has been proposed [25] to separate both terms. The idea is
to solve the coupled-channel system (5) in two independent
calculations. Each calculation neglects either nuclear cou-
plings or Coulomb couplings in (5). They provide approximate
Coulomb and nuclear breakup cross sections, respectively.
This method avoids the more delicate calculation of the
scattering wave functions. However, it implicitly assumes that
the coupling between the elastic and breakup channels is
weak enough to use a DWBA expression. It what follows,
this approximation will be referred to as the weak-coupling
approximation.

C. Reaction cross sections

Calculations of the reactions cross sections are often used
to complement elastic-scattering experiments, as they involve
the same (elastic) elements of the scattering matrix. From a
theoretical point of view, the reaction cross section is directly
related to the imaginary part of the optical potential. If the
potential is real, the reaction cross section exactly vanishes
[33].

In a multichannel theory, the reaction cross section is
defined as

σR(E) = π

k2
ω

∑
Jπ

∑
LLω

2J + 1

2Iω + 1

× (
δLLω

− ∣∣UJπ
ωLω,ωL(E)

∣∣2)
. (24)

In contrast with the breakup cross section, it only involves ele-
ments associated with the entrance channel ω. This definition,

as in Sec. III B, can be rewritten in an equivalent way as

σR(E) =
∑
Lω

σR(Lω,E), (25)

with

σR(Lω,E) = π

k2
ω

(2Lω + 1)

×
∑
JπL

gJ

(
δLLω

− ∣∣UJπ
ωLω,ωL(E)

∣∣2)
. (26)

Let us now discuss the separation between the nuclear and
Coulomb contributions. In the literature, this issue has been
essentially addressed for breakup but not for reaction cross
sections. Using decomposition (11), a partial reaction cross
section (25) can be written as

σR(Lω,E) = σ
(C)
R (Lω,E) + σ

(N)
R (Lω,E)

+ σ
(int)
R (Lω,E), (27)

with the Coulomb and nuclear contributions defined by

σ
(C)
R (Lω,E) = π

k2
ω

(2Lω + 1)

×
∑
Jπ

gJ

(
1 −

∑
L

∣∣δLLω
+ U

Jπ(C)
ωLω,ωL

∣∣2

)

(28)

and

σ
(N)
R (Lω,E) = π

k2
ω

(2Lω + 1)

×
∑
Jπ

gJ

(
1 −

∑
L

∣∣δLLω
+ U

Jπ(N)
ωLω,ωL

∣∣2

)
.

(29)

The interference term is given by

σ
(int)
R (Lω,E) = −2π

k2
ω

(2Lω + 1)

× Re
∑
Jπ

gJ

∑
L

(
U

Jπ(C)
ωLω,ωL

)∗
U

Jπ(N)
ωLω,ωL. (30)

Notice that a slightly different definition of the reaction
cross section exists in the literature. In Refs. [29,37], the
reaction cross section is defined as

σR(E) = π

k2
ω

∑
Jπ

∑
Lω

2J + 1

2Iω + 1

× (
1 − ∣∣UJπ

ωLω,ωLω
(E)

∣∣2)
. (31)

Definitions (24) and (31) are equivalent for a projectile with
Iω = 0 or Iω = 1/2 (in that case the summation over Lω is
limited to a single value), but differences may arise when Iω �
1. Using (31) assumes that reorientation channels [i.e., Lω �= L
in (24)] contribute to the reaction cross section, although they
do enter the definition of the elastic cross section. Another
argument is in favor of (24). If the potentials are real, one
expects the reaction cross section to be exactly zero. This is
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true with Eq. (24), owing to the unitarity of the scattering
matrix, but not with Eq. (31). The difference between both
definitions will be illustrated in Sec. V B.

D. Pure Coulomb breakup

In the previous subsections, the Coulomb breakup ampli-
tude is partly affected by the nuclear interaction, since the
projectile + target wave function is obtained from the full
Hamiltonian. Going further is the pure Coulomb approxima-
tion, where this scattering wave function is assumed to be a
Coulomb wave.

