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Structure evolution and phase transition in odd-mass nuclei
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(Received 16 September 2016; revised manuscript received 28 November 2016; published 30 January 2017)

The evolution of level structures due to the unique parity orbitals g9/2, h11/2, and i13/2 in odd-mass nuclei
from Zn to Am is studied within a unified framework, by correlations between ratios of excitation energies in
both odd-mass nuclei and their even-even core nuclei. These plots reveal regularities that can be understood in
terms of the particle-plus-rotor model, as evolutions along its three limiting coupling schemes: weak coupling,
decoupling, and strong coupling, and transitions between them. Peculiar transitions between the decoupling and
strong coupling schemes are found in both i13/2 structures of neutron-odd nuclei and h11/2 structures of proton-odd
nuclei, at neutron numbers around 90 and 70, respectively. These are correlated with the critical shape phase
transitions from vibrator to rotor from the even-even nuclei in the same regions and are characterized as critical
phase transitions too. This behavior is corroborated with a nonmonotonic behavior of the differential variation
of the two-neutron separation energies in the same nuclear regions.
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I. INTRODUCTION

Quantum phase transitions in atomic nuclei were first
theoretically discussed more than 30 years ago [1–3]. Their
experimental recognition in nuclei at low excitation energies,
as being similar to those in condensed matter systems, came
later [4,5], as it was expected that due the finite nature of the
nuclei and the integer numbers of nucleons, nuclear phase
transitions cannot be abrupt. This was made possible by
using as an order parameter an empirical structure property,
e.g., E(2+

1 ), the energy of the first excited 2+ state in even-
even nuclei, which presents an almost continuous variation
when taken for many nuclei together, unlike the numbers of
protons or neutrons [4]. Many other structure properties, when
represented as a function of E(2+

1 ) may show phase transition
discontinuities at some critical value Ec(2+

1 ). Because E(2+
1 )

closely reflects the equilibrium configuration (shape) of the
nucleus, the phase transitions from different nuclear regions
are shape phase transitions. Other quantities that can be used
as a continuous variable to study the structure evolution are,
for example, R4/2, the ratio between the excitation energies
of the 4+ and 2+ yrast states, or nuclear mass or mass-related
quantities such as the two-neutron separation energy. A shape
phase transition is a property of an entire nuclear region. As an
example, even-even nuclei around N = 90 were interpreted as
entailing two phases (spherical and deformed) which change
one into the other in a very narrow energy range around a
critical value of E(2+

1 ).
Critical shape phase transitions were also discussed

theoretically within the interacting boson model (IBM) [6] by
introducing classes of symmetries as critical point solutions
in addition to the three well-known dynamical symmetries [6]
U(5) (spherical nuclei), SU(3) (axially deformed nuclei), and
O(6) (γ -soft nuclei): X(5) (for the phase transition between
U(5) and SU(3) [7], and E(5) [for the transition between
O(6) and SU(3)] [8]. Nuclei empirically representing these
critical point symmetries were proposed, e.g., [9–11] for X(5)
and [12,13] for E(5).

While the interpretation of the collective structures of
even-even nuclei has benefited from such benchmarks, the
evolution of odd-mass nuclei is more difficult to characterize

due to the diversity of level structures even at low excitations,
as determined by many different shell model orbitals spanned
by the unpaired nucleon. In this work, the structure evolu-
tion of odd-mass nuclei will be investigated by examining
correlations between different level structure observables,
as well as the variation of the two-neutron separation
energies.

II. ODD-MASS NUCLEI EMPIRICAL CORRELATIONS

In spite of their more complicated structure, empirical
correlations between structure observables, similar to those
for even-even nuclei, can be used if one deals with level
structures stemming from unique parity orbitals (UPOs).
These structures have extremely pure wave functions since the
UPO does not mix with other orbitals. The high j purity (j is
the UPO spin) is their most relevant property and determines
nearly identical effects for any UPO, making it possible to
apply the same correlation schemes to different mass regions.
Three UPO structures (1g9/2, 1h11/2, and 1i13/2) have been
systematically observed [14] for three major shells covering a
large part of the nuclear chart.

By using correlations between excitation energies within
UPO quasiband structures some similarities with the even-even
nuclei were found: universal anharmonic vibrator (AHV)
behavior [15–17], tripartite classification [18], and phase
transition [15,17]. This work introduces a general framework
which allows an interpretation of the UPO structure evolution
over wide regions of the nuclear chart, with emphasis on those
undergoing a phase transition.

