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many-body scheme applied to the pairing Hamiltonian

J. Ripoche,1,2,* D. Lacroix,1,† D. Gambacurta,3,‡ J.-P. Ebran,2,§ and T. Duguet4,5,6,‖
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Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass
nuclei. In their best current level of implementation, their accuracy is of the order of a few percent error on the
ground-state correlation energy. Recently implemented variants of these methods are operating a breakthrough
in the description of medium-mass open-shell nuclei at a polynomial computational cost while putting state-of-
the-art models of internucleon interactions to the test.
Purpose: As progress in the design of internucleon interactions is made, and as questions one wishes to answer
are refined in connection with increasingly available experimental data, further efforts must be made to tailor
many-body methods that can reach an even higher precision for an even larger number of observable quantum
states or nuclei. The objective of the present work is to contribute to such a quest by designing and testing a new
many-body scheme.
Methods: We formulate a truncated configuration-interaction method that consists of diagonalizing the
Hamiltonian in a highly truncated subspace of the total N -body Hilbert space. The reduced Hilbert space
is generated via the particle-number projected BCS state along with projected seniority-zero two- and
four-quasiparticle excitations. Furthermore, the extent by which the underlying BCS state breaks U(1) symmetry is
optimized in the presence of the projected two- and four-quasiparticle excitations. This constitutes an extension
of the so-called restricted variation after projection method in use within the frame of multireference energy
density functional calculations. The quality of the newly designed method is tested against exact solutions of the
so-called attractive pairing Hamiltonian problem.
Results: By construction, the method reproduces exact results for N = 2 and N = 4. For N = (8, 16, 20),
the error in the ground-state correlation energy is less than (0.006%, 0.1%, 0.15%) across the entire range
of internucleon coupling defining the pairing Hamiltonian and driving the normal-to-superfluid quantum phase
transition. The presently proposed method offers the advantage of automatic access to the low-lying spectroscopy,
which it does with high accuracy.
Conclusions: The numerical cost of the newly designed variational method is polynomial (N6) in system size.
This method achieves unprecedented accuracy for the ground-state correlation energy, effective pairing gap, and
one-body entropy as well as for the excitation energy of low-lying states of the attractive pairing Hamiltonian.
This constitutes a sufficiently strong motivation to envision its application to realistic nuclear Hamiltonians in
view of providing a complementary, accurate, and versatile ab initio description of mid-mass open-shell nuclei
in the future.
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I. INTRODUCTION

Methods to solve the N -body Schrödinger equation must
cope with two specific attributes of internucleon interactions
that are responsible for the nonperturbative character of
the nuclear many-body problem [1,2]. The first trait relates
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to the strong internucleon repulsion at short distances that
translates into large off-diagonal coupling between states
characterized by low and high (relative) momenta, i.e., the
first element of nonperturbative physics is of ultraviolet nature
and manifests itself in all nuclei independently of the detail
of their structure. The second trait relates to the unnaturally
large nucleon-nucleon scattering length in the S-wave and
spin-singlet channel and with the tendency of internucleon
interactions to induce strong angular correlations between
nucleons in the internal frame of the nucleus. This second
element of nonperturbative physics is of infrared character
and only manifests itself in subcategories of nuclei, i.e., in
singly open-shell and doubly open-shell nuclei.

2469-9985/2017/95(1)/014326(14) 014326-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.014326


RIPOCHE, LACROIX, GAMBACURTA, EBRAN, AND DUGUET PHYSICAL REVIEW C 95, 014326 (2017)

Off-diagonal coupling between low and high (relative)
momenta can be tamed down at the price of inducing (hope-
fully weak) higher-body forces by preprocessing the nuclear
Hamiltonian via, e.g., a unitary similarity transformation [3].
Based on the transformed Hamiltonian, dynamical correla-
tions1 can be dealt with at a polynomial cost via standard
many-body techniques typically based on systematic particle-
hole-type expansions. Corresponding ab initio methods [i.e.,
many-body perturbation theory (MBPT) [4], coupled cluster
(CC) theory [5], self-consistent Green’s function (SCGF)
theory [6,7], in-medium similarity renormalization group
(IMSRG) theory [8] ] have been developed and implemented
with great success over the last ten years to deal with doubly
(sub)closed shell nuclei and their immediate neighbors.

Strong, i.e., nondynamical, correlations induced in singly
and doubly open-shell nuclei are of different nature and require
specific attention. Several routes are possible, including full
configuration-interaction (CI) techniques [9,10]. To proceed
on the basis of methods whose cost scales polynomially
with the number interacting nucleons, one option consists of
exploiting the spontaneous breaking of symmetries induced
by nondynamical correlations at the mean-field level. This
rationale allows one to incorporate a large part of the non-
perturbative physics into a single product state that can serve
as a reference for many-body expansions dealing efficiently
with dynamical correlations. While traditionally developed
within the frame of effective nuclear mean-field (i.e., energy
density functional) approaches [11–13], this idea has been
recently embraced to develop and implement the ab initio
Gorkov SCGF [14–16], multireference IMSGR [17,18], and
Bogoliubov CC [19] many-body techniques to tackle pairing
correlations.2 This is achieved by allowing the reference
state to break U(1) global gauge symmetry associated with
particle-number conservation. While the restoration of the
broken symmetry, eventually necessary in any finite quantum
system, has been formulated for MBPT [24,25] and CC
techniques [25], it has only been implemented so far in the
context of nuclear ab initio calculations via MR-IMSGR
techniques [17,18].

Methods based on a symmetry-breaking reference state are
currently allowing a breakthrough in the ab initio description
of (singly) open-shell nuclei and are putting state-of-the-art
internucleon interactions to the test [16,26,27]. In the most
advanced truncation schemes implemented so far, this is
achieved by allowing a few percent error on the ground-state
correlation energy.3 As progress on internucleon interactions
is made, and as the questions one wishes to answer are refined
in connection with increasingly available experimental data,
further efforts must be made to tailor many-body methods

1The denomination of dynamical and nondynamical correlations is
presently used in the quantum chemistry sense.

2While the formation of Cooper pairs is primarily driven by the
unnaturally large nucleon-nucleon scattering length in the spin-singlet
isospin-triplet channel, it is also partly due to indirect processes
associated with the exchange of collective vibrations [20–23].

3We are only quoting here the systematic uncertainty associated
with the truncation of the many-body expansion scheme.

(with minimized numerical costs) that can reach higher
precision along with more observable quantum states or nuclei.
The objective of the present work is to design and test a new
many-body scheme that has the potential to do so.