At large distances R, the three-body Coulomb interaction
in (2) can be written in a multipole expansion as

VC(RRR,rrr) −→ 4πZte
∑

λ

λ̂

Rλ+1

[ME
λ (rrr) ⊗ Yλ(
R)

]0
. (32)

We define x̂ = (2x + 1)1/2, and we use ξξξ = rrr , the internal
coordinate of the two-body projectile. The electric operator
ME

λ (rrr) is associated with the projectile, and is given by

ME
λμ(rrr) = e

[
Z1

(
−A2

A

)λ

+ Z2

(
A1

A

)λ]
rλY

μ
λ (
r ), (33)

where the masses and charges of the fragments are denoted as
(A1,A2) and (Z1e,Z2e), respectively.

In the framework of the Coulomb excitation [38], the wave
functions are assumed to be Coulomb functions. Within this
assumption, a nondiagonal element of the scattering matrix is
written as

U
Jπ(C)
αL,α′L′ = −2iZte

μ

�2(kαkω)1/2

∑
λ

Cλ
αL,α′L′

× 〈
�

j
0,n

∣∣∣∣ME
λ

∣∣∣∣�j ′
0,n′

〉
I λ
αL,α′L′, (34)

where the geometrical coefficients Cλ
αL,α′L′ are given by

Cλ
αL,α′L′ = (−1)j+L′+J+λĵ L̂

×〈YL‖Yλ‖YL′ 〉
{
J L j
λ j ′ L′

}
. (35)

In Eq. (34), the Coulomb integrals are defined as

I λ
αL,α′L′ = 4π

∫
FL(kαR)

1

Rλ+1
FL′(kα′R) dR. (36)

Integrals (36) are known to present several convergence
difficulties: (i) large R values are needed since the integrand
presents fast oscillations and a slow decrease; (ii) the integrals
slowly converge with L and, in general, large values are
necessary to achieve a good accuracy on the Coulomb breakup
cross sections. Specific techniques have been developed to
address these issues [39,40] (notice that different conventions
exist for the normalization).

The Coulomb breakup cross section is then computed
with the general definition (17). The Coulomb assumption,
in practice, is not exactly satisfied. However, it can be used for
a qualitative description of the breakup process. Properties of
the projectile and of the relative motion are then factorized.
The Coulomb integral does not vary much when the breakup
energy Eα′ changes. The main dependence on this energy

therefore comes for the electromagnetic matrix elements inside
the projectile. These matrix elements are associated with the
reduced transition probabilities

B(Eλ,j ′n′ → jn) = 2j + 1

2j ′ + 1

∣∣〈�j
0,n

∣∣∣∣ME
λ

∣∣∣∣�j ′
0,n′

〉∣∣2
,

(37)

IV. APPLICATION TO THE 7Li + 208Pb SYSTEM

A. Conditions of the calculations

For the 7Li description, we adopt the α + t potential of
Ref. [41], defined as

V0(r) = −(v0 + 2αv�s��� · sss) exp(−αr2) + VC(r), (38)

with α = 0.15747 fm−2, v0 = 83.78 MeV, and v�s = 1.003
MeV. The Coulomb potential VC(r) is taken as the potential
of an uniformly charged sphere with a radius rC = 3.095 fm.
The α + t potential (38) reproduces very well most properties
of 7Li bound states: Energies, quadrupole moment, B(E2)
value, radius, etc. The theoretical energy of the 7/2− narrow
resonance is 2.1 MeV, in fair agreement with experiment
(2.19 MeV).

The Pauli principle between α and t is simulated by
additional bound states corresponding to the Pauli forbidden
states (fs), present in microscopic theories [42]. The potential
contains one fs for � = 1,2, and two fs for � = 0. These states
are not included in the CDCC basis (4).

The α + t wave functions (1) are expanded over a Gauss-
Laguerre basis [27] with 40 functions and a scaling factor h =
0.4 fm. Up to Emax = 15 MeV, the numbers of pseudostates
are 13, 12, 13, and 13 for � = 0,1,2,3, respectively.

In Fig. 1, we show the electric transition probabilities
between the initial ground state j ′ = 3/2− and the various
continuum states j . As mentioned before, these quantities are
relevant for the breakup process. In particular, the maxima
are expected at similar energies. Transitions to j = 7/2−
show the narrow resonance at 2.19 MeV, which is reasonably
well approximated by a single eigenvalue. In this case,
E

7/2−
0,5 is a fair approximation of the resonance energy. Other

partial waves present broad peaks, which are described by a
superposition of several pseudostates.

