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Background: A new mode of nuclear fission has been proposed by the FOBOS Collaboration, called collinear
cluster tri-partition (CCT), and suggests that three heavy fission fragments can be emitted perfectly collinearly
in low-energy fission. This claim is based on indirect observations via missing-energy events using the 2v2E

method. This proposed CCT seems to be an extraordinary new aspect of nuclear fission. It is surprising that CCT
escaped observation for so long given the relatively high reported yield of roughly 0.5% relative to binary fission.
These claims call for an independent verification with a different experimental technique.
Purpose: Verification experiments based on direct observation of CCT fragments with fission-fragment
spectrometers require guidance with respect to the allowed kinetic-energy range, which we present in this
paper. Furthermore, we discuss corresponding model calculations which, if CCT is found in such verification
experiments, could indicate how the breakups proceed. Since CCT refers to collinear emission, we also study the
intrinsic stability of collinearity.
Methods: Three different decay models are used that together span the timescales of three-body fission. These
models are used to calculate the possible kinetic-energy ranges of CCT fragments by varying fragment mass
splits, excitation energies, neutron multiplicities, and scission-point configurations. Calculations are presented for
the systems 235U(nth,f ) and 252Cf(sf ), and the fission fragments previously reported for CCT; namely, isotopes
of the elements Ni, Si, Ca, and Sn. In addition, we use semiclassical trajectory calculations with a Monte Carlo
method to study the intrinsic stability of collinearity.
Results: CCT has a high net Q value but, in a sequential decay, the intermediate steps are energetically and
geometrically unfavorable or even forbidden. Moreover, perfect collinearity is extremely unstable, and broken
by the slightest perturbation.
Conclusions: According to our results, the central fragment would be very difficult to detect due to its low
kinetic energy, raising the question of why other 2v2E experiments could not detect a missing-mass signature
corresponding to CCT. Considering the high kinetic energies of the outer fragments reported in our study,
direct-observation experiments should be able to observe CCT. Furthermore, we find that a realization of CCT
would require an unphysical fine tuning of the initial conditions. Finally, our stability calculations indicate that, due
to the pronounced instability of the collinear configuration, a prolate scission configuration does not necessarily
lead to collinear emission, nor does equatorial emission necessarily imply an oblate scission configuration. In
conclusion, our results enable independent experimental verification and encourage further critical theoretical
studies of CCT.
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I. INTRODUCTION

Nuclear fission has been the focus of intense experimental
and theoretical studies ever since its discovery almost 80
years ago [1–3]. Usually, fission results in two fragments
(binary fission) with similar (symmetric fission) or dissimilar
(asymmetric fission) masses. The possibility of fission into
three fragments (ternary fission, see Ref. [4] for a review),
was proposed [5] shortly after the discovery of binary fission.
Experimental evidence of ternary fission was found 70 years
ago in nuclear emulsion photographs [6,7] and in measure-
ments with ionization chambers [8]. Detailed investigations
showed that ternary fission occurs once every few hundred
fission events. In 90% of all ternary fission events, the third
particle, called the ternary particle, is a 4He nuclei, and in
9% hydrogen or a heavier helium nuclei. In only 1% of all
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ternary fission events does the ternary particle have Z > 2,
with yields rapidly dropping with increased Z [9]. Ternary
particles up to Z = 16 have been observed at yields of the
order of 10−9 per fission [10]. However, early claims [11–15]
for yet heavier ternary particles or even “true ternary fission”
with three fragments of comparable masses remain disputed.
Dedicated counting experiments searching for such events in
planar geometry [16] and radiochemical experiments [17–19]
gave upper yield limits below 10−8 for true ternary fission.

Therefore, it came as a great surprise when the FOBOS
collaboration reported new experiments indicating true ternary
fission events with a yield of 5 × 10−3 per fission [20–22].
These experiments were performed with the fission-fragment
spectrometers FOBOS and mini-FOBOS [23], in which
detector modules are placed at opposite sides (180◦ angle)
of a thin fission target. The fission-target backing creates an
intrinsic asymmetry of the setup since fragments detected
in one of the arms have to traverse the backing. Binary
coincidences from 252Cf(sf ) and 235U(nth,f ) were measured
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with this setup. The binary spectrum showed an enhancement
of events with lower energy from the detector arm on the side of
the target backing. Some of these missing energy events were
interpreted as missing mass, which could correspond to a third
particle missing detection due to scattering in the fission-target
backing. The claim was that three heavy fragments were
emitted perfectly collinearly along the fission axis, the two
lightest fragments in the same direction as the target backing,
and the heavy in the opposite, and that the smallest of the
three fragments (the ternary particle) did not reach the active
area of the detector. Hence, this interpretation was dubbed
“collinear cluster tri-partition” (CCT). In the following, we use
this definition of CCT as collinear fission events with a relative
angle between fragment emission directions of 180◦ ± 2◦
[20].

A similar experiment, but without an explicit asymmetry
in any of the flight paths, was performed by Kravtsov and
Solyakin [24], showing no indication of either CCT or missing-
mass events down to a level of 7.5 × 10−6 per fission in
252Cf(sf ).

Given these surprising results and the high reported yield
of 0.5%, the fact that no indication of CCT was found before
in either radiochemical analysis or coincidence measurements
calls for an independent verification, preferably with a direct
observation method. This is indeed possible, and under way,
with the LOHENGRIN fission-fragment recoil separator (to
be reported in a future paper). For a verification experiment
based on direct observation, it is crucial to know which kinetic
energies to scan. Since the FOBOS collaboration did not report
at which kinetic energies the fragments were measured, these
kinetic energies need to be inferred from theory, which is the
main focus of this paper. The kinetic-energy distribution of
one fragment in a ternary decay cannot be derived from first
principles. Instead, the full range of kinetic energies allowed
by energy and momentum conservation can be calculated,
which is done in this study. This is straightforward since
CCT is a one-dimensional decay in which the acceleration is
repulsion dominated, yielding a limited amount of possibilities
of how the kinetic energy can be distributed between the
fragments. The possible kinetic energies are reduced even
further by the constraint posed by the FOBOS experiments
that two of the fragments have a kinetic energy which is
high enough to enter the detector arms and leave a clear
signal. An experiment that can cover all the energies allowed
by energy and momentum conservation can thus verify
CCT in a model-independent fashion. If events are found,
our model calculations would indicate how the breakups
proceed in CCT, by comparison with the measured kinetic
energies.

We start this paper by detailing which fissioning systems
will be studied. This is followed by a description of the
theoretical models spanning the possible kinetic energies in
CCT, and the Monte Carlo method used to study the intrinsic
stability of collinearity. Results are then presented in the form
of possible final kinetic energies in CCT, benchmarks of the
methods used, studies that highlight overlooked contradictions
in the models currently favored in the literature, and studies
of the stability of CCT. This is followed by discussions
on verification of CCT by direct observation, on the CCT

FIG. 1. Plots (a) and (b) show the Q value versus the final mass
split between the lightest fragments in the decays in Eqs. (1) and (2),
respectively, at zero neutron multiplicity (ν = 0). The Q values are
calculated from mass excesses taken from AME2012 [25]. No data
are available for the bottom-left corner (i.e., for masses ASn > 138).
Prompt-neutron emission ν > 0 generally lowers the Q values (see
Fig. 3).

interpretation, and on the intrinsic stability of CCT. Finally,
the paper ends with conclusions and appendixes with details
of each model and method.

II. FISSIONING SYSTEMS

In this paper, we present new and detailed calculations on
the reported CCT clusters [20–22]

235U(nth,f ) → Sn + Si + Ni + νn, (1)
252Cf(sf ) → Sn + Ca + Ni + νn, (2)

both with and without intermediate steps leading up to the
final fragments, where ν is the neutron multiplicity. Other
speculated fragments have similar masses and Q values, and
therefore similar kinematics. The derivations presented in this
paper allow easy extension to any desired system.

In the analysis of the FOBOS experiments [20–22], the
measurements were interpreted as masses ASn ≈ 132 and
ANi ≈ 68–72 with ν ≈ 0–4, with missing masses ASi ≈ 34–36
and ACa ≈ 48–52, respectively. These are the most energeti-
cally favorable masses, as shown in Fig. 1. Our study includes
a slightly wider range of masses. The figure shows Q values
which are relatively high compared with binary fission. As
our results will show, however, a high Q value does not
necessarily imply a high yield or probability for fission, since
the intermediate steps may be unfavorable or forbidden.

III. THEORETICAL MODELS

CCT is a decay in one spatial dimension in which three
fragments are formed from one fissioning system (FS) through
two breakups [26,27] and accelerated along the same line (see
Fig. 2). If the time between breakups is long enough, there
exists an intermediate state with a heavy fragment (HF) and
an intermediate fragment (IF), the latter which splits in turn
into a light fragment (LF) and a ternary particle (TP). The
ternary particle here refers to the lightest fragment. If the time
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FIG. 2. Schematic picture of the formation of CCT. For long
timescales between two successive (sequential) breakups, there is
an intermediate state (2). For sufficiently short timescales between
breakups, there is no intermediate state, and the decay is a true
three-body decay. Arrows indicate momentum direction. See text
for explanation of acronyms.

between breakups is sufficiently short, there is no intermediate
state, and the decay is a “true” three-body decay. Therefore, for
a given fissioning system, the essential parameter to describe
CCT is the time between the two breakups. In this paper, we
divide the timescale of this parameter into three regimes, or
models, and explicitly show that the kinetic energies of these
models overlap in the limits.