To characterize the potential of new many-body schemes,
one can test them against solutions of exactly solvable many-
body Hamiltonians. To be in a position to draw meaningful
conclusions, the schematic Hamiltonian must be significantly
nontrivial and capture enough key physics of the real system
of interest. In view of the above discussion, we presently
focus on the so-called attractive pairing Hamiltonian [28–31]
whose main merit is to effectively model the superfluid
character of finite nuclear systems or any other mesoscopic
fermionic superfluid system. More specifically, the dynamic
of N interacting fermions is governed by the Hamiltonian

H (g) ≡
�∑

k=1

ek(a†
kak + a

†
k̄
ak̄) − g

�∑
k �=l

a
†
ka

†
k̄
al̄al, (1)

where � denotes the number of doubly degenerate (ek = ek̄)
time-reversed4 single-particle states (k,k̄) characterized by the
creation operators (a†

k,a
†
k̄
). The double degeneracy of single-

particle states is meant to mimic (even-even) doubly open-shell
nuclei treated via the spontaneous breaking of SO(3) rotational
symmetry, i.e., exploiting explicitly the concept of deforma-
tion. In the present study, the distance between successive pairs
of degenerate levels is constant, i.e., ek+1 − ek ≡ �e, and the
system is systematically studied at “half filling,” i.e., N = �.
Modeling, e.g., rare-earth nuclei, one typically has �e ∼
500 keV. The coupling strength g ∈ [0, + ∞[ characterizes
the attractive pairing interaction that scatters pairs of nucleons
from any given set of degenerate single-particle states to
any other set with a constant probability amplitude. As g
increases, the system is known to undergo a phase transition
from a normal to a superfluid system at a critical value
g = gc that depends on the number of particles N . Eventually,
the relevant parameter of the model is the ratio g/�e that
measures the pairing strength relative to the spacing between
successive pairs of single-particle states. For rare-earth nuclei,
one typically5 has g/�e ∼ 0.5.

While the eigenstates of this Hamiltonian can be obtained
exactly via direct diagonalization, i.e., full CI [32–34],
quantum Monte Carlo simulations [35,36], or the numerical
solution of the so-called Richardson equations [28–31,37,38],
there exists a long history of search for accurate approximate
solutions at the lowest possible algorithmic cost. Indeed, the
numerical cost of exact methods scales factorial with N or
�, which quickly becomes prohibitive for realistic systems of
interest. Among these approximate methods6 are the variation
after particle-number projection Bardeen–Cooper–Schrieffer

4The conjugation of the two single-particle states can actually
originate from any dichotomic symmetry such as time reversal,
signature, or simplex.

5Throughout the paper, numerical values quoted for g are in unit of
�e, i.e., they actually correspond to quoting the ratio g/�e.

6We only focus here on methods that can be applied systematically
for all coupling strength g, i.e., before, across, and after the
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approach (VAP-BCS) approach [40–49], truncated CI calcula-
tions [50–52], and CC calculations without [39,53–56] or with
U(1) symmetry breaking [19,57].

Particular attention must be paid to the highly accurate
method recently proposed in Refs. [58,59]. Reconciling
the performance of CC doubles in the normal phase with
the merit of VAP-BCS in the strongly interacting regime,
this method, coined “polynomial similarity transformation”
(PoST), reaches less than 1% error:

(�E/E)c =
(

1 − E
approx
c

Eexact
c

)
× 100%, (2)

on the ground-state correlation energy Ec defined as the total
energy minus the Hartree–Fock (HF) energy obtained by filling
the N lowest levels, for all interaction strength and moderate
particle number [59].

In view of this recent development, we presently wish
to design a many-body scheme that scales polynomially
with the number of interacting fermions and whose results
display an error in the ground-state correlation energy that
is better than 1% for any interaction strength. To reach
this ambitious objective, the variational approach intro-
duced below builds on Ref. [24] and combines two key
characteristics:

(1) U(1) symmetry breaking and restoration:
(a) spontaneous,
(b) optimized;

(2) truncated CI diagonalization.

While Ref. [24] displays encouraging results by exploiting
spontaneous U(1) symmetry breaking and restoration within a
perturbative approach, the present work strongly improves on
them by exploiting truncated CI techniques and by optimizing
the extent by which the symmetry is broken prior to being
restored. In addition, a strong asset of the presently proposed
method is to provide a highly accurate account of low-lying
excited states. The approach being based on a wave-function
ansatz, observable besides the energy can easily be accessed
as exemplified by the computation of the effective pairing gap
and the one-body entropy.

This paper is organized as follows: Section II displays
the formalism in such a way that several standard methods
can be easily recovered as particular cases. Sections III–VI
provide extensive numerical results and compare them with
exact solutions as well as with those obtained from existing
approximate methods. Eventually, results for low-lying excited
states are discussed. Section VII concludes the present work
and elaborates on some of its perspectives.

normal-to-superfluid phase transition. If not, more calculations could
be mentioned, including those based on the self-consistent random-
phase approximation [39] applicable to g < gc.

II. FORMALISM

A. Basis construction

We first consider the BCS solution for H (g)7 carrying even
number parity as a quantum number. It can be written as

|�(g)〉 ≡
�∏

k=1

(uk(g) + vk(g)a†
ka

†
k̄
)|0〉, (3)

where the coefficients (uk(g),vk(g)) satisfying u2
k(g) +

v2
k (g) = 1 for all k are obtained by solving standard BCS

equations [60]. Quasiparticle creation operators, whose Her-
mitian conjugates annihilate |�(g)〉, are obtained via the BCS
transformation,

β
†
k (g) ≡ uk(g)a†

k − vk(g)ak̄, (4a)

β
†
k̄
(g) ≡ uk(g)a†

k̄
+ vk(g)ak. (4b)

Normal ordering H (g) with respect to |�(g)〉 allows one to
rewrite it under the form

H (g) = H0(g) + H1(g), (5)

where the unperturbed part reads

H0(g) = E0(g) +
�∑

k=1

Ek(g)(β†
kβk + β

†
k̄
βk̄). (6)

The real number E0(g) denotes the approximate BCS ground-
state energy whereas

Ek(g) ≡
√

(ek − λ)2 + �2(g) (7)

defines BCS quasiparticle energies, with �(g) being the BCS
pairing gap [61]. The explicit expression of the residual
interaction H1(g) can be obtained accordingly [60].