The model is complemented by α + 208Pb and t + 208Pb
optical potentials, which are taken from Refs. [43] and [44],
respectively. Both potentials are expressed as Woods-Saxon
form factors and involve volume and surface absorption terms.
As mentioned previously, our goal here is not to fit any
data, but to analyze theoretical breakup and reaction cross
sections. Therefore, no renormalization factors are introduced
in the optical potentials. The height of the Coulomb barrier is
27.7 MeV, and its radius is 11.9 fm.

The scattering matrices are fundamental characteristics of
the scattering process. The diagonal elements (modulus) of the
scattering matrix are shown in Fig. 2 at three typical energies,
below and above the Coulomb barrier: 26, 34, and 42 MeV
(throughout the text, the center-of-mass 7Li + 208Pb scattering
energy is denoted as E). According to the spin j = 3/2−
of the 7Li ground state, four J values are possible: J =
|Lω − 3/2|, |Lω − 1/2|, Lω + 1/2, and Lω + 3/2. As usual,
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FIG. 1. Electric transition probabilities (37) from the 3/2−

ground state as a function of the α + t continuum energy. Labels
represent the final angular momentum j . For E2 transitions, the
contributions of j = 1/2− and of j = 3/2− are negligible at the scale
of the figure. The dots represent the (discrete) pseudostate energies
E

j
0,n. The lines are to guide the eye.

the diagonal scattering matrices are close to zero below a
grazing angular momentum Lg and tend to unity at large Lω

values (Lg ≈ 26 at E = 42 MeV and Lg ≈ 17 at E = 34 MeV;
the notion of grazing angular momentum is not relevant below
the Coulomb barrier).

In the sharp-cutoff approximation (|UJπ
ωLω,ωLω

| = 0 for
Lω � Lg and |UJπ

ωLω,ωLω
| = 1 for Lω > Lg), analytical approx-

imations of the elastic cross section can be derived [45]. The
scattering matrices are also helpful to interpret qualitatively
inelastic or breakup cross sections [46] (see Sec. V).

B. Total breakup cross sections

With the adopted conditions of calculations (Emax = 15
MeV, �max = 3), the model involves 89 pseudostates and two
physical bound states. Considering that one channel contains
in general several L values, the size of the coupled-channel

FIG. 2. Diagonal amplitudes |UJπ
ωLω,ωLω

| at E = 26, 34, and
42 MeV for J = Lω + 1/2 and J = Lω + 3/2. The curves corre-
sponding to J = |Lω − 1/2| and J = |Lω − 3/2| are similar and
therefore not shown.

system (5) can be of the order of 300. This is efficiently
solved with the R-matrix method associated with propagation
techniques [31].

We first present, in Fig. 3, the total breakup cross sections,
and analyze the convergence against the truncation parameters
Emax [Fig. 3(a)] and �max [Fig. 3(b)]. These parameters
determine the number of pseudostates [index α in Eq. (17)]
and therefore the α + t continuum. In Fig. 3(a), we fix
�max = 3 and vary the energy Emax. At least Emax = 10 MeV
is necessary to achieve a fair convergence. In what follows, we
use Emax = 15 MeV.

The sensitivity to �max is presented in Fig. 3(b). We observe
a weak sensitivity below 30 MeV, which is slightly above the
Coulomb barrier (27.7 MeV). However, the role of � = 3 is
obvious at higher energies and arises from the 7/2− narrow
resonance. A similar effect has been observed for the 6Li
breakup [47]. Throughout the text, we use �max = 3, unless
specified otherwise.
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FIG. 3. Convergence of the breakup cross section with Emax (a)
(Emax = 15 MeV and Emax = 20 MeV are indistinguishable) and with
�max (b). In panel (a), �max = 3 is used, and Emax = 15 MeV is used
in panel (b).

C. Role of the α + t continuum

In this subsection, our goal is to investigate the different
contributions of the α + t continuum. We reformulate the
breakup cross section (17) as

σBU(E) =
∑
j,n

σ
j
BU

(
E,E

j
0,n

)
, (39)

where j is associated with the α + t angular momentum
and parity, and E

j
0,n are the pseudostate energies. The partial

breakup cross section reads

σ
j
BU

(
E,E

j
0,n

) = π

k2
ω

∑
Jπ

∑
L,Lω

2J + 1

2Iω + 1

∣∣UJπ
ωLω,jnL

∣∣2
. (40)

In Fig. 4, we present the contributions of the most important
partial waves j = 1/2+, 3/2−, and 7/2−. The cross section
is analysed at three typical energies (E = 26, 34, 42 MeV).
Each cross section follows the shape of the B(Eλ) presented
in Fig. 1, with a maximum at low α + t energies. The 7/2−
resonance is clearly visible. The amplitudes vary with energy,
as it is expected from barrier penetration effects.