The first model is called the “sequential” decay model
[28] and is based on two sequential binary fissions, with long
timescales between the two successive scissions (i.e., assuming
fully accelerated fragments before the second scission). The
second model is the recently proposed “almost sequential”
decay model [29], with intermediate timescales between
scissions (assuming partially accelerated fragments before the
second scission). These sequential models are the currently
favored models in the literature. As is shown in the results,
however, both of these models assume the fission of an
intermediate system with a high fission barrier and extremely
low (or even negative) Q value. This motivates the study of
a third model which is based on traditional ternary fission
models, and called in the following the “true ternary” decay
model, with “infinitesimal” timescales between scissions (i.e.,
no intermediate step or fragment). We mainly focus on the
sequential and true ternary decay models, as they represent the
extremes of the kinetic-energy range, but we also show how
to calculate all the possible kinetic energies allowed by energy
and momentum conservation for all three models, for other
fissioning systems as well.

The final kinetic energies of the fission fragments are
obtained analytically in the sequential decay model. This
is possible since the kinematics in this model is fully
determined by energy and momentum conservation. In the
almost-sequential and true ternary decay models, the final
kinetic energies depend on the dynamics. Thus, these results
are obtained with semiclassical trajectory calculations (see
Ref. [30], chapter 12-III for a review). In these calculations,
the scission configuration (initial fragment positions and
momenta) is constrained by energy and momentum conser-
vation for a given fissioning system. Subsequently, the final
kinetic energies are calculated by starting from the scission

configuration and solving the equations of motion iteratively.
The latter is done with a fourth-order Runge–Kutta method
using a time step of 10−25 s, until more than 99% of the
potential energy is converted into kinetic energy.

Since the 1960s, semiclassical trajectory calculations have
been applied to ternary fission, mainly with the aim to
determine the scission configuration [31]. As in many of
these studies, a “point-charge approximation” is used in
our trajectory calculations, which assumes only a repulsive
Coulomb force between spherical fragments. For the purpose
of finding which scission configuration matches a particular
final distribution, this method has received critique due to
ambiguity [32–35], since several initial configurations can
have the same final distribution. We do not have the same
aim, however. Instead, we vary all possible initial collinear
configurations in order to find all possible final kinetic energies
of CCT fragments. Furthermore, we again stress the fact that, in
contrast with the previously mentioned studies, we study CCT
which is a one-dimensional problem in which the dynamics
during the fission-fragment acceleration is dominated by the
repulsive Coulomb interaction. Adding an attractive nuclear
correction to the sequential model does not affect the final
momenta, since the latter is uniquely determined by energy
and momentum conservation. This is verified by the perfect
agreement between our results and that of Ref. [28], who
included an attractive nuclear correction. Still, we show explic-
itly that the attractive nuclear correction has a negligible effect
in both the sequential and the almost-sequential decay models
(see Sec. IV B). In the true ternary decay model, the attractive
nuclear interaction reduces the possible kinetic-energy range
(as discussed in Sec. III C). Since we are looking for the
widest possible kinetic-energy range to cover experimentally,
the attractive nuclear interaction is excluded in this model to
get a safe upper limit.

In addition to deriving the possible final kinetic energies,
we use a Monte Carlo method to sample perturbations in
the trajectory calculations, testing the intrinsic stability of
collinearity in ternary fission, yielding the final angular
distributions versus the perturbations. Previous studies using
the point-charge approximation with a Monte Carlo approach
successfully reproduced experimental ternary fission data
[36,37]. Furthermore, for the purpose of calculating final ki-
netic energies and angular distributions, it has been shown that
the simple point-charge approximation gives results similar
to those of more sophisticated models, which incorporate
attractive nuclear forces, fragment deformations, and other
effects [38,39].

Nevertheless, to test the validity of our semiclassical
trajectory calculations, we set up several benchmarks. As a
quantitative verification against analytical calculations, the
sequential and almost sequential models are compared for
extremely long times between the two scissions, and the two
techniques show excellent agreement (see results in Sec. IV A).
Additional tests for ternary fission with 4He (not reported
here) reproduced well the results of the previously mentioned
studies. We also verified for certain configurations that the
inclusion of higher-order moments corresponding to deformed
fragments does not considerably affect the final momenta
along the fission axis.
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A. Sequential decay model

In the sequential decay model [28], the fissioning system
splits into a heavy fragment and an intermediate fragment. The
latter splits in turn into a light fragment and a ternary particle.
The ternary particle here refers to the lightest fragment.
Either the TP or the LF can be formed at the center, as
illustrated in Fig. 2. Potential-energy-surface calculations
[29,40,41] predict that it is more likely that the TP form at
the center. Nevertheless, we present results for both cases.
Using conservation of proton numbers in Eqs. (1) and (2),
the intermediate fragments are found to be molybdenum (Mo)
and cadmium (Cd) in 235U(nth,f ) and 252Cf(sf ), respectively.
Allowing for neutron emission from the FS and the IF with
multiplicities ν1 and ν2, respectively, gives

235U(nth,f ) → Sn + Mo + ν1n

→ Sn + Si + Ni + (ν1 + ν2)n, (3)
252Cf(sf ) → Sn + Cd + ν1n

→ Sn + Ca + Ni + (ν1 + ν2)n. (4)

The most energetically favorable masses of the IFs are found
to be AMo = 104 and ACd = 120 with neutron multiplicity
ν1 = 0, as seen in Figs. 3(a) and 3(b), respectively. The most
favorable mass split in the decay of 104Mo is ANi = 70 and
ASi = 34 with ν2 = 0, and in the decay of 120Cd it is ANi = 70

FIG. 3. The Q value versus the mass split in the binary decays of
(a) 235U(nth,f ), (b) 252Cf(sf ), (c) 104Mo, and (d) 120Cd. The Q values
are calculated from the mass excesses, taken from AME2012 [25].
Lines have been added to guide the eye.

and ACa = 50 with ν2 = 0, as seen in Figs. 3(c) and 3(d),
respectively. We will present final kinetic energies for a range
of masses centered around these mass splits, with neutron
multiplicities ν1 = 0–4. Note, however, that in the decay of
both Mo and Cd, the Q value is extremely low, for many mass
splits even negative, and that any neutron multiplicity ν2 > 0
lowers the Q value further. To have any chance of decaying,
the IF needs excitation energy (from here on denoted E∗

IF ).
Even if the low Q values are compensated for by an extremely
high excitation energy, it does not mean that the intermediate
fragment can fission, it also has to overcome a very high
fission barrier (see Sec. V B for discussion). Therefore, we
assume cold compact fission of the IF, by setting both the
neutron multiplicity ν2 and the sum of the excitation energies
of the final fragments TXE = E∗

HF + E∗
T P + E∗

LF to zero in
our calculations. We show how to calculate a more general
case, however, and such results can be directly obtained from
our results by simple subtraction. Any TXE > 0 lowers the sum
of the final kinetic energies accordingly, and any ν2 > 0 lowers
the IF Q value and the final total kinetic energy of the TP and
LF by up to 8 MeV per neutron (see discussion in Sec. V B).

The final kinetic energies of the fragments will be calculated
and presented versus fragment mass splits, neutron multiplic-
ity, and the excitation energy E∗

IF .
Details of this model are found in Appendix A.

B. Almost-sequential decay model

To calculate the kinematics of an almost-sequential decay
[29], a similar parametrization as in the sequential model is
used. The main difference with respect to the sequential model
is the finite time between the first and the second scission,
which is analogous to the charge-center distance between the
HF and the IF at the second scission, denoted D (see Fig. 4).
The finite time and distance makes it necessary to account for
the Coulomb repulsion at all stages in the almost-sequential
model, thus the final kinetic energies depend on the full
dynamics. To this end the scission-point configuration after the
second scission is constrained, and the final kinetic energies
are calculated from this configuration using semiclassical
trajectory calculations (described in the beginning of this
section). As will be shown in the results (Sec. IV B), an

1.

2.

3.

FS

HF IF

LF/TPTP/LFHF

D

Δd

ΔD

d

FIG. 4. CCT as an almost-sequential decay. In contrast to the
sequential model, the Coulomb repulsion of the heavy fragment is
crucial after the second scission, making the interfragment distances
relevant to the kinematics. Arrows indicate momentum direction.
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attractive nuclear interaction is found to have negligible
influence on the final kinetic energies.

Apart from the parameters of the sequential model (neutron
multiplicities, fragment mass splits, and excitation energies),
the almost-sequential model relies on two additional parame-
ters to constrain the scission-point configuration. We choose
these parameters to be the tip distances (surface separation
distances) between the HF and the IF (�D) at the moment of
the second scission, and between the LF and the TP (�d) after
the second scission. The tip distance is defined as

�Dij = Dij − Ri − Rj , (5)

where Rk = r0
3
√

Ak is the radius of fragment k with mass
Ak and r0 ≈ 1.25 fm, and Dij is the charge-center distance
between the respective fragments. Note that as D, �D → ∞,
the equations of the almost-sequential decay model become
exactly the same as those for the sequential decay model.
Details of this model are found in Appendix A.

As will be shown in the results (Sec. IV B), not even the
most favorable mass splits will have enough energy to allow for
a physically reasonable tip distance (<4 fm [42]). Therefore,
cold compact fission of the IF is assumed in our calculations,
i.e., minimizing �d, by setting both the neutron multiplicity
ν2 and the sum of the final fragment excitation energies TXE =
E∗

HF + E∗
T P + E∗

LF to zero. As described in Sec. III A, results
for ν2 > 0 and TXE > 0 can be obtained directly from our
results.

C. True ternary decay model

In the most common theoretical models of ternary fission
(see Ref. [30], chapter 12 and references therein), all three
fragments are considered to be formed during a very short
time interval from the same fissioning system, with the ternary
particle at the center. The different models have a similar
parametrization, but are based on different hypotheses and
favor different starting positions of the ternary particle between
the heavier fragments. Our true ternary decay model is based
on the most common models, but is collinear, as is illustrated in
Fig. 5. Furthermore, our model treats the ternary particle offset
between the other fragments as a parameter, denoted xr . We
let xr = 0 and xr = 1 correspond to the cases when the ternary
particle is formed “touching” the heavy and light fragments,
respectively. The results show that the highest kinetic energy
for the LF is achieved if the TP is formed touching the HF.
This is because the HF accelerates the TP, which then transfers
momentum to the LF. The opposite configuration gives the
lowest kinetic energy for the LF, and the highest possible for

1. FS

LFTPHF
xr

2.