The BCS vacuum and the set of quasiparticle (qp) excita-
tions built on top of it

|�kl...(g)〉 ≡ β
†
k (g)β†

l (g) · · · |�(g)〉, (8)

form a complete eigenbasis B(g) of H0(g) over Fock space F
such that

H0(g)|�(g)〉 = E0(g)|�(g)〉,
H0(g)|�kl...(g)〉 = [E0(g) + Ek(g) + El(g) + · · · ]|�kl...(g)〉.
Being interested in eigenstates of even-even systems with
seniority zero, the only basis states of actual interest are those
involving pairs of time-reversed quasiparticle excitations for
which the shorthand notation

|�kk̄ll̄...(g)〉 ≡ |�k̆l̆...(g)〉 (9)

7It is implicitly assumed here that the Hamiltonian is replaced by the
grand potential H (g) − λA, with λ being the chemical potential used
to impose that the BCS solution has the right number of particles on
average. The particle-number operator is A = ∑�

k=1(a†
kak + a

†
k̄
ak̄).
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is used. Eventually, all basis states can be written as BCS vacua
of the form

|�k̆l̆...(g)〉 =
�∏

m=1

(
uk̆l̆...

m (g) + vk̆l̆...
m (g)a†

ma
†
m̄

)|0〉. (10)

This notation implicitly includes the BCS vacuum as a
particular case when using the BCS coefficients (um(g),vm(g)).
For the excited state |�k̆l̆...(g)〉, one has uk̆l̆...

m (g) ≡ um(g) and
vk̆l̆...

m (g) ≡ vm(g), except for m = k,l, . . . for which uk̆l̆...
m (g) ≡

−vm(g) and vk̆l̆...
m (g) ≡ um(g).

While the eigenstates of H0(g) form a complete orthonor-
mal basis of Fock space, they break the U(1) symmetry
associated with particle-number conservation, i.e., they are
not eigenstates of the particle-number operator A. To recover
states belonging to the Hilbert space HN associated with the
physical number N of nucleons in the system, a projection
operator

PN = 1

2π

∫ 2π

0
dϕeiϕ(A−N) (11)

can be applied to generate the set of projected qp excitations

|�k̆l̆...
N (g)〉 ≡ PN |�k̆l̆...(g)〉, (12)

forming a nonorthogonal overcomplete basis BN (g) of HN .
While |�k̆l̆...

N (g)〉 directly originates from |�k̆l̆...(g)〉, the former
is not an eigenstate of H0(g).

For g > gc, each basis state defined through Eqs. (3)–(12)
builds in the breaking of the U(1) symmetry prior to performing
its exact restoration. As such, each state |�k̆l̆...

N (g)〉 is a complex
entanglement of 0p-0h, 2p-2h, ..., Np-Nh excitations with
respect to the HF reference state, as nicely illustrated by Eq. (5)
of Ref. [58]. For g < gc, however, the BCS vacuum actually
reduces to the HF reference state such that each state |�k̆l̆...

N (g)〉
identifies with one n-particle–n-hole (np-nh) excitation on top
of it belonging to HN .8 Certain combinations of qp excitations
do not actually have any np-nh counterpart in HN for g < gc.
For example, a 2qp excitation of time-reversed states tend
towards a Slater determinant belonging to HN±2 below gc.

B. Truncated configuration-interaction method

We wish to approximate eigenstates of H (g), starting
with its ground state, via an exact diagonalization within the
subspace of HN spanned by a subset of states of BN (g). A
similar idea was used in a different context on the basis of pro-
jected quasiparticle random-phase approximation states [62] to
estimate transfer probabilities between many-body states with
different particle numbers. At this point, the present proposal
displays great similarity to the broken pair approximation
method [63] with two broken pairs and to the generalized
seniority method with v = 4 [64]. However, a key difference
will be introduced in Sec. II D below.

8In this case, the action of PN is superfluous such that this is already
true of the unprojected basis states |�k̆l̆...(g)〉.

Eigenstates are approximated by the ansatz9

|	N (g)〉 ≡ c|�N (g)〉 +
∑

k

ck̆|�k̆
N (g)〉 +

∑
l<m

cl̆m̆|�l̆m̆
N (g)〉,

(13)

i.e., it mixes the particle-number projected BCS vacuum with
projected 2qp and 4qp excitations. The number of states in the
linear combination is

nst = n0qp + n2qp + n4qp

= 1 + C1
� + C2

�

= 1 + � + �(� − 1)

2
, (14)

with N = � in the present application.
The many-body state is determined variationally

δ{〈	N (g)|H (g)|	N (g)〉 − E(g)〈	N (g)|	N (g)〉} = 0,

where the minimization is performed with respect to the set of
coefficients {c∗

α} ≡ {c∗,c∗
k̆
,c∗

l̆m̆
}, where α scans all states in the

linear combination defining |	N (g)〉 in Eq. (13). This leads to
nst coupled equations10∑

β

cβ〈�α(g)|H (g)|�β
N (g)〉 = E(g)

∑
β

cβ〈�α(g)|�β
N (g)〉.

(15)

Matrix elements of H (g) between the basis states as well as the
overlap between the latter can be estimated by using standard
projection techniques. Explicit forms are given in the appendix
of Ref. [24].

Equation (15) is nothing but the Schrödinger equation
represented in a finite-size nonorthogonal basis. It is solved
by first diagonalizing the overlap matrix through a unitary
transformation UN (g):∑

β

〈�α(g)|�β
N (g)〉Uβζ

N (g) = n
ζ
N (g)Uαζ

N (g), (16)

leading to a new set of orthonormal states

|ζ
N (g)〉 ≡

∑
α

Uαζ
N (g)√
n

ζ
N (g)

|�α
N (g)〉, (17)

which is eventually used to diagonalize H (g). The number of
new orthonormal states is of course equal to nst. However, the
size of the basis must actually be reduced prior to diagonalizing
H (g) by removing states with eigenvalues below a chosen
threshold ε, i.e., states that encode the redundancy of the initial
nonorthogonal overcomplete basis. We will illustrate this point
in Sec. III C.

9The coefficient of the projected BCS vacuum is not set a priori
because we keep the possibility to remove it altogether from the
variational ansatz, in which case c = 0.

10Given that PN is a projector (P 2
N = PN ) and that H (g) commutes

with it ([PN,H (g)] = 0), it is sufficient to apply the projector on only
one of the two states involved in any matrix element of the overlap
or Hamiltonian matrices. This is why we omit the subscript N in the
bra 〈�α(g)| entering Eq. (15).
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C. Particular cases

One must note that the above scheme incorporates several
existing approaches as particular cases:

(1) When limiting ansatz (13) to the sole first term,
one recovers the particle-number projection after the
variation BCS (PAV-BCS) method. In this case, there
is obviously no diagonalization to perform.

(2) For g < gc, i.e., in the normal phase, the scheme
reduces to a standard truncated CI method [50–52],
limited to 2p-2h configurations in the present case.11

In this case, the number of states does not comply with
Eq. (18), i.e., it is replaced by

nst = n0p0h + n2p2h = 1 + (
C1

�/2

)2 = 1 + �2

4
, (18)

which for large � corresponds to essentially half of
the cardinal defined in Eq. (18). The space spanned by
the truncated basis is thus not continuous through gc.
Consequences will be discussed in Sec. III.