The structure of odd-mass nuclei at low excitation energy
entails the coupling of an odd nucleon to an even-even core. A
suitable theoretical framework is the particle-plus-rotor model
(PRM) [19], where one or a few valence particles moving in the
potential of a deformed inert core are coupled to the rotating
core. Because we will use its language, we first present a short
review of the PRM (for extended presentations, see [20,21]).
We consider the case of one particle coupled to an axially
symmetric deformed core. The Hamiltonian has essentially
three terms: an intrinsic part (movement of the particle in
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the deformed potential of the core), a collective part (the
rotation of the inert core), and the Coriolis interaction, which
couples the particle degrees of freedom with those of the core.
Their relative strengths determine what kind of structure is
observed. Three limiting coupling schemes were recognized
in real nuclei.

(i) Weak coupling limit. Realized for very small core
deformations. The particle moves on slightly disturbed
spherical shell model levels. The energetically favored
states of spin j,j + 2,j + 4, . . . have relative spac-
ings similar to those of the ground-state (quasi)band
(gsb) 0+, 2+, 4+, . . . , of the core. This scheme occurs
up to deformations β ≈ 0.14 [20], corresponding
to cores with ratios R4/2 = E(4+

1 )/E(2+
1 ) roughly

between 2.0 and 2.2.
(ii) Strong coupling limit (or deformation alignment).

Realized when the Coriolis interaction matrix el-
ements are small compared to the single-particle
energy splittings between levels with different �

(projection of the particle angular momentum �j on the
symmetry axis) values. This situation appears in two
cases [20,21]: (a) for large deformations β, roughly
for R4/2 � 3.0; (b) for small Coriolis matrix elements.
For UPOs (large j values), this happens when the odd
nucleon is in high-� Nilsson orbitals. In this limit
the �J = 2 favored (spin j,j + 2, . . . ) and unfavored
(spin j + 1,j + 3, . . . ) sequences merge into a single
rotational band with spins increasing by one.

(iii) Decoupling limit (or rotational alignment). Realized
when the Coriolis interaction is strong and cannot be
neglected compared to single-particle energy split-
tings and to rotational energy. For the large-j UPO
case this takes place when the unpaired nucleon
occupies low-� states. The decoupling occurs for a
relatively wide range of intermediate deformations
(from β ∼ 0.14 to about 0.23 [20]; roughly for R4/2

between 2.2 and 2.7), and implies a particle angular
momentum aligned with the rotational axis of the
core [20–22]. In this coupling scheme the favored
states (having maximum alignment of the particle
spin to the rotation axis) of spin j,j + 2, . . . , have
relative energies similar to the gsb of the core, while
the unfavored states (with lesser alignment) usually lie
at higher energies.

Data on the quasiband structures stemming from three UPO
orbitals, g9/2, h11/2, and i13/2, as currently found in the ENSDF
and XUNDL databases [14] were collected for about 500
nuclei with 30 � Z � 95. For each UPO of spin j we extracted
the excitation energies E∗ of the states of spin j,j + 2, and
j + 4 (from the “favored” sequence) and when available, that
of the state of spin j + 1 (from the “unfavored” sequence).
We use excitation energies relative to that of the state of
spin j , denoted by E(j + 2),E(j + 4),E(j + 1), with E(I ) =
E∗(I ) − E∗(j ). We also define the energy ratios Rj+4/j+2 =
E(j + 4)/E(j + 2), analogous to R4/2 from even-even nuclei,
as well as Rs

j = [E(j + 2) − E(j + 1)]/E(j + 2), called the
signature splitting index, a measure of the relative position of

FIG. 1. Colored contours approximately showing the regions
where the three coupling schemes of the PRM are expected to occur in
the Rj+4/j+2 vs R4/2 representation. Equality of the two quantities is
indicated by the dashed line. The three crosses indicate the theoretical
limits of the strong coupling for the three UPOs (see discussion in
Sec. II).

the favored and unfavored states [18]. In the strong coupling
limit these ratios have well-defined values: Rj+4/j+2 = (4j +
10)/(2j + 3) ≈ 2.29 (2.333 for g9/2, 2.286 for h11/2, and 2.25
for i13/2), and Rs

j = (j + 2)/(2j + 3) (≈0.54 for all three
UPOs).