FIG. 5. CCT as a true ternary decay. Arrows indicate momentum
direction.

the HF. Obviously, these touching configurations are not real
“scission” configurations, since in reality the fragments would
not separate due to the attractive nuclear force. Therefore, the
exploration from one touching configuration to the other will
predict a wider kinetic-energy range than physically possible.
The touching configurations thus provide safe upper limits for
the experimental search, which is why the attractive nuclear
interaction is disregarded in this model.

The scission-point configuration is constrained by energy
conservation for given fragment mass splits, neutron multi-
plicity, and pre-scission kinetic energies, with the parameters
xr and TXE, where the latter is the sum of the fragment
excitation energies (TXE = E∗

HF + E∗
T P + E∗

LF ). Note that
axial pre-scission kinetic energy can be canceled in most
cases by choosing an earlier reference time, corresponding
to a tighter scission configuration. We have therefore set the
pre-scission kinetic energy to zero in our calculations. Lateral
pre-scission kinetic energy is studied in Sec. III D and is found
to break collinearity, even for extremely low values.

Using the scission-point configuration, the final kinetic en-
ergies are computed with semiclassical trajectory calculations,
as described in Sec. III.

Details of this model are found in Appendix B.

D. Intrinsic stability of collinearity

Using the true ternary decay model (Sec. III C), the intrinsic
stability of collinearity in ternary fission is analyzed by
using a Monte Carlo method to sample a perturbation in
the ternary-particle position and momentum perpendicular to
the fission axis, independently (see Fig. 6). As in the true
ternary decay model, the parameters are xr (the relative ternary
particle position at scission, as described in Sec. III C) and TXE
(the sum of the fragment excitation energies). In addition, a
parameter representing the perturbation is also varied, being
either initial lateral momentum or spatial offset of the ternary
particle from the fission axis, denoted py and y, respectively.
Given these parameters, the scission-point configuration is
uniquely constrained by invoking conservation of energy, as
well as linear and angular momentum. Each parameter is
sampled in a uniform interval, with ∼100 sampling points
per parameter, giving more than 106 data points per system.

1. FS

LF
TP

HF xr2.
y

py

FIG. 6. CCT as a true ternary decay, with an initial lateral
momentum or spatial offset of the ternary particle from the fission
axis. The arrow indicates momentum direction.
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P. HOLMVALL, U. KÖSTER, A. HEINZ, AND T. NILSSON PHYSICAL REVIEW C 95, 014602 (2017)

Using the scission-point configuration, the final kinetic
energies and emission angles are computed with semiclassical
trajectory calculations, as described in Sec. III.

Details of this model are found in Appendix C.

IV. RESULTS

The results are divided into four sections. The first
section covers final kinetic energies in the sequential decay
model, both if the ternary particle is formed at the center
(which is considered the most favorable case according to
potential-energy-surface calculations [29,40,41]), and if the
light fragment is formed at the center, for sake of completeness.
The first section also includes a benchmark of the semiclassical
trajectory calculations, which is used in the other models.

The second section covers results for the almost-sequential
decay model, which show that this model spans the kinetic-
energy continuum between the sequential and true ternary
decay models. Furthermore, it is explicitly shown that, al-
though CCT might have a high net Q value, the intermediate
steps in a sequential and an almost sequential decay are
energetically and geometrically unfavorable or even forbidden.
It is also shown that the attractive nuclear interaction is
negligible in both the sequential models.

The third section covers final kinetic energies in the true
ternary decay model.

The fourth section covers an analysis of the intrinsic
stability of collinearity in ternary fission, in which the
final scattering angle between the ternary particle and light
fragment is presented versus a spatial and a momentum-based
perturbation, independently. Requiring a collinear emission
sets a threshold on the position and momentum of the ternary
particle, which is shown to be much smaller than variations
expected due to the uncertainty principle.

A. Sequential decay results

Using the sequential model described in Sec. III A (deriva-
tions in Appendix A), we present in Figs. (i) 7(a) and 7(b) and
(ii) 7(d) and 7(e) the final fragment kinetic energies versus the
mass split between the TP and the LF in the decays

235U(nth,f ) → 132Sn + 104Mo → 132Sn + Si + Ni, (6)
252Cf(sf ) → 132Sn + 120Cd → 132Sn + Ca + Ni, (7)

respectively (note that the mass split between the HF and the
IF will be varied later). For sake of completeness, results are
presented for fission both when the TP [Figs. 7(a) and 7(d)]
and when the LF [Figs. 7(b) and 7(e)] are formed at the center.
Figures 7(c) and 7(f) show the Q value in the fission of the
intermediate fragments 104Mo and 120Cd, respectively. In both
systems, the excitation energy of the intermediate fragment is
E∗

IF = 30 MeV. As a benchmark of the semiclassical trajectory
calculations, the figures also show results (+, ×) obtained
from the almost sequential model (described in Sec. III B,
derivations in Appendix A) at extremely long times between
the two scissions. There is an excellent agreement between the
two methods, as shown by the complete overlap of the symbols.
The small difference is attributed to the fact that the trajectory
calculations have to start and end with a finite potential energy

FIG. 7. Final kinetic energies of the TP and LF versus the TP
to LF mass split in the sequential decay of (a), (b) 235U(nth,f )
and (d), (e) 252Cf(sf ), calculated with the analytic method (©, 
)
described in Sec. III A (derivations in Appendix A), and with
trajectory calculations (+, ×) described in Sec. III B (derivations
in Appendix A). The case when the TP is formed at the center is
shown in panels (a) and (d), while the case when the LF is formed
at the center is shown in panels (b) and (e) [upper and lower signs in
Eqs. (A30) and (A31), respectively]. The corresponding final kinetic
energy of the HF is labeled in each plot. The excitation energy of
the intermediate fragment is E∗

IF = 30 MeV. The missing trajectory
calculations for ASi = 28 highlights that the intermediate steps of the
decay are energetically forbidden. The corresponding Q values in the
fission of (c) 104Mo and (f) 120Cd are calculated from mass excesses
taken from AME2012 [25]. Lines have been added to guide the eye.

(<1%). The kinetic energy of the HF is labeled in each plot.
The shape of the kinetic-energy plot directly follows the Q
value in the fission of the intermediate fragment.

For comparison, the Q value in the fission of both Mo
and Cd is shown as a function of the mass split between the
TP and LF in Fig. 8. To have any probability of fissioning,
only the most energetically favorable systems should be
considered. Further calculations therefore assume that no
neutrons originate from the fission of the IF [i.e., ν2 = 0
in Eqs. (3) and (4)], and that TXE = E∗

HF + E∗
T P + E∗

LF =
0 MeV. Any TXE > 0 MeV lowers the final kinetic-energy
sum accordingly. If any neutrons are emitted in the fission of
the IF, the Q value, and therefore the summed kinetic energy
of the TP and LF, are reduced by up to 8 MeV per neutron.
See Sec. V B for further discussion.

To see how the kinetic energies are affected when varying
E∗

IF and the mass split between the HF and the IF, multiple
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FIG. 8. The Q value as a function of the mass split between the LF
and the TP, in the decays (a) Mo → Si + Ni and (b) Cd → Ca + Ni.
Recall from Fig. 1 that masses under the dashed line correspond to
nuclides without data for the corresponding HF (ASn > 138), and
from Fig. 3 that the most favorable mass splits are ASn = 132 with
(a) AMo = 104 and (b) ACd = 120. The most favorable mass split
between the TP and LF are therefore found along the solid diagonal
lines as ANi = 70 with (a) ASi = 34 and (b) ACa = 50. The Q values
are calculated from mass excesses taken from AME2012 [25]. Prompt
neutron emission from the IF (ν2) lowers the Q values significantly
(see Fig. 3).

plots are compared with each other in a grid in Fig. 9, for both
235U(nth,f ) [Fig. 9(a)] and 252Cf(sf ) [Fig. 9(b)]. Comparing
plots in the horizontal direction, the heavy fragment mass is
varied ASn = 134–130, and comparing plots in the vertical di-
rection, E∗

IF is varied (0, 20, and 40 MeV). The corresponding
final kinetic energy of Sn and the varied parameters are labeled
in each plot. Note that the results for 252Cf(sf ) in Fig. 9(b)
shows perfect agreement with the corresponding parameter
choices in Fig. 6 of Ref. [28]. Increasing the excitation energy
E∗

IF frees more energy for the acceleration of the TP and LF.
Because the direction of acceleration of the inner fragment
is opposite to the flight direction of the IF before it fissions,
the inner fragment is retarded. For higher excitation energies,
the kinetic energy of the inner fragment approaches 0 MeV.
Increasing E∗

IF leaves less energy available as kinetic energy
to the HF. Note that some of the corresponding systems
are energetically forbidden for lower excitation energies and
for unusual N/Z ratios. Results obtained with trajectory
calculations (+, ×) only show fission decays which are
energetically allowed and have a tip distance that is �7 fm
at the second scission. None of the systems have a tip distance
which is considered to be physically valid, i.e., less than 4 fm
[42] (see Sec. IV B for results and discussion).