Figure 5 provides the ratios of the different α + t partial
waves, defined as

Rj (E) =
∑

n σ
j
BU

(
E,E

j
0n

)
σBU(E)

. (41)

FIG. 4. Breakup cross sections (40) for different partial waves
j of the α + t continuum. The 7Li + 208Pb energies are 26, 34, and
42 MeV. The dots represent the pseudostate energies, and the lines
are to guide the eye.

This definition involves a summation over the pseudostates
in partial wave j . At low scattering energies, the dominant
contribution stems from the lowest angular momenta j =
3/2− (� = 0) and j = 1/2+ (� = 1), with a minor contribution

FIG. 5. Contributions of the dominant α + t partial waves j to
the total breakup cross section [see Eq. (41)].
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FIG. 6. Angular-momentum distribution of the breakup cross
sections at E = 26, 34, 42 MeV. The solid lines represent the full
CDCC calculation, while the dashed line are obtained at the Coulomb
approximation (34).

of j = 7/2− (� = 3). When the energy increases, however, the
7/2− resonance is more important. It starts being dominant
around 31 MeV, which roughly corresponds to the barrier
energy plus the excitation energy of the 7/2− resonance.

D. Partial-wave analysis

In this subsection, we analyze the angular-momentum
distribution of the breakup cross sections. The individual
components (18) are plotted in Fig. 6 for three typical energies
(solid lines). We also present the pure Coulomb cross sections
(dashed lines), obtained with the approximate matrix elements
(34). This provides a qualitative information on the Coulomb
contribution and does not depend on any model assumption. At
this stage, we do not consider the separation between nuclear
and Coulomb breakup. This will be done in the next section.

At large angular momenta, both distributions coincide since
the centrifugal barrier strongly reduces the role of the nuclear
interaction and only the Coulomb term remains. Notice that
the exact matching starts around Lω ≈ 80 for E = 34 MeV
and around Lω ≈ 100 for E = 42 MeV.

Above the Coulomb barrier, i.e., when the grazing angular
momentum Lg satisfies the condition Lg � 1, the strong-
absorption approximation [46] can be used. In particular,
the Sopkovich prescription [48] provides a link between the
CDCC scattering matrix UJπ

c,c′ and the Coulomb approximation

U
Jπ(C)
c,c′ (34). This prescription reads

UJπ
c,c′ ≈ U

Jπ(C)
c,c′ × (

U
Jπ

c × U
Jπ

c′
)1/2

, (42)

where U
Jπ

c is the single-channel scattering matrix. The
consequence is that a breakup element is expected to follow the
L dependence of the single-channel S matrices. From Fig. 2,
we may expect that, if the energy is high enough (E = 42 MeV
in our example), the breakup element is strongly damped
below the grazing angular momentum (Lg ≈ 26 from Fig. 2).
Consequently, the dominant contribution in breakup cross
sections comes from angular momenta around the grazing
value, as for elastic scattering. Of course, these properties are
qualitative only, but provide a simple and natural explanation
to the more complicated CDCC breakup calculations.

V. NUCLEAR AND COULOMB CONTRIBUTIONS
IN 7Li + 208Pb

A. Breakup cross sections

Our main goal in this work is to analyze the nuclear
and Coulomb cross sections, as discussed in Sec. III. The
nuclear, Coulomb, and interference contributions, as well as
the total cross sections, are presented in Fig. 7. This figure
shows that methods 1 and 2 [Eqs. (11) and (15), respectively]
provide rather different nuclear and Coulomb cross sections.
Note, however, that the total breakup cross section (see also
Fig. 3) is, up to the numerical precision, exactly reproduced.
This large difference between both methods suggests that the
separation of nuclear and Coulomb breakup is ambiguous.
The origin of this ambiguity comes from the fact that the wave
functions depend on the nuclear and Coulomb interactions
simultaneously. The separation of both potentials, which is
unambiguous, is not sufficient to clearly separate the nuclear
and Coulomb components of the breakup cross section. With
both methods, the nuclear and Coulomb contributions are close
to each other, and interference terms are important. Strong
nuclear effects has been also pointed out in Ref. [24].