Because the ratios R4/2 in the even-even nuclei directly
indicate the degree of collectivity (which is strongly corre-
lated with the number of active particles) and its evolution
(precollective nuclei for R4/2 < 2.0, and collective nuclei from
AHV to rotor for R4/2 between 2.0 and 3.33), we adopt the
correlations between the ratios Rj+4/j+2 and Rs

j , and R4/2 in
the core nuclei, as general frameworks to display and discuss
the structure evolution in the odd-mass nuclei. The core of an
odd nucleus of mass A is defined as its even-even neighbor of
mass A − 1 or A + 1 if its unpaired nucleon is of a particle or
hole nature, respectively. Based on the discussion above, Fig. 1
approximately shows how the three PRM coupling limits are
(naively) expected to show up in this type of correlation.

Figure 2 shows the experimental energy ratio correlation for
all examined nuclei. Except for some isotopes of In (Z = 49)
and Sb (Z = 51), the precollective nuclei follow the line
Rj+4/j+2 = R4/2, in agreement with previous observations
concerning the so-called seniority regime, and the similarity
between the favored states in the odd-A nuclei and the ground-
state quasiband in the neighboring even-even nuclei [18]. The
collective nuclei (R4/2 � 2.0) fill up three relatively compact
regions, highlighted by the three labeled contours, which
form a triangle-like structure. An interesting regularity for
the collective nuclei is that the nuclei with odd nucleons of
particle (p) type are typically situated in the upper part of the
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FIG. 2. Correlation between the energy ratios Rj+4/j+2 of UPO
favored sequences and R4/2 of the even-even cores. The dashed line
indicates equality of the two quantities. The symbols disclose the
UPO and the type (proton or neutron, particle or hole type) of the odd
particle. See text for the meaning of the numbered contours.

triangle (within contours 1 and 3), while those with hole (h)
type in the lower part (within contour 2).

Some of the PRM paradigms are easily noted: weak
coupling for the approximately spherical nuclei (2.0 � R4/2 �
2.2), decoupling for some of the transitional nuclei (2.2 �
R4/2 � 2.7), and strong coupling for a compact group of many
nuclei at R4/2 ≈ 3.3. Other nuclei occupy the lower side (con-
tour 2) and the upper right side (contour 3) of the triangle. The
displayed features can be understood on the basis of the PRM
structure paradigms (Fig. 1). Around R4/2 ≈ 2.0 all nuclei
show, as expected, a weak coupling scheme. At higher R4/2

values (2.2 � R4/2 � 2.7), the nuclei with p-type nucleons
fill contour 1, which approximately follows the diagonal line
(decoupling scheme). This corresponds to the odd particle in
Nilsson levels with low �, from the first half of the major shell
[case (iii) above]. At the largest deformations (R4/2 ≈ 3.3) the
nuclei reach the strong coupling limit [case (ii-a)], the compact
group of nuclei at R4/2 ≈ 3.3. Contour 3 is an interesting
case of rapid transition from decoupling to strong coupling
and will be discussed later. Contour 2 is mostly filled by
h-particle-type nuclei, comprising nuclei with weak coupling
(Rj+4/j+2 ≈ R4/2), followed by nuclei characterized by strong
coupling (Rj+4/j+2 ∼ 2.29). The latter feature is due to the
nucleon in the high-j UPO occupying now high-� levels in the
second half of the shell [small Coriolis interaction, case (ii-b)].

While showing data together for a large number of nuclei
(about 500), the correlation plot of Fig. 2 only hints of possible
interesting structure evolutions, but does not explicitly disclose
how the evolutions of different nuclear regions take place
(e.g., the evolution of isotopic chains with the number of
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FIG. 3. Panels (a)–(c) are the same as Fig. 1, but separately for
each of the three UPOs. Panels (d)–(f) present evolution trajectories
of some selected isotopic chains from the respective left-side
panels (a)–(c).

neutrons or with the collectivity of the core). Figure 3 repeats
the information from Fig. 2, but gives more detail on the
nuclear structure evolution. The graphs in Figs. 3(a)–3(c)
clearly show that the three considered UPOs behave essentially
in the same way. Figures 3(d)–3(f) disclose in each case
the behavior of some selected isotopic chains spanning
the whole region with available information on the UPO
structures. In particular, Figure 3 shows that, within each of the
three contours from Fig. 2, isotopes follow evolutions along
relatively smooth, similar paths. This observation entitles one
to further investigate, in deeper detail, the structure evolution
within the contours of Fig. 2. It is also interesting to point
out, in Fig. 3(e), the spectacularly different behaviors of,
e.g., the proton-odd Pr and neutron-odd Ce isotopes (both
having the same even-even Ce cores), or proton-odd Pm and
neutron-odd Nd isotopes (with the same even-even Nd cores):
with decreasing neutron number, the p-odd nuclei show an
evolution along weak coupling and decoupling and then toward
strong coupling, while the n-odd nuclei evolve along the weak
coupling and strong coupling schemes.

