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Effect of hyperons on phase coexistence in strange matter
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The study of the liquid gas phase transition in the fragmentation of nuclei in heavy ion collisions has been
extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz’s free energy,
specific heat, and a few other thermodynamic observables have been analyzed in order to examine the occurrence
of phase transition in the strange matter. The bimodal behavior of the largest cluster formed in fragmentation
also strongly indicates a coexistence of both the phases. The presence of hyperons strengthens the signals and
also shifts the transition temperature to lower values.
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I. INTRODUCTION

The study of liquid-gas phase transition is an important
area of research in the regime of fragmentation of nuclei in
heavy ion collisions [1]. This is a well-studied subject both
theoretically and experimentally [2–5] which has a pivotal
role in understanding the physics of nuclei as well as nuclear
matter[1,6]. Extensive research has been done in the past few
decades in this topic but this has been mainly confined to
normal nuclei or nonstrange matter. Theoretical and experi-
mental studies of nuclear systems with finite strangeness, i.e.,
hypernuclei in heavy ion reactions, are hot topics in the nuclear
and particle physics community [7–13]. Recently in the past
few years the study of phase coexistence has been extended to
the domain of strange matter in nuclei [14–18] as well as in
(proto)neutron star matter [19,20].

Multifragmentation of normal nuclei [21,22] serves as a
important tool to study first-order phase transition in nuclei as
well as the phase diagram in nuclear matter. In fact the frag-
mentation of nuclei at a certain temperature range is identified
with the well-studied phenomenon of the liquid gas phase
transition. Depending on their size, the produced fragments
are believed to constitute the finite system counterpart of
the coexisting phase of gas and liquid. This study has been
extended to the strangeness sector through the fragmentation
of hypernuclei [17,23–27] where the composition of the
produced hyper(strange) fragments can serve as a tool for
studying the liquid-gas phase transition. The role of the
strange particles (hyperons) affecting this decomposition is an
interesting subject of study in the recent day activities related to
fragmentation of hypernuclei. It has already been emphasized
that the hyperons have a tendency to get attached to the heavier
fragments after break-up [17]. The U-shaped distribution of the
fragments observed in the fragmentation of nonstrange nuclei
is also exhibited in the fragmentation of hypernuclei and it
is this feature which has been exploited in order to study the
first-order phase transition of the hyperfragments.

Recent study of the liquid-gas phase transition of hyper-
nuclei has been performed [17] using the three-component
canonical thermodynamical model (neutron, proton, and hy-
peron) [23,24]. The mass distribution of the fragments which
was the main observable of focus in that study pointed to
signatures of phase transition. The mass distribution was

analyzed at different temperatures and also for different
strangeness content. Variation of the average mass of the
fragments as a function of the strangeness content was studied
in detail. The main motivation of this work is to continue
with this topic of phase transition in hypernuclei exploring
the variation of thermodynamic potentials and the size of the
largest cluster. The variation of Helmholtz’s free energy and
its derivatives is analyzed in order to comment on the nature
of the phase transition of the hypermatter. The probability
distribution of the largest cluster is analyzed in order to
examine its bimodal behavior at the transition temperature
where the peaks in liquid and the gas phase are expected to
be equal in height. The effect of strangeness on the transition
temperature is also studied in order to demonstrate the effect
of hyperons on the phase transition, the variation of specific
heat as well as size of the largest cluster. The influence of
the long-range Coulomb interaction on the liquid gas phase
transition is a well-studied subject and in this work the same
study is being continued including the hyperons.