In Fig. 7, we also present the cross sections obtained with
the weak-coupling approximation [25] (dashed lines). This
approximation is very close to method 1 for the nuclear
breakup and to method 2 for the Coulomb breakup. The
agreement is striking and difficult to explain quantitatively.
Qualitatively, however, the physical interpretation is as fol-
lows. In the weak-coupling approximation, one generates total
wave functions, which differ from the exact wave functions
since either the nuclear or the Coulomb potential is neglected.
In the weak-coupling approximation, the nuclear component is
obtained by switching off all Coulomb nondiagonal couplings
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FIG. 7. Nuclear and Coulomb (a) and interference (b) compo-
nents of the breakup cross section.

in the coupled-channel equation (5), which means that the
approximate wave function is expected to be more accurate at
short distances. Therefore it is more consistent with method
1, which contains diagonal nuclear potentials. An equivalent
conclusion holds for the approximate Coulomb cross section,
which is expected to be more accurate with method 2. This is,
of course, a qualitative interpretation. The conclusion about
the ambiguity, however, remains and, from our example, the
notion of nuclear or Coulomb breakup is quite unclear.

In order to visualize the low-energy cross sections, we
display in Fig. 8 the ratio of the Coulomb [Fig. 8(a)] and
nuclear [Fig. 8(b)] cross sections, divided by the total breakup
cross section. Notice that the sum of these ratios is different
from unity since interference terms (which can be negative)
exist in definition (22). Interferences increase with energy, as
suggested by Fig. 7. Whereas method 1 gives ratios of the
order of unity, method 2, more symmetric in the treatment
of the nuclear and Coulomb interactions, is strongly energy
dependent, and the ratios are much larger than 1 (for the scale
of clarity the results have been scaled by 1/10 in the figure).

Methods 1 and 2 are based on integral definitions of
the scattering matrix. Although the nuclear and Coulomb
components can be clearly separated in the potential, their
contributions to the wave functions cannot be disentangled.
This problem leads to the ambiguity discussed above. There is,

FIG. 8. Fraction of Coulomb (a) and nuclear (b) breakup cross
sections. The solid lines are obtained as described in the text, and the
dashed lines represent the weak-coupling approximation.

however, an approach which is model independent, and along
the ideas used for elastic or inelastic scattering [34], or even
for bremsstrahlung [49]. Let us define a nuclear contribution
by

UJπ
c,c′ = U

Jπ(C)
c,c′ + U

Jπ(N3)
c,c′ , (43)

where U
Jπ(C)
c,c′ is the so-called pure-Coulomb scattering matrix

(34). In this way the Coulomb term does not depend on the
reaction model [it still depends on the projectile properties
through the electromagnetic matrix elements (37)]. This
method, hereafter referred to as method 3, is illustrated in
Figs. 7 and 8. Its main advantage is to address the slow
convergence of the CDCC breakup cross sections. As shown
in the L distribution of Fig. 6, the convergence with angular
momentum is slow, in particular at low incident energies, but
the matrix elements at large L can be computed separately
by using specific techniques [40]. In this way, the full CDCC
calculation is not necessary beyond a certain L value and can
be accurately replaced by the Coulomb approximation. This
technique was used in Ref. [34] for inelastic scattering and can
be adapted to breakup reactions.

Finally we explore the L dependence of the various
methods. We select an intermediate energy E = 34 MeV,
and plot in Fig. 9 the Coulomb (a) and nuclear (b) cross
sections as a function of the angular momentum Lω. As
expected from the analysis of the total cross sections (Fig. 7),
the three methods and their approximation provide different
results. At low angular momenta and at high angular momenta,
the results are consistent with each other. However, there
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FIG. 9. Partial-wave decomposition of the Coulomb (a) and
nuclear (b) breakup cross section at E = 34 MeV. The solid lines
are obtained as described in the text, and the dashed lines represent
the weak-coupling approximation.

is a wide window (20 � Lω � 80) where all separation
techniques provide different results. With method 3, the
nuclear breakup component does not decrease rapidly, as it
does with other methods. The reason is that the nuclear term
U

Jπ(N3)
c,c′ [see Eq. (43)] is obtained from the subtraction of two

scattering matrices where the wave functions are different.
Consequently, this term contains higher-order effects due to
the Coulomb interaction. More precisely, it should be referred
to as quasinuclear breakup.