Figure 4 shows the evolution of the signature splitting index
Rs

j . Around R4/2 ∼ 2.0, Rs
j is close to zero, corresponding

to the weak coupling case. Nuclei from region 1 have
negative values, characteristic of decoupling. The h-type nuclei
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FIG. 4. Similar to Fig. 1, but for the signature splitting index Rs
j

(see text). Symbol meanings are as in Fig. 1. The three numbered
contours correspond to those from Fig. 1.

(contour 2) have, in general, positive values, characteristic
of the strong coupling, with Rs

j increasing from about zero
to the strong coupling limit ∼0.54 for R4/2 varying roughly
between 2.2 and 2.7. Contour 3 shows the rapid transition from
decoupling (large negative values) to strong coupling.

Figures 2–4 show some nuclei with h-type nucleon situated
within contour 1. They are identified in Fig. 5. The explanation
for these “exceptions” is their oblate deformation. For oblate

FIG. 5. Detail of Fig. 1 highlighting the nuclei with unpaired hole-
type particles which realize a decoupling scheme. For each isotope
chain the first and last points are marked with the mass number.

deformation the situation is reversed with respect to that of
the nuclei with normal, prolate deformation: the unpaired
nucleon is now in low-� orbitals, therefore one expects a
decoupling scheme [case (iii)]. These nuclei are the following:
Au isotopes with masses 185–199 (πh11/2 structures), all with
oblate 11/2− states [24]; Hg isotopes with masses 185–199
(νi13/2 structures), with oblate 13/2+ states [24]; 141Sm (νh11/2

structure), with an oblate 11/2− state [24]. Due to similarity
with their Sm N = 79 isotone it is likely that 143Gd and 145Dy
have oblate 11/2− states too. All these cases show that the
structure of the rotational levels built on high-j orbitals is an
excellent tool to distinguish experimentally between prolate
and oblate deformations in transitional nuclei [20].

III. PARTICULAR EVOLUTIONS AND SHAPE PHASE
TRANSITIONS

We next proceed with a detailed examination of the
evolution of isotope chains from the different regions of Figs. 2
and 3. Because the number of nuclei with available UPO
structures is larger for the h11/2 and i13/2 shells, only these
cases will be discussed.

A. Shape phase transition in the ν i13/2 structures

The region of transition from decoupling to strong coupling
is of special interest. Conventional examination of the energies
of favored sequences of isotopic chains compared to those of
the gsb of the core nuclei suggests a transition between the two
coupling schemes (see, e.g., [21–23]). The present evolution
framework highlights a rather interesting situation. In Figs. 2–4
some nuclei follow an evolution along trajectory 3, with a
rather rapid transition between the two coupling schemes. The
nuclei in this region correspond to two UPOs: πh11/2 structures
in the neutron-deficient La, Pr, and Pm isotopes and νi13/2

structures in Sm, Gd, Dy, Er, Yb, Hf, and W isotopes.
Figure 6 displays several detailed graphs of the νi13/2

case, for which the experimental data are especially rich. It
contains data for 44 n-odd nuclei with N above 82 (up to 105),
from Sm to W. The correlation plots in Figs. 6(a)–6(c) show
that all these nuclei evolve along rather compact trajectories.
Figure 6(a) shows that the relative energy of the j + 2 state
(17/2+) of the favored νi13/2 structure reaches a minimum
value of ∼200 keV at Ec(2+) ≈ 140 keV in the core nuclei,
which is the critical point of the shape phase transition (from
AHV to rotor) from this region [4]. With decreasing E(2+),
the decoupled favored sequence first compresses [E(j + 2)
decreases] but, as soon as the core nuclei become deformed it
starts to expand rapidly [E(j + 2) increases], evolving toward
strong coupling. Figure 6(b) is the analog of the plot E(4+)
versus E(2+) in even-even nuclei, which disclosed for the
first time the critical shape phase transition [4]. There is a
“turning point” at the minimum value Ec(j + 2) ≈ 200 keV,
which separates the evolution of nuclei having AHV-type cores
and decoupling (upper branch) from that of the nuclei with
rotor cores quickly approaching the strong coupling (lower
branch). Figure 6(c) shows a very compact trajectory of the
signature splitting index which also has a turning point at
Ec(j + 2), and it is remarkable that it passes through zero value
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FIG. 6. Different correlations illustrating the critical shape phase transition between the decoupling and strong coupling schemes of νi13/2