II. THEORETICAL FORMALISM

In this section we describe briefly the three-component
canonical thermodynamical model. Assume that the system
with A0 baryons, Z0 protons, and H0 hyperons at temperature
T has expanded to a higher than normal volume and thermo-
dynamical (statistical) equilibrium is reached at this freeze-out
condition. In a canonical model, the partitioning into different
composites is done such that all partitions have the correct
A0,Z0, H0. Details of the implementation of the model can be
found elsewhere [17,23]; here, we give the essentials necessary
to follow the present work. The canonical partition function is
given by

QA0,Z0,H0 =
∑ ∏ (ωa,z,h)na,z,h

na,z,h!
. (1)

Here, the product is over all fragments of one break-up
channel and sum is over all possible channels of break-up
satisfying A0 = ∑

a × na,z,h, Z0 = ∑
z × na,z,h, and H0 =∑

h × na,z,h; ωa,z,h is the partition function of one composite
with a baryons, z protons, and h hyperons, whereas na,z,h

is the number of this composite in the given channel. The
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partition function QA0,Z0,H0 is calculated using the recursion
relation [21,28]

QA0,Z0,H0 = 1

A0

∑
a,z,h

aωa,z,hQA0−a,Z0−z,H0−h. (2)

From Eqs. (1) and (2), the average number of composites
is given by [21]

〈na,z,h〉 = ωa,z,hQA0−a,Z0−z,H0−h

QA0,Z0,H0

. (3)

The partition function of a composite having a baryons, z
protons, and h hyperons is a product of two parts: one is due
to the the translational motion and the other is the intrinsic
partition function of the composite:

ωa,z,h = V

h3
(2πT )3/2{(a − h)mn + hmh}3/2 × za,z,h(int).

(4)
Here, mn and mh are masses of the nucleon (we use 938 MeV)
and hyperon (we use 1116 MeV for � hyperon), respectively,
and V is the volume available for translational motion. Note
that V will be less than Vf , the volume to which the system has
expanded at break up [29]. Since hyperfragments are generally
studied from projectile-like fragments [21,22,30,31], hence we
have considered Vf = 3V0. We use V = Vf − V0, where V0

is the normal volume of the hypernucleus with A0 baryons,
Z0 protons, and H0 hyperons. The intrinsic partition function
arises due to the internal motion of the baryons of a fragment
which can be calculated from the well-known thermodynamic
identity Zint = exp(−F/T ), where F = E(T ) − T S(T ) =
E0(T ) + Eex(T ) − T S(T ) is the Helmholtz free energy (as
equilibrium is considered at constant volume). The neutron,
proton, and � particles are taken as the fundamental blocks,
therefore zint(1,0,0) = zint(1,1,0) = zint(1,0,1) = 1. In order
to construct zint(a,z,h) for the different fragments, experi-
mental binding energies are used for the lower mass region
(1 < a � 5) both for h = 0 and h > 0 (wherever available)
and for a > 5, a liquid-drop formula [27] is used for obtaining
ground state energy, and a Fermi-gas model is applied for
studying excitation energy Eex(T ) and entropy S(T ). The
liquid-drop formula [27] is given by

E0(T ) = − 16a + σ (T )a2/3 + 0.72kz2/(a1/3)

+ 25(a − h − 2z)2/(a − h) − 10.68h

+ 21.27h/(a1/3), (5)

where σ (T ) is the surface tension which is given by σ (T ) =
σ0{(T 2

c − T 2)/(T 2
c + T 2)}5/4 with σ0 = 18.0 MeV and Tc =

18.0 MeV and k is the correction factor in Coulomb energy
which incorporates the effect of its long-range behavior by
Wigner-Seitz approximation as in Ref. [22].

It is necessary to specify which nuclei are included in
computing QA0,Z0,H0 [Eq. (2)]. For 1 < a � 8, we have
considered the same set of nuclei as mentioned in Ref. [24]
and for a > 8, we have included a ridge along the line of
stability. The liquid-drop formula gives neutron and proton
drip lines for different strangeness and the results shown
here include all nuclei within the boundaries. Another useful
parametrization in liquid drop formula for hypernuclei was

FIG. 1. Variation of Helmholtz’s free energy per nucleon (upper
panel), entropy per nucleon (middle panel), and specific heat per
nucleon (bottom panel) with temperature for two fragmenting systems
having the same A0 = 128, Z0 = 50 but different H0 = 8 (black solid
lines) and H0 = 0 (red dashed lines).

proposed by Samanta et al. [32]. A comparative study of these
two formula in the case of hyperfragmentation was described
in Ref. [27] and finally the one used here was chosen because
it produces results closer to the experimental data.