(3) When computing the mixing coefficients {cα} from
second-order (particle-number unprojected) MBPT,
the diagonalization step is avoided. The residual in-
teraction H1(g) contains terms with four quasiparticle
operators12 [60]. Consequently, H1(g) only couples
the BCS vacuum |�(g)〉 to 4qp excitations |�k̆l̆(g)〉
at second order. As a result, coefficients ck̆ associated
with 2qp excitations are identically zero at that order.
Ansatz (13) can be both implemented in the absence
of particle-number projection, in which case one
works within a standard MBPT scheme, or in the
presence of the particle-number projection, in which
case one works within a particle-number projected
MBPT scheme that we can coin as MBPTN .13 Of
course, standard second-order MBPT based on a HF
reference state is recovered from MBPTN at g < gc.
It happens that MBPT and MBPTN have been applied
to the pairing Hamiltonian in Ref. [24] and serve as
an inspiration for the generalizations introduced in the
present work. Corresponding results will be briefly
recalled in Sec. III.

D. Optimized order parameter

Let us introduce one additional level of improvement.
At a given value of the coupling strength g, the states
forming the nonorthogonal overcomplete basis BN (g) have

11As mentioned above, 2qp excitations of time-reversed states
have no counterpart in HN below gc. Consequently, corresponding
coefficients ck̆ are identically zero by construction in such a case.

12Terms with two creation or two annihilation operators are zero
when |�(g)〉 satisfies the BCS equations [19], i.e., in Møller–Plesset
MBPT [65].

13The mixing coefficients {cα} are still computed from MBPT
without particle number projection. Note that an alternative particle-
number-restored MBPT based on a projective formula has been
recently proposed [25] but not yet applied.

been naturally built so far from the BCS solution |�(g)〉 of
H (g). Consequently, the extent by which |�(g)〉 (possibly)
break U(1) symmetry, as characterized by its pairing gap �(g),
is in one-to-one correspondence with the coupling g defining
the physical Hamiltonian. However, it is not at all obvious that
the subpart of the resulting basisBN (g) used in the truncated CI
calculation optimally captures the physics of the Hamiltonian
H (g).

At each “physical” value g, it is thus possible to foresee
the diagonalization of the Hamiltonian H (g) in the (0qp, 2qp,
4qp) subpart of BN (gaux) associated with an auxiliary value
gaux, i.e., with the basis built from the BCS solution |�(gaux)〉
of an auxiliary pairing Hamiltonian H (gaux).14 Following this
line of thinking, one can scan all values gaux ∈ [0,+∞[ in
order to find the optimal auxiliary coupling gopt. This extra
step consists of spanning a larger manifold of states than
when working at gaux = g. The method is thus of variational
character, i.e., the optimal auxiliary coupling gopt is obtained
at the minimum of the curve Egaux (g) produced by repeatedly
applying the truncated CI calculation, i.e., by solving Eq. (15)
for the Hamiltonian H (g) while varying the auxiliary coupling
gaux defining the basis states.

This scheme extends the so-called restricted variation
after projection (RVAP) method designed within the frame
of symmetry-restored nuclear energy density functional cal-
culations [66]. A similar idea was also used in condensed
matter [67] to study the t-J model and later in the Hubbard
model [68]. Generally speaking, the idea is to scan the
symmetry-restored energy as a function of a collective variable
that monitors the extent by which the unprojected reference
state breaks the symmetry. In the present case of U(1)
symmetry, this order parameter is nothing but the pairing gap
�(gaux) associated with the BCS reference state |�(gaux)〉.
Typically, tuning the value of the gap can be done by solving
BCS equations while adding a Lagrange constrain term. In the
present case, however, �(gaux) is a monotonic function of gaux

(see Fig. 9) such that one can directly use gaux as a collective
variable and solve for H (gaux).

The novelty of the presently proposed scheme is that the
optimal order parameter gopt of the reference state is not only
determined in the presence of the symmetry restoration but
also in presence of the mixing with projected 2pq and 4qp
states, i.e., at the level the truncated CI calculation itself. As
discussed below, this significantly impacts the value of gopt

and the associated quality of the variational ansatz.

III. TRUNCATED CONFIGURATION-INTERACTION
CALCULATIONS

A. Perturbation theory

For reference, we first illustrate MBPT and MBPTN

methods employed in Ref. [24] and briefly introduced in

14To some extent, performing standard truncated CI calculations
based on a basis of np-nh Slater determinants already exploits this
idea when dealing with H (g) with g > gc, i.e., it is nothing but using
the basis BN (gaux) built from the reference state corresponding to
gaux < gc in connection with a Hamiltonian H (g) defined by g > gc.
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FIG. 1. Error (�E/E)c in the ground-state correlation energy
as a function of g for N = � = 20. Results are shown for (i)
second-order particle-number unprojected MBPT energy based on
a projective formula (gray dotted line), (ii) second-order particle-
number unprojected MBPT energy based on a Hermitian expectation
value formula (blue dashed-dotted line), (iii) second-order particle-
number projected MBPTN energy based on a Hermitian expectation
value formula (green solid line), and (iv) for VAP-BCS [58] (brown
dashed line). The critical value gc is indicated by the black dashed
vertical line.

Sec. II C above. Second-order results are displayed in Fig. 1
for N = 20 and compared with VAP-BCS results [58]. Three
main lessons can be learned from these calculations:

(1) Second-order corrections avoid systematically the
collapse of the correlation energy that occurs as g
decreases through gc in BCS or PAV-BCS calcula-
tions [48]. Of course, the VAP-BCS method also avoids
the collapse but at the price of a significantly more
sophisticated calculation.

(2) Particle-number projection drastically improves over
unprojected results. Given that the standard Rayleigh–
Schrödinger MBPT is based on a projective energy
formula while MBPTN of Ref. [24] relies on a
Hermitian expectation value, we also display the latter
in the absence of the projection in order to disentangle
its effect. For g < gc, the improvement solely comes
from using the expectation value formula given that
the reference state does not break U(1) symmetry
in the first place and thus the symmetry restoration
cannot have any effect. For g > gc, one sees that using
the expectation-value formula does not improve the
results by itself and even deteriorates the MBPT results
obtained from a projective formula. Thus, the very
significant improvement seen in the solid line does
originate from the particle-number projection.

(3) Except in the vicinity of gc, MBPTN results are better
than VAP-BCS, both in the weak- and strong-coupling
regimes. In particular, the results display the correct
limit as g → 0, contrary to VAP-BCS calculations [58].
This is not surprising given that standard second-order
MBPT theory is known to converge to the right limit as
g tends to zero. More surprisingly, MBPTN converges

very rapidly towards exact results as g increases
beyond gc. As a matter of fact, for g > 0.6, results
are even better than the very accurate PoST approach
of Ref. [59] that, by construction, matches VAP-BCS
in the strong-pairing regime.