structures (contours 1 and 3; see Figs. 2 and 3). (a) Rapid change of E(j + 2) evolution around the value Ec(2
+
1 ) ≈ 140 keV corresponding to

the X(5) critical point of the core nuclei. (b) Turning point behavior in the E(j + 4) vs E(j + 2) graph. (c) Evolution of the signature splitting
index Rs

j . The dashed lines in (a)–(c) are just drawn through the data points. Filled symbols mark the nuclei closest to the critical point (see
text). (d) Derivative of the trajectory from (b) (see text for details).

(where the low-lying favored and unfavored states become
degenerate) very close to this turning point. The turning point
Ec(j + 2) ≈ 200 keV is a genuine critical point, as shown in
Fig. 6(d) by the discontinuity in the derivative of the trajectory
from Fig. 6(b). The symbols in Fig. 6(d) are values numerically
derived for isotopic chains from the points in Fig. 6(b), while
the dashed line is the derivative of the continuous empirical
curve in Fig. 6(b) drawn through all data points. This derivative
is discontinuous at Ec(j + 2) ≈ 200 keV, where it has a
vertical asymptote for the two branches.

Seven nuclei closest to Ec(j + 2) are highlighted by filled
symbols (Fig. 6): 155Gd, 157Dy, 161Er, 163,165Yb, 167Hf, and
171W, while nuclei with Rs

J ≈ 0 [Fig. 6(d)] are 165Yb, 171W,
and 153Sm. Five of these nuclei have cores that fulfill well,
or to some extent, X(5) predictions: 153Sm, 157Dy, 163Yb,
167Hf, and 171W, with cores 152Sm, 156Dy, 162Yb, 166Hf,
and 170W, respectively [9–11]. Actually, the turning points
for the Gd and Er isotopes 155Gd and 161Er have also cores
(154Gd and 160Er, respectively) with an yrast band close to
the X(5) prediction [10]. Thus, the remarkable behavior of all
these isotopic chains around Ec(j + 2) ≈ 200 keV is closely
correlated with the X(5) critical point behavior from the core
nuclei at neutron numbers between 90 and 96 [10]. Future
investigations (both experimental and theoretical) should con-
sider the odd-mass nuclei highlighted above as candidates for

empirical representations of the critical point of the transition
between the decoupling and strong coupling schemes.

The concept of critical point symmetry was also theoret-
ically developed for odd-mass nuclei. Iachello introduced a
critical point Bose-Fermi symmetry called E(5/4) for a j =
3/2 particle coupled to an E(5) core [25], which was extended
to a multi-j case, j = 1/2,3/2,5/2 [the E(5/12) model [26]].
To study the criticality of odd-A nuclei adjacent to even-even
nuclei with X(5) symmetry, the X(5/(2j + 1)) critical point
symmetry model was proposed, with a particle in a j orbit
coupled to an X(5) core [27]. Some features of the E(5/4)
model were approximately recognized in 135Ba [28], and
limited agreement with X(5/(2j + 1)) predictions was found
for j = 1/2 (189Au), and j = 5/2 (155Tb) [27], concluding
that the model should be improved by including a multi-orbit
scheme. Comparisons of the latter model to the UPO pure-j
case were not reported.