III. RESULTS AND DISCUSSIONS

Figure 1(a) shows the variation of Helmholtz’s free energy
(F = −T ln QA0,Z0,H0 ) with temperature for a system with
baryon number 128, charge 50. The Coulomb interaction has
been switched off in order to better reveal the signatures
of phase coexistence in a finite system. The calculation is
done both for normal (H = 0) nuclei as well as the strange
ones with eight hyperons. There is not much qualitative
difference between the two plots and the thermodynamic
potential displays a continuous trend. The next plot [Fig 1(b)]
shows the variation of the first derivative of the free energy
with respect to temperature, i.e., entropy (S = −( ∂F

∂T
)
V

) which
exhibits a discontinuity in its variation with temperature. The
variation is more pronounced for the strange system as is
evident from the figure. This indicates that the presence of
hyperons in the system strengthens the transition process
thereby amplifying the signals. There is sharp rise in the
derivative in the temperature range of 5.5 to 6 MeV after
which it again slows down. Figure 1(c) displays the behavior
of the second derivative of the free energy with respect to
temperature, i.e., specific heat (Cv = T ( ∂S

∂T
)
V

) for both the
normal and the strange systems, which shows a peak as is
expected for systems undergoing phase transition. The peak
is sharper in the case of the strange system as is expected
since indications of phase coexistence are more pronounced
for the multihyperon systems as compared to the nonstrange
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FIG. 2. Largest cluster probability distribution for four different
fragmenting systems having same A0 = 128, Z0 = 50 but different
H0 = 8 (black solid line), H0 = 4 (blue dotted line), H0 = 2 (green
dash dotted line), and H0 = 0 (red dashed line). Calculations are done
at constant temperature T = 6.065 MeV.

ones. The temperature where the peak appears is different in
both cases, the transition temperature being less for the strange
system. The reason behind this is probably due to the fact that
more hyperons attached to a nucleus is equivalent to the case
of a nucleus carrying more excitation energy and hence it
disintegrates faster compared to that of a less strange system.

The largest cluster size acts as a very good order parameter
for phase transition in nuclear multifragmentation. Figure 2
displays the probability distribution of the largest cluster size
at T = 6.065 MeV for systems with varying amounts of
strangeness content. Here the probability that zm is the largest
cluster is calculated from the relation

Pr(zm) = QA0,Z0,H0 (zm) − QA0,Z0,H0 (zm − 1)

QA0,Z0,H0 (Z0)
, (6)

where QA0,Z0,H0 (zm) can be constructed such that all values
of ωa,z,h are set at 0 when z � zm [34]. The probability
distribution is expected to display a bimodal behavior in
and around the transition temperature with two peaks of
equal height characterizing the liquid and the gas phase
coexisting at the same temperature and this is attributed to
phase coexistence or first-order phase transition. The transition
temperature where the peaks are of equal height varies with the
strangeness content and is less for the more strange system as
the system with more hyperons breaks down more easily. The
bimodal behavior [33,35–37] of the size of the largest cluster
probability distribution further establishes the occurrence of
the first-order phase transition in the system.

Figure 3 displays the variation of the transition temperature
with the total strangeness content of the system and it further
confirms the conclusion already obtained from the previous
figure that the phase transition temperature is less for the
more strange system indicating that the strangeness aids in
the disintegration of the system.

Figure 4 displays the variation of average charge of the
largest cluster [〈Zmax〉 = ∑Zm=Z0

Zm=1 ZmPr(Zm)] with temper-

FIG. 3. Variation of transition temperature (Tp) with the total
strangeness content of the fragmenting system.

ature for both normal nuclei as well as nuclei with eight
hyperons. There is a steep change in the average size near the
transition temperature which is again indicative of a change
from the liquid to gas phase. The steepness is more pronounced
for the strange system as compared to the normal system.