Similar conclusions are drawn at other energies, which con-
firms the ambiguity when trying to disentangle the Coulomb
and nuclear components in breakup cross sections.

B. Reaction cross sections

This subsection is devoted to reaction cross sections.
Figure 10 presents the CDCC results with the nuclear and
Coulomb contributions. Here only method 1 can be used as
method 2 involves single-channel elements which cannot be
directly separated in nuclear and Coulomb terms. In contrast
with breakup, the reaction cross section is dominated by
nuclear effects above the Coulomb barrier. Around 25 MeV
(i.e., 2 MeV below the Coulomb barrier), however, both
contributions are similar. Coulomb effects are dominant below
25 MeV, an energy region where the reaction cross section is
rather small. We present as a dashed line the reaction cross
section deduced from definition (31). In the present case, the
difference is negligible, except below the Coulomb barrier.

FIG. 10. Reaction cross section (25) with the Coulomb (28)
and nuclear (29) contributions. The dashed line corresponds to the
definition (31) of the reaction cross section.

We extend our analysis to a partial-wave decomposition
of the reaction cross section. The distribution is displayed in
Fig. 11, with the individual Coulomb and nuclear components.
As suggest by Fig. 10, Coulomb effects are negligible above
the Coulomb barrier (here we take E = 42 MeV). Even if the
L convergence is slow, the contribution of low partial waves
(up to Lω ≈ 40) is strongly dominant. This is less true at

FIG. 11. Partial-wave decomposition of the reaction cross section
at E = 24 MeV (top) and E = 42 MeV (bottom). The Coulomb
and nuclear contributions are shown in green and blue, respectively.
The solid lines correspond to the full CDCC calculation and the
dashed lines to the single-channel approximation (at E = 42 MeV,
the nuclear terms are indistinguishable). The single-channel Coulomb
term is negative for 25 � Lω � 29, and the absolute value is shown.
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24 MeV, where the nuclear term is present in a narrow range
(up to Lω ≈ 15). In these circumstances, the convergence with
angular momentum must be considered very carefully.

For the sake of completeness, we show in Fig. 11 the various
cross sections in the single-channel approximation (dashed
lines). Clearly the role of the α + t continuum is minor.

VI. CONCLUSION

The main goal of this work was to address, in the CDCC
framework, the separation between Coulomb and nuclear com-
ponents in breakup cross sections. The CDCC method provides
an accurate approximation of the three-body wave function
and is therefore well adapted to breakup reactions. In contrast
with the total cross section, which only requires the scattering
matrices, the individual contributions are based on integrals
using the scattering wave functions and the potentials. We find
that, even at low energies, nuclear effects are not negligible,
as suggested long ago by Dasso et al. [24]. These authors
showed that assuming a Coulomb dissociation, as it is usually
done, is questionable. Our work confirms this conclusion, but
goes even further. At high angular momenta, the situation is
fairly clear: The nuclear term is negligible and the Coulomb
contribution is well defined. This is, however, not true at low
angular momenta. Not only nuclear effects are important, but
the separation itself depends on the method used. This is
not very surprising since (i) both contributions contain the
wave function, which depends on the full interaction; and (ii)
there are several methods to separate both components, which
provide significantly different results. These results therefore
suggest that the terms Coulomb and nuclear are partly
ambiguous and that extracting information from dissociation
data cannot be done by neglecting a priori nuclear effects.

Our test of the weak-coupling approximation provides
rather striking results. For 7Li + 208Pb, it resembles nuclear
breakup with method 1 and Coulomb breakup with method
2. A qualitative interpretation has been suggested, but it is
difficult to go beyond this simple discussion. Our comparison
confirms that Coulomb and nuclear cross sections obtained in
this way are questionable.

A similar decomposition has been performed on reaction
cross sections. Above the Coulomb barrier, the cross section
is essentially nuclear and Coulomb effects are negligible.
We have discussed the definition itself of the reaction cross
section, which may differ in the literature for projectiles with
a nonzero spin. In the present case, this effect is limited above
the Coulomb barrier and probably within the reliability of the
model assumptions.

The conclusion drawn from the 7Li + 208Pb system should
be rather general. However, specific effects may be present
in other reactions. In particular, it would be interesting to
perform similar analyses for projectiles with N/Z = 1, where
Coulomb effects are expected to be weaker. The extension of
the present framework to three-body projectiles also deserves
further work.
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