The quality of these results obtained at a low computational
cost over both weakly and strongly coupled regimes teaches
us that the space spanned by the states involved, i.e., the
particle-number projected BCS vacuum and particle-number
projected 4qp excitations, contain key information to treat
the physics of superfluid systems. Indeed, the spontaneous
breaking of the symmetry, followed by its further restoration,
allows one to resum nondynamical correlations efficiently
whereas corrections associated with 4qp excitations seem to
capture a large part of the dynamical correlations. Still, results
are significantly above the 1% error on the correlation energy
that constitutes our present objective.

One natural generalization of the approach would be to
include higher-order perturbative corrections. However, the
rapid increase of the dimensionality of the probed Hilbert
space translates into a severe augmentation of the computa-
tional cost. Alternatively, we move from a perturbative to a
nonperturbative approach via a diagonalization method while
keeping the dimensional of the probed Hilbert space essentially
the same.

B. Diagonalization

At each g, H (g) is diagonalized within the space spanned
by the nonorthogonal set of projected 0qp, 2qp, and 4qp
states built out of the BCS state |�(g)〉, as explained in
Sec. II B. The calculation reduces, as discussed in Sec. II C, to
a diagonalization in a truncated basis made of 0p-0h and 2p-2h
configurations built out of the HF reference state for g < gc.

The error in the correlation energy is displayed in Fig. 2
for N = � = 16. The diagonalization greatly improves the
accuracy for g > gc compared with the perturbative calcula-
tion discussed above. The error is below the targeted 1% for
all coupling beyond gc and quickly drops far below it as g

FIG. 2. (�E/E)c as a function of g for N = � = 16. Results are
shown for the truncated CI (red solid line), PoSTα [59] (dark blue
dashed line), and PoSTx [59] (yellow dashed-dotted line) calculations.
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moves away from the BCS threshold. Contrarily, results from
the truncated CI calculation are similar to the perturbative
calculation below the threshold. Eventually, a discontinuity of
the result occurs at g = gc.

The last feature can be qualitatively understood from the
discontinuity of the basis dimension as gc is approached from
below or from above, as already alluded to in Sec. II C. By con-
struction, the basis contains 0p-0h and 2p-2h Slater determi-
nants of HN below gc. While a subset of 4qp states converges
towards the 2p-2h Slater determinants when approaching gc

from above, others become more and more dominated by
Slater determinants belonging to Hilbert spaces associated
with neighboring (even) number of particles. Still, residual
components corresponding to np-nh Slater determinants of
HN are extracted from them by projection. Consequently,
the limit of the truncated CI calculation as gc is approached
from above corresponds to a standard truncated CI calculation
associated with a basis containing higher-order np-nh Slater
determinants beyond 2p-2h configurations, the basis size being
approximately twice that below threshold. This feature greatly
improves the quality of the method and illustrates the benefit
of starting from symmetry-broken (and restored) basis states
above gc.

Eventually the proposed method is competitive with the
PoST method of Ref. [59] and becomes even quickly superior
as one enters the strongly coupled regime. Still, the strict
reduction of the method to a truncated CI based on sole 0p-0h
and 2p-2h configurations below gc is not sufficient to reach
the desired accuracy across both normal and superfluid phases
and to obtain a smooth description throughout the transition.
In Sec. IV below, this intrinsic limitation is overcome while
further improving the accuracy for all g. Before discussing
this additional level of improvement, let us first focus on the
redundant character of the basis and of the optimal set of qp
configurations one should start from.

C. Basis redundancy and quasiparticle configurations

Based on unprojected MBPT, it is natural to first add 4qp
excitations to the BCS reference state in the variational ansatz
|	N (g)〉. The argument that the BCS reference state is not
coupled to 2qp excitations via the residual interaction H1(g)
does not, however, stand once the particle-number projector is
inserted; thus, our additional inclusion of 2qp excitations in the
variational state |	N (g)〉. The final set of projected 0qp, 2qp,
and 4qp states is not orthonormal and thus contains a certain
degree of redundancy. As explained in Sec. II B, this requires
the diagonalization of the overlap matrix to extract a subset
nsub � nst of relevant orthonormal states characterized by
sufficiently large eigenvalues n

ζ
N (g) � ε. Let us now typify the

relevant states depending on the original set of configurations
included in the variational ansatz and characterize at the same
time the quality of the associated results. We still focus on the
N = 16 case.

The upper panel of Fig. 3 displays the nst = 1 + 16 +
120 = 137 eigenvalues n

ζ
N (g) of the overlap matrix from

the full set of projected 0qp, 2qp, and 4qp configurations.
Employing a logarithmic scale and ordering the eigenvalues
increasingly, one observes that they gather in two distinct

FIG. 3. Eigenvalues n
ζ
N (g) (relative to the largest of them) of

the overlap matrix [cf. Eq. (16)] ordered in increasing values for
N = 16 and g/�e = 0.8. A logarithmic scale is used for the vertical
axis. Results are shown for |	N (g)〉 made of projected 0qp, 2qp, and
4qp configurations (red solid line), made of projected 0qp and 4qp
configurations (green filled circles) or made of projected 0qp and 2qp
configurations (purple dashed line).

groups, i.e., one finds 17 = n0qp + n2qp very small eigenvalues
consistent with numerical noise and 120 = n4qp values of
order unity. Very naturally, the threshold is set such that
only the latter eigenstates are kept to eventually diagonalize
the Hamiltonian. Naively, the observation that the number of
useful orthonormal states is strictly equal to the cardinal of
projected 4qp states may suggest that the latter capture from
the outset the information contained in the set of 0qp and 2qp
configurations. Let us now investigate this hypothesis.

Removing all 2qp configurations from the calculations, the
middle panel of Fig. 3 shows that only one small eigenvalue
remains while 120 = n4qp of them are still of order unity.
Additionally, the upper panel of Fig. 4 testifies that the error
on the correlation energy is the same as in the presence
of projected 2qp configurations, which indeed appear to be
redundant and can be entirely omitted from the outset. For
large bases and/or particle number, the numerical scaling
is governed by the number of 4qp configurations such that
omitting projected 2qp excitations does not lead to a significant
gain. Having one zero eigenvalue left, one may be tempted
to conclude that the projected BCS reference state can be
further removed from the linear combination. However, and as
shown in the lower panel of Fig. 4, the error in the correlation
energy is huge for g > gc in this case. Thus, projected 4qp
configurations do not fully contain the information built into
the projected BCS state such that the useful set of nst − 1 =
n4qp orthonormal states do mix in a significant fraction of the
projected 0qp state that cannot be plainly omitted. Ironically,
bringing back projected 2qp configurations while keeping
the projected BCS state aside is sufficient to gain back the
accuracy of the calculation based on projected 0qp and 4qp
configurations, i.e., the set of projected 2qp configurations do
bring in the mandatory information otherwise contained in the
projected 0qp state. Of course, it is more efficient to do it by
including one 0qp state rather than sixteen 2qp configurations.
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FIG. 4. (�E/E)c from truncated CI calculations as a function
of g for N = � = 16. Upper panel shows results for the full set of
projected 0qp, 2qp, and 4qp configurations (red solid line) as well as
using 0qp and 4qp (green filled circles) or 0qp and 2qp (purple dashed
line) configurations only. Lower panel shows results for 0qp and 4qp
configurations (green filled circles) as well as for 4qp configurations
only (pink dashed-dotted line).