Finally, we present in Fig. 10 the final kinetic energies
when varying all parameters (including the neutron multiplic-
ity) simultaneously, in the sequential decays of 235U(nth,f )
[Figs. 10(a)–10(c)] and 252Cf(sf ) [Figs. 10(d)–10(f)], re-
spectively. The parameter ranges are given in the caption.
We represent the kinetic-energy range for each fragment
with an area, spanned by the highest and lowest kinetic
energies obtained. The colors of the areas represent formation
configuration (either the TP or the LF is formed at the
center), as shown in the inset in Fig. 10(f). The bold dashed

lines correspond to the most energetically favorable cluster
combinations for each fissioning system; namely,

235U(nth,f ) → 132Sn + 104Mo

→ 132Sn + 34Si + 70Ni, (8)
252Cf(sf ) → 132Sn + 120Cd

→ 132Sn + 50Ca + 70Ni. (9)

For a given set of parameters, the kinetic energy of the
outer and inner fragment versus E∗

IF follows an increasing
and decreasing curve, respectively. The heavy fragment is
not affected by the second scission, and its kinetic energy
is therefore linearly decreasing with increasing E∗

IF . The
curves are cut off when Qeff

IF < 0 [as defined in Eq. (A34)
in Appendix A], which is why the artificial “teeth” structures
appear. The horizontal lines correspond to the maximum
kinetic energies of the same fragment that would be produced
in cold compact binary fission (zero excitation energy and
consequently no neutron evaporation) as calculated from Q
values:

(a) 235U (nth,f ) → 70Ni + 166Gd, (10)

(b) 235U (nth,f ) → 34Si + 202Pt, (11)

(c) 235U (nth,f ) → 132Sn + 104Mo, (12)

(d) 252Cf (sf ) → 70Ni + 182Yb, (13)

(e) 252Cf (sf ) → 50Ca + 202Pt, (14)

(f) 252Cf (sf ) → 132Sn + 120Cd. (15)

The mean kinetic energy of binary fragments lies much
lower than these horizontal lines due to the considerable
excitation energies of binary fragments. Experiments search-
ing for ternary fission, which are not based on coincidence
measurements, can thus use these limits as a reference in order
to determine the source of possible events. If events are found
above the maximum energy of binary fission, the origin must
be ternary fission.

B. Almost-sequential decay results

It is explicitly shown in the following that, since the
almost-sequential decay model represents the time continuum
between the sequential and true ternary decay models, it also
represents the kinetic-energy continuum. It is also shown
that both the sequential and the almost-sequential models
are geometrically and energetically unfavorable or forbidden,
and that the attractive nuclear interaction has a negligible
influence on the kinetic energies. The almost sequential model
is described in Sec. III B (derivations in Appendix A).

In Fig. 11, the final fragment kinetic energies are shown
versus the time between the two scissions (i.e., the distance
D between the HF and the LF at the second scission, due to
the direct correspondence), in the almost sequential decays of
235U(nth,f ) [Fig. 11(a)], and 252Cf(sf ) [Fig. 11(b)], respec-
tively. See caption for mass splits and other parameter values.
The results show that as the time between scissions becomes
very long, the kinetic energies approach the asymptotic results
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FIG. 9. Final kinetic energies of the LF and the TP versus their mass split in the sequential decay of (a) 235U(nth,f ) and (b) 252Cf(sf ),
when the TP is formed at the center. The kinetic energies are calculated with the analytic method (©, 
) described in Sec. III A (derivations
in Appendix A), and with trajectory calculations (+, ×) described in Sec. III B (derivations in Appendix A). Comparing plots in the horizontal
direction, the mass split between the HF and the IF is varied and, comparing plots in the vertical direction, E∗

IF is varied. The values of
these parameters and the final kinetic energy of the HF are labeled in each plot. Trajectory calculations are only shown for systems that are
energetically allowed and have a tip distance at the second scission of �7 fm.
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FIG. 10. Areas of attainable final fragment kinetic energies versus
the excitation energy of the intermediate fragment in the sequential
decays (a)–(c) 235U(nth,f ) → Sn + Mo + ν1n → Sn + Si + Ni +
ν1n, and (d)–(f) 252Cf(sf ) → Sn + Cd + ν1n → Sn + Ca + Ni +
ν1n. Each figure is element specific and shows results both when
the TP and when the LF are formed at the center. The colors indicate
formation position, as shown by the inset in panel (f). The areas are
spanned between the highest and lowest kinetic energies obtained.
For a given set of parameters, the final kinetic energy versus E∗

IF

follows a well-defined line. The bold dashed line is an example of
the latter, with the most favorable set of parameters. For comparison,
the horizontal lines correspond to the kinetic energy of the same
fragment from compact binary fission [see text and Eqs. (10)–(15)].
The masses are varied as ASn = 128–134 and ANi = 68, 70, 72, and
the prompt neutron multiplicity as ν1 = 0–4. As a consequence, the
other masses are in the ranges (a)–(c) AMo = 98–108, ASi = 28–40,
and (d)–(f) ACd = 114–124, ACa = 42–56.

of the sequential model (fine solid lines), since in the limit
D → ∞, the equations of the two models become identical.
Furthermore, the results show that, at short times between
scissions, the kinetic energies approach the asymptotic results
of the true ternary decay model (fine dashed lines). The
true ternary decay model results are obtained as described
in Sec. III C and Appendix B, by using the same mass splits,
setting TXE = 0 MeV and using the corresponding distances
(setting D − x = rTP + rLF + �d, which gives xr = 0.03 and
xr = 0.02 for 235U(nth,f ) and 252Cf(sf ), respectively).

We will now derive the maximum E∗
IF versus the first

scission tip distance between the HF and the IF, �D0.
Furthermore, we will study if this E∗

IF can balance the

FIG. 11. Final kinetic energies versus the time between the first
and the second scission (logarithmic scale), in the almost-sequential
decays (a) 235U(nth,f ) → 132Sn + 104Mo → 132Sn + 34Si + 70Ni,
and (b) 252Cf(sf ) → 132Sn + 120Cd → 132Sn + 50Ca + 70Ni. The ex-
citation energies are E∗

IF = 40 MeV and TXE = 0 MeV, the tip
distance at the second scission is �d0 = 7 fm, and the ternary particle
is set to be formed at the center. The fine solid and dashed lines
represent the corresponding kinetic energies of the sequential and true
ternary decay models, respectively. See text for further explanation
of how these results are obtained. Less than 1% of the total energy
remains as potential energy in the almost-sequential and ternary
model results.

extremely low Q values of the IF, for different values of
the second scission tip distance between the TP and the LF,
�d0 (see Fig. 4 for an illustration of these distances). This
study will reveal which constraints are posed on the scission
configurations if requiring an energetically allowed decay. We
focus on the most energetically favorable case, i.e., when the
TP is formed at the center, when there is no pre-scission kinetic
energy, and with the mass splits from Eqs. (8) and (9) for
235U(nth,f ) and 252Cf(sf ), respectively. We will also assume
fully accelerated fragments before the second scission, since
the Coulomb barrier in the fission of the IF is higher when the
heavy fragment is present. Energy balance of the first fission
gives

QFS = V1(�D) + EHF + ELF + E∗
HF + E∗

IF, (16)

where �D is the tip distance and V1 the potential

V1 = EC + EN. (17)

Here, EC is the repulsive Coulomb potential and EN the
attractive nuclear potential. For the latter, we used the Yukawa-
plus-exponential function [43,44]. The total excitation energy
TXE1 = E∗

IF + E∗
HF is maximal when it takes up all the

available energy, with zero pre-scission kinetic energy EHF =
ELF = 0. Thus, the maximum excitation energy for a given
scission tip distance �D0 is

TXEmax
1 = QFS − V1(�D0). (18)

If this quantity is less than zero, the corresponding scis-
sion configuration is energetically forbidden. Consequently,
TXE1 = 0 would give the tightest possible scission configu-
ration (cold compact fission). Energy balance at the second
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scission gives

QIF + E∗
IF + EIF + V1(D1)

= V2(�d0) + ETP + ELF + E∗
TP + E∗

LF, (19)

where D1 is the distance between the HF and the IF (i.e.,
between the HF and the mass center of the TP and the LF)
at the moment of the second scission, and �d0 is the TP to
LF scission tip distance. Assuming that there is no additional
pre-scission kinetic energy of the TP and the LF, other than that
from the IF, imposes the constraint vIF = vTP = vLF. Assuming
also conservation of mass (mIF = mTP + mLF) leads to EIF =
ETP + ELF right after the second scission. Consequently, for
a given scission tip distance �d0, the available energy in the
second fission becomes

E∗
TP + E∗

LF = QIF + E∗
IF + V1(D1) − V2(�d0). (20)

Again, if this quantity is less than zero, the corresponding
scission configuration is energetically forbidden. Assuming
fully accelerated fragments before the second scission sets
V1(D1 → ∞) → 0. The maximum available energy or the
tightest scission configuration in the second fission can
therefore be obtained as a function of �d0 and �D0, where the
latter gives the available E∗

IF. Combining Eqs. (16)–(20) gives

TXE2 = QIF + TXE1 + V1(D1) − V2(�d0), (21)

where TXE2 = E∗
HF + E∗

TP + E∗
LF. This quantity reflects the

net total energy available after the second fission, having
provided the corresponding E∗

IF.
In Figs. 12(a) and 12(b), the energy available in the first

and second fissions are shown versus �D0 and �d0 [Eqs. (18)
and (20)], respectively. Results are shown for the systems
235U(nth,f ) (solid lines) and 252Cf(sf ) (dashed lines), both
with and without an attractive nuclear interaction (bold and
fine lines, respectively). It is apparent that there is a conflict
in trying to reduce the first and the second scission tip
distances. The reason is that a more narrow first tip distance
will leave less E∗

IF available, but a more narrow second tip
distance requires a higher E∗

IF. Keeping both as narrow as
possible, an E∗

IF in the range of 39–40 MeV is required
in both 235U(nth,f ) and 252Cf(sf ). The figures also show
that, at any energetically allowed tip distances, the attractive
nuclear interaction is negligible, and that it therefore is safe
to neglect it in any further analysis. Figure 12(c) shows the
total net energy available after the second fission [Eq. (21)] as
a contour plot versus �d0 and �D0, where the latter gives the
available E∗