Is there any other evidence about the shape phase transitions
discussed above? One expects that other structure observables
also present an irregular behavior in the region where the shape
phase transition takes place. However, for the UPO structures
considered above, observables other than level energies (such
as electromagnetic transition probabilities) are rather poorly
known. To confirm the shape phase transitions by other
observations, we resorted to the study of the evolution of
the masses of nuclei from the same regions. Nuclear masses
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FIG. 7. Evolution of the derivative dS2n of the two-neutron
separation energy S2n for (a) even-even nuclei, (b) neutron-odd nuclei,
and (c) proton-odd nuclei, respectively, from the Z = 54–74 region.
The dashed circles indicate the region of shape phase transition at
N ≈ 90 (see text).

contain detailed information on the intrinsic nuclear structure,
as determined by the interplay between the average nuclear
field and the nucleon-nucleon correlations. The mass-based
approach, unlike that following a specific level structure (such
as the UPO-based levels), has a more general character. It
is well known that different quantities deduced from nuclear
masses are rather sensitive to nuclear structure features. Thus,
the evolution of the two-neutron separation energy (S2n), when
applied to the study of the even-even nuclei, was found useful
in disclosing different structure phenomena, like the shell and
subshell closures and the shape phase transitions, by non-
monotonic evolutions in certain regions [29]. Especially useful
is the differential variation of S2n, defined as dS2n(Z,N ) =
[S2n(Z,N + 2) − S2n(Z,N )]/2, which acts as a magnifying
glass that better highlights these nonmonotonic behaviors [29].

By using S2n values taken from the 2012 nuclear mass
tables [30], we have studied the evolution of dS2n for the
odd-mass nuclei in the region where correlation behaviors
indicate a phase transition. The results are displayed in Fig. 7.
For all nuclei, both even-even and proton-odd or neutron-odd
with Z = 54–74 and N = 70–114, the dS2n quantity presents

a rather monotonous evolution with N , around a value of
about 500 keV, with two remarkable exceptions. The first
is the big negative bump at the magic number N = 82, the
second is the smaller positive bump around N ≈ 90. For the
even-even nuclei, the latter was associated with the shape
phase transition from spherical to deformed nuclei [the X(5)
critical point] [29]. The same kind of structure occurs for
the odd-mass nuclei [Figs. 7(b) and 7(c)], therefore it can
be associated with a shape phase transition phenomenon. In
the neutron-odd nuclei this irregularity in dS2n [Fig. 7(b)]
confirms the important change of structure shown by the
previous results based on the examination of the νi13/2 UPO
structures. Because masses are experimentally known for
a larger number of nuclei compared to the cases in which
the UPO structures are known, the range of nuclei that can
be assigned to phase transition regions is more extended in
this case. Thus Fig. 7 indicates that a similar transition takes
place in the proton-odd nuclei like the isotopes from La to
Eu, in the same range of N values, N ≈ 90 [Fig. 7(c)]. These
neutron-rich odd-mass isotopes are, however, less studied and
could not be investigated with the UPO correlation method.

The two approaches discussed so far are somewhat
complementary. The one based on the examination of
the two-neutron separation energies indicates, through a
nonmonotonic evolution, the region where a shape phase
transition takes place, whereas by examining correlations of
quantities related to UPO excitation energies in odd-mass
nuclei one finds the behaviors that characterize the shape
phase transition in that region.

B. Shape phase transition in the πh11/2 structures

Figure 8 presents an analysis, similar to that of Fig. 6, of
the transition of h11/2 structures in proton-odd nuclei which
evolve on trajectories within contours 1 and 3 of Fig. 2 (see also
Fig. 3). These nuclei belong to the isotopes Cs to Tb, with N
in the range 62–82. The transition toward the strong coupling
limit which takes place in neutron-deficient La to Eu isotopes
is, in spite of the fact that the data are more incomplete, very
similar to that of the νi13/2 structures. The E(j + 2) energy
has a minimum at Ec(2+) ≈ 190 keV, and a turning point at
Ec(j + 2) ≈ 235 keV. The turning points of different isotopic
chains approximately correspond to the nuclei 125La (core
124Ba), 127Pr or 129Pr (cores 126,128Ce), 133Pm (core 132Nd),
and probably 135Eu (core 134Sm). The corresponding core
nuclei, with N = 68, 70, and 72, respectively, are among
those selected as having yrast state energies close to the
X(5) predictions [10]. Nuclear masses in this region are
poorly known, therefore examination of Fig. 7 does not offer
additional indication about a transition similar to that at
N ≈ 90. We conclude that this transition is, very likely, another
critical shape phase transition, corresponding to a spherical
to deformed critical shape phase transition in the even-even
nuclei from the same region, around N = 70.