To eventually confirm that all combinations of projected
states are not equivalent, let us finally keep projected 0qp and
2qp configurations while omitting projected 4qp configura-
tions. In this case, one is left with 16 = n2qp eigenvalues of
order unity and a null one as shown in Fig. 3. As for the
error in the correlation energy, the results are, however, much
inferior to the full calculation, as seen in the upper panel of
Fig. 4.

In conclusion, the information carried by projected 4qp
states cannot be brought in by lower-order projected qp
configurations while the opposite is true to some extent.

IV. OPTIMIZED ORDER PARAMETER

As described in Sec. II D, the order parameter of the BCS
reference state associated with the underlying breaking of
U(1) symmetry can be optimized, for each “physical” g of
interest, when applying the truncated CI method. To do so,
the diagonalization of H (g) is repeated while scanning gaux

[i.e., �(gaux)] that parametrizes the truncated basis until the
minimum of the lowest eigenenergy Egopt (g) is found.

A. Projection after variation BCS ansatz

As a jump-start, the rationale is first applied while
restricting the trial state to the first term in Eq. (13), i.e., to
the PAV-BCS wave function. This strictly corresponds to the
RVAP method designed within the frame of multireference

FIG. 5. (�E/E)c as a function of g for N = � = 16. Results
are shown for the the VAP-BCS (brown dashed line), the standard
PAV-BCS (dark red solid line), and for a PAV-BCS calculation based
on an optimized order parameter (dark green dashed-dotted line). The
latter corresponds to the RVAP method.

nuclear energy density functional calculations [66]. Results
as a function of g are compared in Fig. 5 to actual PAV-BCS
and VAP-BCS results. By definition, PAV-BCS results are
generated by setting gaux = g for each given g, i.e., by picking
the order parameter obtained at the level of the BCS wave
function rather than at the level of the actual PAV-BCS wave
function.

While the results are not at the desired level because of
the lack of projected qp excitations, they perfectly illustrate
the gain induced by optimizing the order parameter at the
level of the full calculation, i.e., after the symmetry restoration
is performed in the present example rather than prior to it.
It is particularly striking below threshold where (�E/E)c
decreases from 100% to about 20%–40%. In the normal
phase, not too far from the BCS threshold, it is indeed highly
beneficial to allow the reference state to break U(1) symmetry
while restoring it. As discussed above, this corresponds to
including a specific set of np-nh configurations at a low
computational cost. This reduced set provides an efficient
way to partly capture correlations associated with pairing
fluctuations that arise as a precursor of the phase transition.
Above threshold, results are also significantly improved over
the range g ∈ [gc,0.4] by finding the optimal order parameter.
For g > 0.6, no significant gain is obtained given that PAV-
BCS itself becomes eventually exact.

One interest of this optimization is that the associated
numerical effort simply corresponds to repeating the full
calculation a few number of times. At the PAV level, it
makes the RVAP calculation inexpensive compared with
the VAP-BCS calculation that it approximates. Of course,
results are significantly less accurate than the actual VAP-BCS
calculation given that the optimization of the order parameter
is not equivalent to exploring the complete manifold of BCS
states as in the VAP-BCS calculation. This is particularly true
in the very-weak-coupling regime where the system does not
experience pairing fluctuations.
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FIG. 6. Total binding energy from truncated CI calculations based
on projected 0qp, 2qp, and 4qp configurations as a function of gaux.
The calculations are performed for N = � = 16 and the specific
value of g indicated by the arrow. (a) g = 0.15 < gc. (b) g = 0.4 >

gc. (c) g = 0.8 � gc.

B. Full ansatz

The rationale is now implemented on the basis of the full
ansatz of Eq. (13). Figure 6 displays the so-called potential-
energy surface (PES) representing the total energy Egaux (g) as
a function of gaux. Results are given for three representative
values of g, i.e., g = 0.15 < gc [Fig. 6(a)], g = 0.4 > gc

[Fig. 6(b)], and g = 0.8 � gc [Fig. 6(c)].
In each case, the minimum of the PES indicates the position

of gopt. One first notices that the minimum of the curve
is typically not obtained for gaux = g. The optimal basis in
presence of the configuration mixing is characterized by a
symmetry breaking, i.e., a reference pairing gap �(gopt) that
differs from the one obtained at the (projected) BCS minimum.
This is particularly striking for g < gc (upper panel of Fig. 6)
where it is advantageous to employ a basis that explicitly
captures features of pairing fluctuations, i.e., that benefits from
the additional np-nh configurations brought about by projected
0qp, 2qp, and 4qp states. Beyond the phase transition, one
has gopt > g (gopt < g) for intermediate (large) coupling as
exemplified in the middle (lower) panel of Fig. 6. All in
all, the successive inclusion of the particle-number restoration
and of the qp excitations significantly influence the value of
gopt and the associated quality of the variational ansatz (see

TABLE I. Optimal order parameter gopt of the reference state at
various levels of approximation, i.e., BCS, PAV-BCS, and truncated
CI calculation based on projected 0qp, 2qp, and 4qp configurations,
for N = 16. Results are provided for g = 0.15 < gc, g = 0.40 > gc,
and g = 0.80 � gc. Recall that gc = 0.24 for N = 16.

g BCS PAV-BCS Truncated CI

0.15 0.15 0.29 0.31
0.40 0.40 0.44 0.45
0.80 0.80 0.82 0.76

below), especially at weak and intermediate coupling. This is
summarized in Table I.

Figure 7 provides the same comparison as Fig. 2 but with the
optimal order parameter gopt defining the basis at each value
of the coupling g. The optimization generates an impressive
systematic improvement for g < 0.6 and solves completely
the discontinuity problem observed in Fig. 7 at g = gc. The
error on the correlation energy is now lower than 0.1% for
all g, which is almost one order of magnitude lower than our
original goal. Our results compare very favorably with PoST
methods [58,59]. Once again, projected 2qp configurations are
redundant and can actually be omitted.

Figures 8(a) and 8(b) display similar results for N = � =
8 and (b) N = � = 20, respectively. The conclusions are
essentially the same as for N = � = 16.