IF. The system is 235U(nth,f ), and it is inherently
assumed that the maximal E∗

IF has been used. The available
energies are indicated along the contour lines in units of MeV.
Negative energies indicate that the corresponding scission
configurations are energetically forbidden, and the contour line
of 0 MeV shows the most compact scission configuration that
is energetically allowed. In Fig. 12(d), the values of �D0 and
�d0 that leads to energetically allowed fission of the IF and
geometrically allowed scission configurations are indicated
by the corresponding shaded areas. With the latter, we refer
to that typical tip distances at scission are close to ∼2.5 fm,
while tip distances over 4 fm are generally not considered
as physically valid [42]. The solid and dashed lines indicate

FIG. 12. The maximal available energy versus the corresponding
scission tip distance in the fission processes (a) 235U(nth,f ) →
132Sn + 104Mo (solid lines) and 252Cf(sf ) → 132Sn + 120Cd (dashed
lines), as well as in (b) 104Mo → 34Si + 70Ni (solid lines) and
120Cd → 50Ca + 70Ni (dashed lines). Results are shown both with
and without an attractive nuclear interaction (bold and fine lines,
respectively). Panel (c) shows a contour plot of the maximal available
energy after fission of the IF [Eq. (21)] for a certain scission tip
distance �d0, assuming the maximum E∗

IF has been provided. The
latter is set by the tip distance �D0 of the first fission. The first and
the second fissioning systems are 235U(nth,f ) and 104Mo, respectively,
and the contour lines show the available energy in MeV. In (d), the
shaded regions show the �D0 and �d0 which lead to geometrically
and energetically allowed fission of the IF, both for 235U(nth,f ) (solid
lines) and 252Cf(sf ) (dashed lines). See text for further information.

where 235U(nth,f ) and 252Cf(sf ) are energetically allowed,
respectively. Note that for no scission configurations is the
decay geometrically and energetically allowed simultaneously.
Recall that these results were obtained for the most favorable
systems and choice of parameters. Any nonzero excitation
energies E∗

HF, E∗
TP, E∗

LF separates the regions in Fig. 12(d)
even further as indicated by the contour lines, as does any
less favorable mass splits, emitted neutrons, pre-scission
kinetic energies or finite D1. Even if there were somehow
any configurations that were energetically and geometrically
allowed, the low fissility and fission barrier penetrability has
to be accounted for as well (see discussion in Sec. V B).

In conclusion, these results show that CCT as a sequential
decay is geometrically and energetically unfavorable or forbid-
den. This is highlighted by the fact that there is a competition
in keeping the first and the second scission compact, and that
a high E∗

IF is required but leads to less geometrically favorable
scission configurations.

C. True ternary decay results

Using the true ternary decay model described in Sec. III C
(derivations in Appendix B), we parametrize the scission
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FIG. 13. Final fragment kinetic energies versus the relative
starting position of the TP, xr , in the true ternary decay model (as
described in Sec. III C, derivations in Appendix B) of (a) 235U(nth,f )
and (b) 252Cf(sf ). When xr = 0 and xr = 1, the TP starts touching
the HF and LF, respectively. Less than 1% of the total energy remains
as potential energy, and TXE = 0 MeV.

configuration by using the fragment mass splits, neutron
multiplicity, the relative distance xr (see Fig. 5), and the total
excitation energy of all fragments TXE = E∗

HF + E∗
TP + E∗

LF.
In Fig. 13, the final kinetic energies of the fragments are plotted
against xr for TXE = 0 MeV. The highest kinetic energy of the
LF is achieved if the TP is formed touching the HF (xr = 0),
since the TP in this case transfers momentum from the HF to
the LF. The central fragment ends up with almost no kinetic
energy, since it is confined between the Coulomb forces of the
outer fragments. In Fig. 14, all final fragment kinetic energies
are plotted versus TXE. We represent the kinetic-energy range
for each fragment with an area, spanned by the highest and
lowest kinetic energies obtained. The three different areas
represent three different choices of xr , as shown in the legend
in Fig. 14(d). The ranges of the varied mass splits and neutron
multiplicities are given in the caption.

Here, results are presented up to TXE = 30 MeV. This is
higher than the average TXE in alpha-accompanied ternary
fission. Note that the average TXE also decreases rapidly with
increased ternary particle size [45]. For true ternary fission,
any significant TXE > 0 MeV is therefore not expected.

Our results show that the final kinetic energies generally
decrease for increased TXE, since there is less energy that
can be converted into kinetic energy. The only exception is
the kinetic energy of the TP, which increases with increased
TXE if it is formed touching the LF [xr = 1.0 in Figs. 14(c)
and 14(f)]. This is due to the back-scattering dynamics of the
ternary particle against the heavy fragment. This dynamics
depends on the distance between the light and heavy fragment
(which increases with TXE), and the ternary particle position
between them.

D. Collinear stability results

Using the Monte Carlo method described in Sec. III D
(derivations in Appendix C), the intrinsic stability of
collinearity is examined in the true ternary decay pro-
cesses 235U(nth,f ) → 132Sn + 34Si + 70Ni and 252Cf(sf ) →

FIG. 14. Areas of attainable final kinetic energies of the fission
fragments versus the total excitation energy of all fragments in the
true ternary decays (a)–(c) 235U(nth,f ) → Sn + Si + Ni and (d)–(f)
252Cf(sf ) → Sn + Ca + Ni. Each figure is element specific, and the
different areas indicate the choice of xr , as indicated in the legend
in panel (d). The areas are spanned between the highest and lowest
kinetic energies obtained for each choice of xr , by varying the neutron
multiplicity as ν = 0–4 and the mass split as ASn = 128–134, ANi =
68, 70, 72, (a)–(c) ASi = 34–40, and (d)–(f) ACa = 42–56. Less than
1% of the total energy remains as potential energy.

132Sn + 48Ca + 72Ni. The final emission angle between the
ternary particle and the light fragment is shown in Fig. 15
versus the lateral offset of the ternary particle charge center
from the fission axis, denoted y, with zero initial momentum,
and in Fig. 16 versus the initial lateral kinetic energy of
the ternary particle, i.e., initial momentum py , when all
fragments are formed perfectly collinearly, with zero total
linear and angular momentum. In these figures, each area is
spanned by the smallest to largest angles obtained, from more
than 106 Monte Carlo simulations, sampling three different
parameters uniformly with ∼100 different values each. The
first parameter is the ternary particle position between the
heavy and light fragment, denoted xr , which is varied from
touching the HF (xr = 0), to touching the LF (xr = 1). The
results are shown separately when the ternary particle is formed
closer to the HF [Fig. 16(a)], and the LF [Fig. 16(b)]. The
second parameter is the sum of the excitation energies of
the fragments, denoted TXE = E∗

HF + E∗
LF + E∗

TP, which is
varied between 0 and 30 MeV. The third parameter is the
perturbation, being either the lateral ternary particle position
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FIG. 15. Final emission angle between the light fragment and
the ternary particle versus the initial lateral fission axis offset y of the
ternary particle when the ternary particle is initially closer to (a) the
heavy fragment (xr < 0.5), and (b) the light fragment (xr � 0.5),
respectively. The decays are 235U(nth,f ) → 132Sn + 34Si + 70Ni and
252Cf(sf ) → 132Sn + 48Ca + 72Ni, as indicated by the legend. The
plots are generated according to Appendix C, by varying xr = 0–1,
TXE = 0–30 MeV, and y = 0–1 fm. All initial momenta are set to
zero.

(y) or momentum (py). For the position-based perturbation, y
is varied between 0 and 1 fm, which is much smaller than the
TP radius of rTP = r0

3
√

ATP > 4 fm (where r0 ≈ 1.25 fm). The
momentum-based perturbation py is set by varying the lateral
pre-scission kinetic energy of the ternary particle. Note that
the total linear and angular momentum can be broken during
the time specified by the uncertainty principle. Monte Carlo
simulations were run both conserving and not conserving these
momenta, and the results were on the same order of magnitude.
Results are shown here (Fig. 16) for the former case, with a

FIG. 16. Final emission angle between the light fragment and
the ternary particle versus the initial lateral kinetic energy of the
ternary particle when the ternary particle is initially closer to (a) the
heavy fragment (xr < 0.5), and (b) the light fragment (xr � 0.5),
respectively. The decays are 235U(nth,f ) → 132Sn + 34Si + 70Ni and
252Cf(sf ) → 132Sn + 48Ca + 72Ni, as indicated by the legend. The
plots are generated according to Appendix C, by varying xr = 0–1,
TXE = 0–30 MeV, and EK,0 = 0–0.05 MeV. The total linear and
angular momentum is set to zero, and all particles are initially set
perfectly collinearly.

total lateral pre-scission kinetic energy of the system, denoted
EK,0, between 0 and 0.05 MeV. Note that this initial kinetic
energy is very small compared with usual energies in fission.
In Fig. 16, the initial kinetic energy of the TP extends higher
for the lighter 34Si than for the heavier 48Ca, due to momentum
conservation.

The calculated angles are expected to hold even for more
realistic trajectory calculations, because, as discussed by
Ref. [38] for the case of alpha-accompanied fission, explicit
inclusion of deformations and attractive nuclear interactions
leads only to a small (<10%) modification of the resulting
angles. For heavier ternary particles than alphas, experiments
have shown [46–48] that, with rising nuclear charge of the
ternary particle, its angular distribution gets narrower and more
perpendicular to the fission axis.

According to our results, the requirement of a collinear
emission angle1 imposes that the charge center can deviate no
more than ymax

TP ≈ 0.02 fm from the fission axis, or that the
lateral initial kinetic energy of the ternary particle can be no
larger than Emax

TP ≈ 10−4 MeV. The corresponding momentum
is calculated from

p
y,max
TP

�
=

√
2Emax

TP mTP

�
, (22)

with a value of 0.013 and 0.015 fm−1 for Si and Ca, re-
spectively. From a quantum-mechanical perspective, it seems
rather unlikely that both the position and momentum could
be constrained to such a narrow region. Comparing with the
uncertainty principle, we get

ymax
TP p

y,max
TP

�
≈ 0.0003 � 1

2
� �y�py

�
, (23)

for both 34Si and 48Ca. Only one of the two off-axis dimensions
have been included. Introducing the second off-axis dimen-
sion reduces the threshold even further, as does including
simultaneously a perturbation in position and momentum, or
considering only realistic excitation energies close to zero
MeV. This implies that collinearity is extremely unstable
and improbable in ternary fission due to quantum-mechanical
uncertainties.