Figure 5 shows the caloric curve [38], i.e., the variation
of temperature with excitation energy for both normal and
strange nuclei switching off the Coulomb interaction. For a
given temperature the excitation energy of the fragmenting
system is calculated from the relation

E∗
A0,Z0,H0

= T 2 1

QA0,Z0,H0

{
∂QA0,Z0,H0

∂T

}
− EA0,Z0,H0 (T = 0).

(7)

Initially the temperature rises steeply with the excitation,
then it slows down during the phase transition process
and again starts increasing rapidly. For a system in the

FIG. 4. Variation of average charge of the largest cluster (Zmax)
with temperature (T ) for two fragmenting systems having the same
A0 = 128, Z0 = 50 but different H0 = 8 (black solid line) and H0 =
0 (red dashed line).
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FIG. 5. Variation of temperature (T ) with excitation energy (E∗)
for two fragmenting systems having the same A0 = 128, Z0 = 50 but
different H0 = 8 (black solid line) and H0 = 0 (red dashed line).

thermodynamic limit, the temperature is expected to remain
constant with excitation energy in the transition region. The
nuclei being much smaller in size, signatures are suppressed
and one observes a remarkable slowing down in the rate of
change of temperature instead of it remaining constant as
expected in an infinite system.

Figure 6 shows another important observable related to
first-order phase transition which are isotherms in the pressure
volume plane. The figure displays the variation of pressure
with volume for four different temperatures both for normal
nuclei as well those with eight hyperons. Initially the pressure
decreases with volume after which it remains more or less
constant irrespective of the change in volume. This is another
strong signature of the liquid-gas coexistence or first-order
phase transition. It can also be observed from this figure that
for a particular temperature, the strange system disintegrates
at a smaller volume as compared to the normal one.

In the next part (Fig. 7) of our work we attempt to
demonstrate the effect of the long-range Coulomb interaction

FIG. 6. Variation of pressure with volume for two fragmenting
systems having the same A0 = 128, Z0 = 50 but different H0 = 8
(solid lines) and H0 = 0 (dashed lines) at four different temperatures
T = 5.0, 5.5, 6.0, and 6.5 MeV.

FIG. 7. Variation of average charge of the largest cluster (Zmax)
(upper panel) and specific heat per nucleon (lower panel) with
temperature (T ) by switching on (blue dashed lines) and switching
off (black solid lines) the Coulomb interaction. All the calculations
are done for the fragmentation of a hypernucleus having A0 = 128
baryons, Z0 = 50 protons, and H0 = 8 hyperons.

on phase transition signatures. This topic is well studied in the
case of normal nuclei [39,40] but here it is extended to the
nuclei with strangeness. One observable on which the effect is
being examined is the average size of the largest cluster. The
system where the Coulomb interaction is considered shows
a much slower change in size of 〈Zmax〉 as compared to the
case where the Coulomb is switched off where the change
is much more steep. Hence one can conclude that the effect
of the Coulomb on signatures of phase transition is similar in
both strange and ordinary nuclei. The next observable which is
being considered for testing this is a variation of specific heat
with temperature. A similar effect is being observed which
implies a much broader peak for a system with the Coulomb
as compared to the case without the Coulomb where the peak
is much narrower. This again confirms that the presence of the
long-range force suppresses the indication of phase transition
on different relevant observables.

IV. SUMMARY

The study of phase coexistence in normal matter has
been extended to the strangeness sector using the three-
component canonical thermodynamical model. The analysis
of the thermodynamical observables, like free energy, entropy,
specific heat, clearly points to the occurrence of a first-order
phase transition within a certain temperature interval which in
turn depends strongly on the strangeness content of the system.
The largest cluster size which acts as an order parameter for
the liquid-gas phase transition exhibits a bimodal behavior in
its probability distribution at a certain transition temperature
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which agrees with that obtained from the thermodynamic
variables. More strange is the system, less is the transition
temperature for conversion to the gas-like phase. The effect
of the long-range Coulomb interaction on the phase transition
of strange matter has also been studied using the specific heat
and the size of the largest cluster as the relevant observables.
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