V. PERFORMANCE AND SCALING

The main feature of the presently proposed method resides
in the optimization of the basis used to diagonalize the
Hamiltonian. This results in a dimensionality that is drastically
reduced compared with the total Hilbert space and, for a given
accuracy, compared with truncated CI calculations based on
traditional np-nh configurations. The rationale of the latter
method is to describe the system via a basis of product states
that respect U(1) symmetry even in the superfluid phase. The

FIG. 7. Same as Fig. 2 but with the optimal order parameter gopt

defining the basis at each value of the coupling g for the truncated CI
(light blue solid line). Results of PoSTα (dark blue dashed line) and
PoSTx [59] (yellow dashed-dotted line) are shown for comparison.
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FIG. 8. Same as Fig. 7 for (a) N = � = 8 and (b) N = � = 20.

rationale of our method is exactly opposite, i.e., it uses a basis
that exploits the breaking of U(1) symmetry (while restoring
it) to describe the system even in its normal phase.

Table II compares, for N = 16, the total size of HN

with the cardinal of the basis employed in standard np-nh
truncated CI calculations up to 8p-8h [52], as well as in the
presently designed approach. The corresponding error on the
correlation energy is provided for g = 0.18, g = 0.54, and
g = 0.66. We recall in passing that the dimension of the basis
used in truncated CI calculations based on the 0qp and 4qp
configurations makes the method exact for N = 2 and N = 4.

In the weak-coupling regime (g = 0.18), truncated CI
calculations based on the 0p-0h and 2p-2h configurations

TABLE II. Dimensionality nst of the full N -body Hilbert space
HN for N = � = 16 as well as of the subspace considered in np-nh
truncated CI calculations as well as in our method. In each case,
the last three columns display the error on the correlation energy for
g = 0.18, g = 0.54, and g = 0.66, respectively.

N = 16 nst g = 0.18 g = 0.54 g = 0.66

2p-2h 65 0.64% 20.92% 29.37%
4p-4h 849 0.01% 5.22% 9.59%
6p-6h 3985 0.00% 0.60% 1.66%
8p-8h 8885 0.00% 0.03% 0.12%

(0 + 2)qpN,g 17 100% 3.52% 1.70%
(0 + 4)qpN,g 121 0.64% 0.07% 0.04%
(0 + 2 + 4)qpN,g 137 0.64% 0.07% 0.04%

(0 + 2)qpN,gopt
17 9.20% 3.34% 1.66%

(0 + 4)qpN,gopt
121 0.07% 0.07% 0.03%

(0 + 2 + 4)qpN,gopt
137 0.07% 0.07% 0.03%

Exact 12870 0.00% 0.00% 0.00%

already achieve an error below 1% based on a small basis size,
which eventually scales as N2 with system size. Calculations
based on optimized projected 0qp and 4qp configurations
perform one order of magnitude better based on a basis that
is only twice as large and that scales similarly with system
size. If degrading the calculation to optimized projected 0qp
and 2qp configurations, a scheme that scales as N with the
system size, the result are, however, one order of magnitude
worse (10% error on Ec) than the CI calculation based on the
0p-0h and 2p-2h configurations. This demonstrates the need
to include 4qp configurations to reach (much) better than the
1% accuracy at weak coupling.

In the superfluid regime, truncated CI calculations based
on projected 0qp and 4qp configurations reach again an
accuracy well below 1%, which is comparable to the results
obtained from truncated CI calculations including up to 8p-8h
configurations for g = 0.54 and is even one order of magnitude
better for g = 0.66. While the dimension of the latter basis
scales as N8 with the system size, the set of projected 0qp
and 4qp configurations scales as N2, which is obviously
much more gentle. For rather strongly paired systems, i.e.,
for g = 0.66, degrading the calculation to optimized 0qp and
2qp configurations, which scales as N with the system size,
already reaches 1% accuracy in the correlation energy.

Of course, part of the cost of the calculation is transferred
into the particle-number projection but the end scaling is still
very favorable. Eventually, the numerical cost Num(N ) of the
scheme is polynomial and scales according to

Num(N ) = ngaux (BCS(gaux,N ) + n2
st ME(nφ,N )

+ DIAG(nst)), (19)

where the first term relates to solving BCS equations, the
second term to calculating the elements of the overlap and
Hamilton matrices, and the third term designates the cost of
the diagonalization of these two matrices.

The cost scales linearly with the number of times ngaux

the calculation must be performed to find the optimal gopt. In
practical calculations, it is possible to keep ngaux < 10 once the
calculation at gaux = g has been performed. Of course, ngaux =
1 when the optimization of the order parameter characterizing
the basis is omitted.

The cost associated with the BCS variation is negligible
because it scales essentially linearly with � = N . Employing
projected 0qp and 4qp (2qp) configurations, the number of
matrix elements n2

st to calculate scales as N4 (N2) while
the cost of their computation is ME(nφ,N ) = αnφN2, which
makes the overall scaling go as nφN6 (nφN4). The cost of
computing the matrix elements is linear with the number of
gauge angles nφ employed in the particle-number projector
[see Eq. (11)]. This number can be kept essentially constant,
i.e., nφ ∼ 10, when increasing N . Finally, the cost of the
diagonalization is DIAG(nst) = βn3

st = βN6 (βN3).
All in all, the building of the matrices and their diago-

nalization scale similarly as N6 (the building of the matrix
goes as N4 and dominates when using projected 0qp and 2qp
configurations) with system size. There are ways to further
improve on this situation. First, full diagonalization is not
mandatory because one can envision the use of alternative
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methods such as Lanczos to extract a few low-lying states
at a much-reduced numerical cost. This might be particularly
useful when addressing large model spaces and/or particle
numbers associated with realistic cases of interest. Second,
the prefactor αnφ associated with the direct integration over
the gauge angle to perform the particle number projection
can be scaled down by performing the latter on the basis of
recurrence relations [69].

Last but not least, there probably is a systematic con-
vergence of the result, as in standard truncated CI calcula-
tions [52], as a function of the maximum unperturbed energy
of the 2qp and 4qp included in the ansatz for a given single-
particle basis size (� here). This means that, given a targeted
accuracy, the dimensionality and the numerical cost might
be significantly scaled down by exploiting this additional
convergence parameter and complementing the calculation by
an appropriately designed formula to extrapolate the results to
the untruncated limit. Such a systematic study has not been
performed within the scope of the present paper but could be
envisioned in the future.

VI. ADDITIONAL OBSERVABLES

To complete our study, the discussion is extended to other
observables.

A. Effective pairing gap

We start with the computation of the effective pairing
gap [70,71]

�eff(g) = g

�∑
k=1

√
〈a†

ka
†
k̄
ak̄ak〉 − 1

4
〈(a†

kak + a
†
k̄
ak̄)〉2, (20)

which generalizes the BCS gap �(g) and where the expectation
values are to be computed for any ground-state wave function
of interest.

In Fig. 9, the effective gap obtained in the exact case
is compared with that obtained from various approximate
many-body methods of present interest. We observe that
truncated CI calculations based on (non)optimized projected
0qp and 4qp configurations provide results that are below
0.05% (1.5%) error for all coupling strengths g (g > gc) and
are much superior to the other methods shown.