In addition, we artificially increased the initial separation
distance between the outer fragments (the HF and the LF)
until the repulsion between them became negligible. These
simulations gave similar results and showed that the repulsion
between the TP and the LF alone can break collinearity. Thus,
even in a very late sequential decay, collinearity is in question.
Assuming a sequential decay, Ref. [49] showed that lateral
offsets of the TP up to 2 fm are expected at scission, and
Ref. [50] confirmed that collinearity indeed can be broken.

V. DISCUSSION

The discussion is separated into three sections. In the first
section, we discuss how CCT can be experimentally verified

1Recall that CCT refers to collinear fission events with a relative
angle between fragment emission directions of 180◦ ± 2◦ [20].
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through direct observation, by covering the possible kinetic-
energy ranges that we have derived. In the second section,
we discuss the CCT interpretation and highlight some of its
features which are in contrast to previous experiments. In the
third section, we discuss the intrinsic stability of collinearity
and its consequence for the angular distribution in ternary
fission.

A. Verification by direct observation

Regardless of any decay model a possible CCT could
occur through, the kinetic energies must conform to energy
and momentum conservation. As apparent in the FOBOS
measurements [20–22], two fragments will be emitted in
opposite directions with enough energy to be detected by
spectrometers. This sets a constraint on the possible kinetic
energies of the outer fragments and consequently leaves little
room for considerably changing the kinetic-energy distribution
of a potential third fragment. Therefore, an experiment aiming
at direct observation of CCT with a spectrometer only needs
to cover a wide enough energy range to ensure a model-
independent verification.

To aid such experiments, we have presented the kinetic-
energy ranges allowed by energy and momentum conservation
for the collinear emission of three fragments in the pro-
cesses 235U(nth,f ) → Sn + Si + Ni + νn, and 252Cf(sf ) →
Sn + Ca + Ni + νn. Our derivations allow easy extension to
any fissioning system. We have focused on the late sequential
and the true ternary decay models, since they represent the
extremes of the kinetic-energy distribution (illustrated in
Figs. 10 and 14, respectively). These kinetic-energy ranges
obviously extend into physically unreasonable parameter
values and therefore give a safe upper limit for experiments.
Therefore, an experiment that can cover the kinetic energies
between these extremes can directly verify CCT and, if any
events are found, determine the corresponding decay model
by comparing the measured kinetic energies with our results.

These results indicate that it would be relatively easy to
use a fission-fragment spectrometer to verify CCT through
direct observation, by looking for the light fragment Ni and,
in certain configurations, also the ternary particles Si and Ca.
Detection of the heavy fragment Sn would be challenging
given the similar kinetic energies to binary fission, but more
importantly, due to the high background of the latter. At the
reported CCT yields of 0.5% [20–22], the fragment Ni would
be easily discernible against the far-asymmetric fission yield
of roughly 10−8 [51,52], regardless of kinetic energies. If
the ternary particle was formed on the outside, our results
indicate that it would have a kinetic energy which is easily
separated in a spectrometer, because there is no background of
such fragments from binary fission. Several potential-energy-
surface calculations [29,40,41] have shown, however, that it
would be energetically favorable if the ternary particle was
in the center position. In this configuration, all three models
show that the kinetic energy of the ternary particle would be
close to zero MeV. At such low kinetic energies, the ternary
particle would barely be able to leave the target, traverse
detector windows and dead layers to deposit enough energy for
a clear signal. Hence, it would be very easy to discriminate the

ternary particle from the light fragment in a correctly designed
experiment, due to the highly differing energies and velocities.
Both a symmetric and an asymmetric double-armed detector
setup would therefore show a clear missing-mass signature in
both detectors in a mass-versus-mass spectrum. These results
raises the question of why the FOBOS experiments [20–22]
did not see a missing-mass signature in both detector arms, or
why Ref. [24] saw no missing-mass signature from CCT.

B. On the collinear cluster tri-partition interpretation

To this date, almost all theoretical research that stud-
ies yields and probabilities of CCT, have been based on
macroscopic potential-energy-surface calculations with few
dimensions; see, for example, Refs. [29,40,41]. In this context
it is important to remember a fundamental caveat for all fission
models, that was concisely discussed by Ref. [53]:

In the past, fission properties have often been correlated with
models of the binding energy of separated fission fragments,
and of valleys inside the point of contact. However, the valleys
by themselves do not determine the final state of a fissioning
nucleus. Final states corresponding to three or more fragments
are in many cases energetically more favoured than are states
of two final fission fragments. In these cases the nucleus
nonetheless divides into only two fragments. This occurs
because the barrier between the ground state and the binary
fission valley favours such divisions and a ridge separates the
binary from the ternary valley, although dynamical effects may
also affect the division.

Therefore, a full theoretical treatment determining the prob-
ability or yield of CCT would require a macroscopic-
microscopic or microscopic description with an adequate
number of degrees of freedom. State-of-the-art macroscopic-
microscopic calculations of potential-energy surfaces in bi-
nary fission are based on a five-dimensional parametrization
including elongation, mass asymmetry, neck radius, and
deformation of the left and right fragments [53–56]. To find
the fission valleys in this five-dimensional potential-energy
surface, typically five million grid points are calculated [53].
An extension to CCT with similar details would require in
addition five more parameters; namely, the mass, deformation,
and longitudinal position of the ternary fragment, its lateral
offset from the fission axis, and the second neck radius.
Such 10-dimensional potential-energy-surface calculations
have never been reported and will probably remain beyond
computational limitations for some time. The microscopic
description by the density functional theory (DFT) method
also explores a multidimensional deformation landscape by
constraining the collective degrees of freedom to the lowest
multipole orders (elongation, reflection-asymmetry, necking,
and triaxiality) [57]. Again, such a description is already very
computing intensive for binary fission and a direct extension
covering all degrees of freedom required for ternary fission
cannot be envisaged at present.

The original reports by the FOBOS collaboration [20–22]
and the previously mentioned theoretical studies of CCT favor
a sequential [28] or an almost-sequential [29] decay model
as an interpretation of the FOBOS experiments. In such a
decay, it is not enough to know if the final result has a high
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Q value or a low potential-energy surface. The intermediate
steps also have to be studied in detail, because they might
be forbidden or improbable. The latter was shown to be the
case for the masses proposed by FOBOS, as illustrated in our
results by the very low, at times even negative, Q value, of
the intermediate fragment. Even if this is compensated for
by excitation energy, it does not mean that the fragment will
always fission. It also has to overcome or tunnel through the
fission barrier, and the probability to fission depends on the
barrier penetrability. The fissility of the intermediate fragment
(Z2/A < 17 for 104Mo and Z2/A < 20 for 120Cd) is much
lower than that of known fissioning systems. The fission barrier
can be estimated from the generalized liquid drop model [58]
to be 44 MeV for both 104Mo and 120Cd. It is known that
this model overestimates the real fission barriers [59] by up to
10–12 MeV.

These fission barriers highlight an overlooked contradiction
in the previous theoretical studies on CCT. In a sequential
or an almost sequential decay, the intermediate fragment
must somehow fission. The low Q values and the high
fission barrier together signify that fission of the intermediate
fragment is unlikely. This in turn implies that the yield
of binary fission, in which the intermediate fragments Mo
and Cd are formed but do not decay, must be significantly
higher than the reported yield of CCT of 0.5%. No such
overabundance of the respective intermediate fragment has
been observed. Thus the intermediate Mo and Cd would
need to fission with a very high probability, which is in
contradiction with the high fission barrier and the low Q
values. To have any probability for fission, a considerable
excitation energy would be required. As the excitation energy
increases, however, the results have shown that the kinetic
energy of the ternary particle approaches zero MeV, leading
to the case where CCT should have been found in previous
experiments, described in the previous section (Sec. V A).
More importantly, at high excitation energies, other modes of
deexcitation become competitive, most importantly neutron
emission, reducing the likelihood of fission. It is evident that
neutron emission in the first fission of the sequential model
takes away excitation energy from the system that is essential
to enable the second fission step. Therefore it is surprising
that FOBOS concluded from their Experiment 3 [22] on
the isotropic emission of about four neutrons in coincidence
with CCT events. To be isotropic these neutrons must be
emitted at the first scission, not after pre-acceleration of the IF.
The excitation energy of the IF would be correspondingly
reduced by about 30 MeV, i.e., effectively preventing any
second fission. Clearly this experimental indication can-
not be reconciled with any sequential or near-sequential
model.

C. Intrinsic stability of collinearity

The discussion has so far highlighted possible shortcomings
of the currently favored CCT models (the sequential decay
models). This inspired us to study a true ternary decay model.
It was shown, however, in Sec. IV D, that collinearity is
extremely unstable and improbable in ternary fission since
it occurs at an unstable equilibrium point. Thus, it was

found that a sufficient perturbation in the ternary particle
position or momentum perpendicular to the fission axis breaks
collinearity. Furthermore, we found that the threshold in
position and momentum for a collinear emission is much
smaller than the typical variations governed by the uncer-
tainty principle. The latter could therefore be responsible for
breaking collinear configurations into equatorial emission in
ternary fission. This means that a collinear (prolate) scission
configuration does not necessarily imply collinear emission,
and that equatorial emission does not necessarily imply a
triangular (oblate) scission configuration. In other words, if
CCT occurred through ternary fission, it should have been
detected previously by triple-coincidence experiments [16].
These arguments might hold even for CCT occurring through
late sequential decay, given recent results showing that, in
this model, it is indeed possible that the ternary particle
deviates from the fission axis [49], and that collinearity is
broken [50].