C. Evolution of the π−1h11/2 structures

Next we examine a different type of structure evolution, that
of the h11/2 structures in the proton-hole odd nuclei. These
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FIG. 8. Similar to Fig. 6, but for the transition region from
decoupling to strong coupling [contours 1 and 3 in Fig. 2; see also
plots (b) and (e) in Fig. 3] of πh11/2 structures (nuclei from La to Eu).
The analog of Fig. 6(c) is missing here because data on the signature
splitting index are too scarce. The nuclei for which πh11/2 structure
data are available (Cs to Tb isotopes) have neutron numbers below
82, the collectivity increasing with decreasing N .

comprise nuclei with Z between 65 and 79 and N in the
range 82–114. In the graphs of Figs. 2 and 3 these isotopic
chains evolve on paths within contour 2. Figure 9 shows graphs
analogous to Figs. 6(a)–6(c). As also seen in Figs. 2 and 3, the
isotopes with Z between 65 (Tb) and 75 (Re) show first a
weak coupling scheme (for the nuclei closer to N = 82), then
they evolve on trajectories corresponding to strong coupling.
The strong coupling is seen in Fig. 9(a) by E(j + 2) values
larger than E(2+), in Fig. 9(b) by points which closely follow
the strong coupling relation E(j + 4) = 2.286E(j + 2), and
in Fig. 9(c) by values of R

j
s close to 0.54. Figure 9 shows also

some peculiarities, which formally resemble those in Figs. 6
and 8. Thus, for the isotopes with Z from 69 to 75, E(j + 2)
reaches a minimum value [Fig. 9(a)], while in Figs. 9(b)
and 9(c) there is a “turning point” behavior. Nevertheless,

FIG. 9. Similar to Fig. 6, but for h11/2 structures of the proton-
hole odd-mass nuclei evolving on trajectories within contour 2 in
Fig. 2; see also Figs. 3(b) and 3(e). The dashed line in (a) denotes
E(j + 2) = E(2+), the dotted line in (b) is for the strong coupling
limit E(j + 4) = 2.286E(j + 2), and the dashed line in (c) is also
for the strong coupling limit, Rj

s = 0.54. The insets in (b) and (c)
show details of the evolution pattern around N = 98 of Lu isotopes
with N from 88 to 106, which are similar to those of Tm, Ta, and Re
isotopes.

unlike the case of the shape phase transitions from Figs. 6
and 8, the trajectories for different Z values are similar but
do not merge together in a compact path, although they all
represent a strong coupling situation. In particular, Fig. 9(c)
shows a rather different behavior from that in Fig. 6(c). The
origin of the minimum and of the turning points appears to
be related to the deformed subshell closure (a gap in the
Nilsson level diagram) at N = 98; see for example Fig. 8.3
in Ref. [31]. Indeed, the minima in Fig. 9(a) and the turning
points in Figs. 9(b) and 9(c) are at N = 98 for Ho, Tm, and
Lu, and at N = 100 for Ta and Re, with nuclei on both sides
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FIG. 10. Same as Fig. 9, but for h11/2 structures of the neutron-
hole odd-mass nuclei evolving on trajectories within contour 2 in
Fig. 2; see also Figs. 3(b) and 3(e).

of these N values being well deformed (R4/2 larger than 3.0).
The observed behavior may be related to increased rigidity of
the deformed nuclei after the additional pairing suppression
across the gap at N = 98. In Figs. 7(a) and 7(c) there is only
a slight hint of the shell gap at N = 98, a small negative kink
similar to the larger one due to another well-known gap at
N = 108 [31].

D. Evolution of the ν−1h11/2 structures

The h11/2 structures in neutron-hole odd-mass nuclei are
known in isotopes from Z = 44 (Ru) to Z = 66 (Dy) with
neutron number N in the range 67–81 (from contour 2).
Figure 10 shows the evolution of the chains with the largest
number of available UPO structures (Cd to Sm). While Cd, Te,
and to a certain extent Xe isotopes display a weak coupling
situation (their cores being mostly quasispherical, R4/2 � 2.3),

the Ba to Sm isotopes show an evolution close to the strong
coupling limit, similar to that of the π−1h11/2 structures
(Fig. 9), with the notable absence of the minima and turning
points assigned to a deformed shell gap (previous section).
The strong coupling limit is reached by only a few Ce and
Nd nuclei with well-deformed cores (R4/2 � 3.0), as shown
by the signature splitting index [Fig. 10(c)], which also has a
different behavior than that in Fig. 6.