So far, ternary fission experiments have shown that, with
rising nuclear charge of the ternary particle, its angular
distribution gets narrower and more perpendicular to the
fission axis [46–48]. In addition, the collinearity of the
heavy and light fragment is lost due to momentum conser-
vation [4]. This raises the question of why only collinear
events but not ternary events with larger angles would
be observed for the mass splits proposed by the FOBOS
collaboration.

VI. CONCLUSIONS

Initially, our model calculations aimed to guide an in-
dependent validation experiment by predicting the physi-
cally possible kinetic-energy range for CCT that has to be
covered. Eventually the detailed investigation of currently
favored CCT models brought to light features that are
either unphysical or that would lead to unique experimental
observables, some of which are in contrast with previous
experiments.

In the most favorable geometrical configuration, when the
lightest fragment is formed at the center, the light fragment has
so little energy that it would barely leave the target, traverse
windows and dead layers to deposit enough energy in a detector
arm. Hence, such CCT events should be clearly visible in any
2v2E setup as “missing-mass” events, even without a specific
left-right asymmetry as the support grid in the FOBOS setup.
Consequently FOBOS should have observed a similar pattern
in both arms and other two-arm-spectrometers should have
observed CCT too.

All sequential models implicitly assume a very high fission
probability of the intermediate fragment. However, in reality
the fissility of the intermediate fragment is low and its fission
barrier is very high (>30 MeV). As shown in our calculations,
excitation energies of the intermediate fragment far above
its fission barrier are unphysical, hence other deexcitation
modes (neutron and gamma emission) will largely dominate.
Therefore, a given yield of CCT would be accompanied by
a much higher yield of binary events involving the specific
intermediate fragments that did not undergo fission. Such
a peculiar pattern of local over-abundance of specific mass
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splits should have been detected in previous experiments,
in particular in γ γ γ spectroscopy with large Ge detector
arrays.

The inclusion of any realistic excitations would further
destroy collinearity. For example, any fragment angular
momentum can turn the fission axis of the intermediate
fragment with respect to the first fission axis, thus destroying
collinearity.

Collinear configurations are intrinsically unstable in three-
body systems with pure or dominantly repulsive forces. Thus,
also for true ternary fission models where both scissions hap-
pen synchronously, collinearity is unstable. Our calculations
quantify this fact by deriving the very restricted phase space of
scission configurations that could lead to somehow collinear
configurations after acceleration. Even under these simplified
model assumptions, all but very few of the “nearly collinear”
scission configurations will after full acceleration result in
large angles between the fragments. Despite the overwhelming
number of true ternary fission scission configurations leading
to large angles between the fragments, so far no plausible
mechanism has been proposed to explain why only CCT
events would be observed but not ternary events with larger
angles. Our stability calculations imply that the latter should
be far more frequent, i.e., leading to an excess yield of
ternary mass splits that must have been observed by previous
experiments.

In conclusion, our investigation of the currently favored
CCT models highlights serious discrepancies of model fea-
tures with experimental observations. Obviously these very
simplified models do not include shell effects, collective
excitations, angular momenta, etc. However, in our opinion it
is not likely that the explicit inclusion of all these effects could
cure the discrepancies of the CCT models; namely, the intrinsic
instability of collinearity in true ternary fission, or the low
fission probability of the intermediate fragment in sequential
fission. Thus, we have to conclude that today there is no model
that could provide a valid explanation of the experimental
claims of CCT put forward by the FOBOS Collaboration.
Therefore, we encourage further critical theoretical studies
with more realistic ternary fission models. More importantly,
to truly resolve this matter, experimental verifications are
required, which is made possible by covering the kinetic-
energy ranges derived in this paper; for example, with high-
resolution fission-fragment spectrometers.
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APPENDIX A: SEQUENTIAL AND ALMOST-SEQUENTIAL
DECAY MODEL DERIVATIONS

This Appendix describes how the final kinetic energies are
solved analytically for CCT fragments from a sequential decay
(described in Sec. III A, depicted in Fig. 17), and how the

1.

2.

3.

FS

HF IF

LF/TPTP/LFHF

D

d

dTP/LF dLF/TP

FIG. 17. CCT as a sequential or an almost-sequential decay, as
described in Secs. III A and III B, respectively. In contrast to the
former model, the Coulomb repulsion between the fragments is
relevant at all times in the latter model, making the interfragment
distances relevant to the kinematics. Arrows indicate momentum
direction.

scission-point configuration (initial positions and momenta) of
such fragments is constrained in an almost-sequential decay
(described in Sec. III B, depicted in Fig. 17). In both cases,
this is achieved by energy and momentum conservation. Both
models use the same set of equations, with the difference
being that, in the sequential and almost-sequential models,
the fragments are fully and partially accelerated before the
second scission (the potential energy is zero and nonzero), and
the derived kinetic energies are the final and inital (after the
second scission), respectively. In the almost-sequential model,
the final kinetic energies are computed from the scission
configuration with semiclassical trajectory calculations, as
described in Sec. III. The derivation includes both a repulsive
Coulomb potential and an attractive nuclear potential, where
a Yukawa-plus-exponential function [43,44] was used for the
latter in our calculations. Deformed fragments can be assumed
by including the corresponding higher-order moments in these
potentials. The kinetic energies carried away by neutrons have
not been explicitly included. This is energy which is not
available to the acceleration of the final fragments and can
therefore be added to the effective Q values.

Energy conservation of the first scission gives

QFS + E∗
FS = V1 + EHF + EIF + E∗

HF + E∗
IF, (A1)

where V1 is the potential, E∗
FF represents the excitation energy

and EFF the kinetic energy of the respective fragment. The Q
value of the fissioning system is

QFS = MFS − MHF − MIF − ν1Mn, (A2)

where M are the mass excesses and ν1 is the neutron
multiplicity. The potential is

V1 = EC,1 + EN,1, (A3)

where EN,1 is the attractive potential, and EC,1 is the Coulomb
potential,

EC,1 = k
e2ZHFZIF

D
, (A4)

with D being the center-to-center distance between the HF
and the IF, k being the Coulomb constant, and e being the
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elementary charge. Let Qeff
FS denote the “effective” Q value of

the first scission (the energy available for acceleration of the
HF and the IF)

Qeff
FS = QFS + E∗

FS − V1 − E∗
HF − E∗

IF. (A5)

If this term is negative, the corresponding configuration
and value of E∗

HF + E∗
IF is energetically forbidden. Let D1

denote the distance at the instant before the scission of the
intermediate fragment (note that there is a unique correspon-
dence between this parameter and the time between the two
scissions). At this point, the momenta and kinetic energies of
the HF and IF are determined from energy and momentum
conservation,

EHF + EIF = p2
HF

2mHF
+ p2

IF

2mIF
, (A6)

pHF + pIF = 0, (A7)

with the solutions

pHF = ∓
√

2mHFQ
eff
FSμIF, (A8)

pIF = ±
√

2mIFQ
eff
FSμHF, (A9)

EHF = Qeff
FSμIF, (A10)

EIF = Qeff
FSμHF, (A11)

where the reduced masses are

μHF = mHF

mHF + mIF
, (A12)

μIF = mIF

mHF + mIF
. (A13)

Equations (A10) and (A11) are the final kinetic energies of
fully accelerated fragments if V1(D1 → ∞) → 0. The positive
and negative signs of the momenta correspond to the two
directions along the fission axis. After the second scission,
D denotes the distance between the HF and the mass center
of the TP and the LF. Let d denote the charge center distance
between the TP and the LF

d = dTP + dLF, (A14)

where dTP and dLF are the center-of-mass distances to the TP
and LF, respectively, related by

−dTPmTP + dLFmLF = 0. (A15)

Combining Eqs. (A15) and (A14) yields

dLF = dμTP, (A16)

dTP = dμLF, (A17)

where the reduced masses are

μLF = mLF

mLF + mTP
, (A18)

μTP = mTP

mLF + mTP
. (A19)

Energy conservation of the second scission gives

QIF + V1 + EIF + E∗
IF

= V2 + ETP + ELF + E∗
TP + E∗

LF, (A20)

and energy conservation of both fission processes give

QFS + E∗
FS + QIF = V2 + TKE + TXE, (A21)

where

V2 = EC,2 + EN,2, (A22)

TKE = EHF + ELF + ETP, (A23)

TXE = E∗
HF + E∗

LF + E∗
TP. (A24)

The Q value is given by

QIF = MIF − MLF − MTP − ν2Mn, (A25)

and the Coulomb energy after the second scission is

EC,2 = k
e2ZTPZHF

D − dμLF
+ k

e2ZLFZHF

D + dμTP
+ k

e2ZTPZLF

d
.

(A26)

Rearranging the equations slightly yields

ETP+ELF = QIF+E∗
IF + EIF + V1 − V2 − E∗

TP − E∗
LF,

(A27)

where from now on V1 is evaluated at D1 and V2 at any arbitrary
D � D1. The momenta and kinetic energies of the TP and LF
are determined from energy and momentum conservation,

ETP + ELF = p2
TP

2mTP
+ p2

LF

2mLF
, (A28)

pLF + pTP = pIF, (A29)

with the solutions

pLF = pIFμLF ±
√

2mLFQ
eff
IF μTP, (A30)

pTP = pIFμTP ∓
√

2mTPQ
eff
IF μLF, (A31)

ELF = (√
EIFμ̃IFμLF ±

√
Qeff

IF μTP
)2

, (A32)

ETP = (√
EIFμ̃IFμTP ∓

√
Qeff

IF μLF
)2

, (A33)

where Qeff
IF is the effective Q value of the second fission (the

energy available for acceleration of the TP, LF, and the HF, if
not fully accelerated already),

Qeff
IF = QIF + V1 − V2 + E∗

IF − E∗
TP − E∗

LF − En (A34)

with the kinetic energy of the emitted neutrons

En = EIF
ν2mn

mLF + mTP
, (A35)

and the reduced mass μ̃IF

μ̃IF = mIF

mLF + mTP
. (A36)

The positive and negative signs of the momenta represent
an increase and decrease in momentum corresponding to the
outer and inner positions, respectively. This is because the
acceleration of the inner fragment is opposite to the direction
that the IF was moving in, leaving it with little to zero
kinetic energy. Conversely, the outer fragment is accelerated
in the same direction as the IF was moving in, boosting its
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kinetic energy. The boost is increased as E∗
IF increases. The

kinetic energy of the HF follows the opposite trend, since any
excitation energy steals energy from the first scission, leaving
less for kinetic energy.

If at the moment of the second scission V1(D1 → ∞) →
0, and subsequently V2(D,d → ∞) → 0, then the kinetic
energies in Eqs. (A10), (A32), and (A33) are the final kinetic
energies of the HF, LF, and TP, respectively. On the other
hand, if D1 is finite at the moment of the second scission
such that the potential energy of the HF is not negligible,
then the scission-point configuration is specified by D1 and d
together with the momenta in Eqs. (A8), (A30), and (A31).
The configuration is uniquely constrained by energy and
momentum conservation for given excitation energies, mass
splits, and neutron multiplicities. The final kinetic energies in
turn depend on exactly how D and d are taken to infinity. This
is contained in the dynamics but not the kinematics, which is
why semiclassical trajectory calculations are used.

APPENDIX B: TRUE TERNARY DECAY MODEL
DERIVATIONS

This Appendix describes how the scission-point configu-
ration is constrained by energy and momentum conservation
for given CCT fragments in the true ternary decay model (see
Fig. 18). The final kinetic energies are computed from this scis-
sion configuration with semiclassical trajectory calculations,
as described in Sec. III.

Energy conservation of the fission gives

QFS + E∗
FS = V + TXE + EK,0, (B1)

where TXE = E∗
HF + E∗

LF + E∗
TP is the sum of all fragment

excitation energies, EK,0 is the total pre-scission kinetic
energy, E∗

FS the excitation energy of the fissioning system,
and V is the potential energy

V = EC + EN. (B2)

The Q value is

QFS = MFS − MHF − MTP − MLF − νMn, (B3)

where M are the mass excesses and ν is the neutron
multiplicity. The Coulomb potential is given by

EC = k
e2ZTPZHF

x
+ k

e2ZTPZLF

D − x
+ k

e2ZHFZLF

D
, (B4)

1. FS

LFTPHF xr2.
x d

D

FIG. 18. CCT as a true ternary decay, as described in Sec. III C.
Note that xr is a relative and dimensionless coordinate, defined
between 0 and 1, corresponding to the TP “touching” the HF and
the LF, respectively.

where k is the Coulomb constant, e is the elementary charge,
and the center-to-center distances are x between the TP and
HF, D between the HF and LF, and D − x between the TP
and LF. EN is the attractive nuclear potential. Note that we can
express x in terms of D and the relative (and dimensionless)
coordinate xr ∈ [0,1] as

x = rTP + rHF + xr (D − 2rTP − rLF − rHF), (B5)

where rTP, rHF, and rLF denote the radii of the respective
fragments. To obtain the scission configuration, Eqs. (B3)–
(B5) are substituted into Eq. (B1) and solved with respect to
D. There are multiple solutions corresponding to all possible
fragment arrangements, only one of which corresponds to
the arrangement in Fig. 5. Choosing this D fully determines
the scission-point configuration through the above equations,
for a given fragment mass split, neutron multiplicity and
pre-scission kinetic energy, with the parameters xr and TXE.

APPENDIX C: INTRINSIC STABILITY OF
COLLINEARITY DERIVATIONS

Based on the equations of Appendix B, this appendix de-
scribes how the scission-point configuration is constrained by
energy and momentum conservation for given CCT fragments
in the true ternary decay model, with a perturbation in the
ternary particle position or momentum (see Fig. 19). The final
kinetic energies are computed from this scission configuration
with semiclassical trajectory calculations, as described in
Sec. III. For the momentum-based perturbation, the ternary
particle offset from the fission axis is set to y = 0, and the
total pre-scission kinetic energy

EK,0 = p2
TP

2mTP
+ p2

HF

2mHF
+ p2

LF

2mLF
(C1)

in Eq. (B1) is sampled as EK,0 ∈ [0,Emax
K,0 ], where Emax

K,0 is
a limit to be set. The relative ternary particle position xr is
sampled as xr ∈ [0,1], and the sum of the excitation energies
of the fragments as TXE ∈ [0,TXEmax], where TXEmax is a
limit to be set. With these parameters given, all the interparticle
distances are fully determined as described in the true ternary
decay model (Appendix B). It is now described how to
determine the initial momenta. Let the origin of the laboratory

1. FS

LF
TP

HF xr2.
y

D
dx

py

FIG. 19. CCT as a true ternary decay with a perturbation in the
ternary particle position or momentum, as described in Sec. III D.
Note that xr is a relative and dimensionless coordinate, defined
between 0 and 1, corresponding to the TP “touching” the HF and
the LF, respectively.
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frame be the charge center of the ternary particle. Let the x axis
be the fission axis, and the initial momenta be along the y axis.
The coordinate of the center of mass (c.m.) in this laboratory
frame is

Rc.m. = −xmHF + (D − x)mLF

mTP + mHF + mLF
. (C2)

The particle coordinates in the center-of-mass frame are

RTP = −Rc.m., (C3)

RHF = RTP − x, (C4)

RLF = RTP + (D − x). (C5)

Conservation of linear and angular momenta yield

pTP + pHF + pLF = 0, (C6)

RTPpTP + RHFpHF + RLFpLF = 0, (C7)

respectively, which gives the relations

pHF = η1pTP, (C8)

pLF = η2pTP, (C9)

where

η1 = RLF − RTP

RHF − RLF
, (C10)

η2 = RHF − RTP

RLF − RHF
. (C11)

Inserting these relations into Eq. (C1), the initial momentum
of the ternary particle is found to be

pTP =
√

2EK,0

(
1

mTP
+ η1

mHF
+ η2

mLF

)−1

, (C12)

where the TP momentum has been chosen to be along the
positive y-direction.

For the position-based perturbation, the pre-scission kinetic
energy is set to zero, and the ternary particle is offset from
the fission axis with a distance y ∈ [0,ymax], where ymax is a
limit to be set. This allows for a tighter scission configuration,
giving a higher off-axis repulsion (which more easily breaks
collinearity), but this effect was ignored in this paper.
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[9] F. Gönnenwein, Nucl. Phys. A 734, 213 (2004).

[10] I. Tsekhanovich, Z. Büyükmumcu, M. Davi, H. O. Denschlag,
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[56] P. Möller and J. Randrup, Phys. Rev. C 91, 044316 (2015).
[57] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz,

Phys. Rev. C 80, 014309 (2009).
[58] G. Royer, C. Normand, and E. Druet, Nucl. Phys. A 634, 267

(1998).
[59] P. Möller, J. Nix, W. Myers, and W. Swiatecki, At. Data Nucl.

Data Tables 59, 185 (1995).

014602-19

https://doi.org/10.1103/PhysRevC.26.2049
https://doi.org/10.1103/PhysRevC.26.2049
https://doi.org/10.1103/PhysRevC.26.2049
https://doi.org/10.1103/PhysRevC.26.2049
https://doi.org/10.1103/PhysRevC.22.2008
https://doi.org/10.1103/PhysRevC.22.2008
https://doi.org/10.1103/PhysRevC.22.2008
https://doi.org/10.1103/PhysRevC.22.2008
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1016/j.physletb.2015.05.002
https://doi.org/10.1016/j.physletb.2015.05.002
https://doi.org/10.1016/j.physletb.2015.05.002
https://doi.org/10.1016/j.physletb.2015.05.002
https://doi.org/10.1016/0375-9474(91)90754-T
https://doi.org/10.1016/0375-9474(91)90754-T
https://doi.org/10.1016/0375-9474(91)90754-T
https://doi.org/10.1016/0375-9474(91)90754-T
https://doi.org/10.1103/PhysRevLett.42.215
https://doi.org/10.1103/PhysRevLett.42.215
https://doi.org/10.1103/PhysRevLett.42.215
https://doi.org/10.1103/PhysRevLett.42.215
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1016/j.nuclphysa.2004.04.020
https://doi.org/10.1016/j.nuclphysa.2004.04.020
https://doi.org/10.1016/j.nuclphysa.2004.04.020
https://doi.org/10.1016/j.nuclphysa.2004.04.020
https://doi.org/10.1140/epja/i2016-16135-9
https://doi.org/10.1140/epja/i2016-16135-9
https://doi.org/10.1140/epja/i2016-16135-9
https://doi.org/10.1140/epja/i2016-16135-9
https://doi.org/10.1103/PhysRevC.94.054614
https://doi.org/10.1103/PhysRevC.94.054614
https://doi.org/10.1103/PhysRevC.94.054614
https://doi.org/10.1103/PhysRevC.94.054614
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.91.044316
https://doi.org/10.1103/PhysRevC.91.044316
https://doi.org/10.1103/PhysRevC.91.044316
https://doi.org/10.1103/PhysRevC.91.044316
https://doi.org/10.1103/PhysRevC.80.014309
https://doi.org/10.1103/PhysRevC.80.014309
https://doi.org/10.1103/PhysRevC.80.014309
https://doi.org/10.1103/PhysRevC.80.014309
https://doi.org/10.1016/S0375-9474(98)00143-2
https://doi.org/10.1016/S0375-9474(98)00143-2
https://doi.org/10.1016/S0375-9474(98)00143-2
https://doi.org/10.1016/S0375-9474(98)00143-2
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002