IV. CONCLUSIONS

In summary, we have shown that empirical correlations
between ratios of relative level energies from the UPO favored
and unfavored sequences in odd-mass nuclei and the R4/2

ratio in the core nuclei offer an excellent general framework to
assess the evolution of these level structures over a large part of
the nuclear chart. The three investigated UPOs g9/2, h11/2, and
i13/2 behave in a similar way, and isotope chains from different
nuclear regions evolve along similar, smooth trajectories.
These evolutions, passing through the three limiting coupling
cases of the PRM (weak coupling, decoupling, and strong
coupling) are remarkably well understood solely based on
the type of the unpaired nucleon (particle or hole), without
resorting to details of the Nilsson level scheme. The usefulness
of these systematics for highlighting nuclei with oblate shape
was demonstrated.

Finally, an interesting evolution trajectory was found,
making the transition between the decoupling and strong
coupling schemes for νi13/2 structures in nuclei with masses
∼150−170 and N ≈ 90, and for πh11/2 structures in nuclei
with masses ≈130 and N ≈ 70. This transition is correlated to
the critical shape phase transition (from vibrator to rotor) of the
even-even nuclei from the same regions, and was documented
as a critical shape phase transition too. This finding has been
corroborated by an independent examination of the evolution
of the two-neutron separation energies. Adequate theoretical
descriptions of the shape phase transition phenomenon in the
odd-mass nuclei, characteristic of coupling a high-j UPO
orbital to a transitional core, are expected.

In a very recent work [32], Nomura et al. propose an
approach to the shape phase transitions in odd-mass nuclei
based on theoretical investigations with the energy density
functional theory and a particle-plus-boson-core coupling
scheme, which is used to define other possible signatures
(related to deformations, excitation energies, E2 transition
rates, and separation energies) of this phenomenon. In partic-
ular, they investigate the odd-mass Eu and Sm isotopes with
N ≈ 90 where this shape phase transition takes place. More
experimental data, including nonyrast states, are required to
better characterize both the nuclear region where this critical
shape phase transition takes place (and in particular, the
influence of the unpaired particle), and the nuclei that are
the best candidates for the realization of the critical point.

ACKNOWLEDGMENT

We acknowledge partial support within the Romanian
UEFISCDI Project No. PN-II-ID-PCE-2011-3-0140.

014329-8



STRUCTURE EVOLUTION AND PHASE TRANSITION IN . . . PHYSICAL REVIEW C 95, 014329 (2017)

[1] J. N. Ginocchio and M. W. Kirson, Phys. Rev. Lett. 44, 1744
(1980).

[2] A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett.
44, 1747 (1980).

[3] D. H. Feng, R. Gilmore, and S. R. Deans, Phys. Rev. C 23, 1254
(1981).

[4] R. F. Casten, N. V. Zamfir, and D. S. Brenner, Phys. Rev. Lett.
71, 227 (1993).

[5] R. F. Casten, D. Kusnezov, and N. V. Zamfir, Phys. Rev. Lett.
82, 5000 (1999).

[6] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University, Cambridge, England, 1987).

[7] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[8] F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).
[9] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503

(2001).
[10] R. M. Clark, M. Cromaz, M. A. Deleplanque, M. Descovich,

R. M. Diamond, P. Fallon, R. B. Firestone, I. Y. Lee, A. O.
Macchiavelli, H. Mahmud, E. Rodriguez-Vieitez, F. S. Stephens,
and D. Ward, Phys. Rev. C 68, 037301 (2003).

[11] E. A. McCutchan, N. V. Zamfir, R. F. Casten, M. A. Caprio, H.
Ai, H. Amro, C. W. Beausang, A. A. Hecht, D. A. Meyer, and
J. J. Ressler, Phys. Rev. C 71, 024309 (2005).

[12] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584
(2000).

[13] N. V. Zamfir, M. A. Caprio, R. F. Casten, C. J. Barton,
C. W. Beausang, Z. Berant, D. S. Brenner, W. T. Chou, J. R.
Cooper, A. A. Hecht, R. Krücken, H. Newman, J. R. Novak, N.
Pietralla, A. Wolf, and K. E. Zyromski, Phys. Rev. C 65, 044325
(2002).

[14] The ENSDF and XUNDL databases, as maintained by the
Brookhaven National Laboratories, http://www.nndc.bnl.gov.
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