B. One-body entropy

States obtained via the presently proposed method are
strongly entangled in the sense that they correspond to a
complex mixing of independent-particle states. As a matter of
fact, exact solutions are known to be highly correlated states,
resulting into extended diffusion of single-particle occupation
numbers across the Fermi energy. To quantify the deviation of
these many-body states from any independent-particle state,
the single-particle entropy defined as

S

kB

= −2
�∑

k=1

{〈a†
kak〉 ln〈a†

kak〉 + (1 − 〈a†
kak〉) ln(1 − 〈a†

kak〉)}

(21)

FIG. 9. Ground-state effective pairing gap [Eq. (20)] as a function
of g for N = 16. Top panel shows exact results (black solid line)
against BCS (purple dashed line), PAV-BCS (red dot-dashed line),
and MBPTN (green filled squares). Lower panel shows exact results
against truncated CI based on nonoptimized (red cross) or optimized
(blue circles) projected 0qp, 2qp, and 4qp configurations.

is computed. Exact results are compared in Fig. 10 with those
obtained from various approximate many-body methods of
present interest. Again, truncated CI calculations based on
(non)optimized projected 0qp and 4qp configurations provide

FIG. 10. Same as Fig. 9 for the one-body entropy.
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FIG. 11. Low-lying excitation spectrum as a function of g

obtained with N = � = 16 and gaux = g. Exact results are compared
with truncated CI calculations based on projected 0qp, 2qp, and 4qp
configurations. Upper panel shows absolute energies of the 10 lowest
excited states for exact (black solid lines) and truncated CI (symbols)
results. Lower panel shows relative errors on excitation energies for
the five lowest excited states.

results that are below 0.1% (2%) error for all coupling strengths
g (g > gc) and that are much superior to the other methods
shown. This demonstrates that single-particle occupation
numbers across the Fermi energy are accurately described,
which eventually propagate to any one-body observable.

C. Low-lying excitations

Only ground-state properties have been discussed so far.
Being based on a direct diagonalization of the Hamiltonian in
a restricted space, it is a tremendous advantage of the presently
designed method to also access excited states. Given that the
size of the subspace covered is drastically smaller than the one
of HN , one can only expect to provide a fair account of a few
low-lying states.

Energies of the 10 lowest excited seniority-zero states are
compared with exact results in the upper panel of Fig. 11 for
N = � = 16 and gaux = g. Truncated CI calculations based on
projected 0qp, 2qp, and 4qp configurations provide an accurate
reproduction of the low-lying spectroscopy. More specifically,
the error made on the excitation energy15 of the five lowest
excited states is lower than 9.5% for g ∈ [0,1].

15The relative error on excitation energies is given by (�E/E)ex =
(1 − E

approx
ex

Eexact
ex

) × 100%, where Eex denotes the excitation energy of the
corresponding state.

FIG. 12. Same as Fig. 11 for gaux = gopt.

The improvement of the ground-state energy obtained on
the basis of Ritz’ variational principle does not carry over to
excited states. Still, one may explore the empirical benefit of
optimizing the order parameter for low-lying excited states.
The same results as in Fig. 11 are thus displayed in Fig. 12
for gaux = gopt. While no particular pattern can be anticipated
for individual excited states, it happens that the reproduction
of the low-lying states are overall slightly improved in the
superfluid phase. But, most importantly, the relative error is
divided by a factor of two in the normal phase just prior to the
phase transition, i.e., in the regime of pairing fluctuations.

VII. CONCLUSIONS

A novel approximate many-body scheme is presently tested
on the so-called attractive pairing Hamiltonian as a way to
gauge its capacity to account for the physics of N -body
systems transitioning from the weak- to the strong-coupling
regime via a normal-to-superfluid phase transition. This work
takes place in the context of designing polynomially scaling
methods that are possibly more (i) accurate and (ii) easily
applicable to more quantum states than those, i.e., Gorkov
self-consistent Green’s function (GSCGF), multireference
in-medium similarity renormalization group (MR-IMSRG),
and Bogoliubov coupled-cluster (BCC) methods, which are
currently operating a breakthrough in the ab initio calculations
of medium-mass open-shell nuclei.

The presently proposed method is variational and happens
to be an interesting candidate to achieve the above-mentioned
goal. It does so by combining three features that have been
employed separately in various existing many-body methods
so far.
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(1) It is a truncated configuration-interaction method, i.e.,
it amounts to diagonalizing the Hamiltonian in a highly
truncated subspace of the total N -body Hilbert space.

(2) The reduced Hilbert space is generated via a set of
states that exploit the spontaneous [U(1)] symmetry
breaking and restoration associated with the (normal-
to-superfluid) quantum phase transition of the N -body
system. Specifically, the set of states considered is
given by the particle-number projected BCS state
along with projected seniority-zero two- and four-
quasiparticle excitations built on top of the BCS state.
Because each basis state is symmetry projected, the
method consists of representing the Schrödinger equa-
tion onto a nonorthonormal basis. The corresponding
diagonalization can be performed by using standard
techniques.

(3) The extent by which the BCS reference state breaks
[U(1)] symmetry is optimized in the presence of
projected two- and four-quasiparticle excitations. This
constitutes an extension of the so-called restricted vari-
ation after projection method in use within the frame
of multireference nuclear energy density functional
calculations [66].

The many-body scheme has been compared with exact
solutions of the attractive pairing Hamiltonian based on
Richardson equations [28,31,37]. By construction, the method
is exact for N = 2 and N = 4. For N = (8, 16, 20), the error
in the ground-state correlation energy is less than (0.006%,
0.1%, 0.15%) across the entire range of coupling g defining
the pairing Hamiltonian and driving the normal-to-superfluid
quantum phase transition. To the best of our knowledge, this
is better than any many-body method scaling polynomially
(N6 here) with the system size and tested so far on the pairing
Hamiltonian. In particular, it is superior to the highly accurate
PoSTα and PoSTx methods recently proposed in Ref. [59]
with the same motivations as here. The presently proposed
method offers the great additional advantage of automatically
accessing low-lying excited states. The error in excitation
energies of the five lowest excited states is less than 4% for
g ∈ [0,1] for N = 16.

The schematic pairing Hamiltonian employed here corre-
sponds to modeling sub-closed-shell systems, i.e., the naive
filling of the doubly degenerate picket fence single-particle
scheme with an even number of particles always leads to a

sub-closed-shell system. Correspondingly, the Hartree–Fock
reference state can always be defined, which is mandatory to
apply many methods, including the recently proposed PoST
methods [59]. However, this HF reference cannot even be
defined in the genuinely open-shell systems in which we are
actually interested, i.e., for the vast majority of singly or doubly
open-shell nuclei. The presently proposed method, however,
is based on a reference state that spontaneously breaks
[U(1)] symmetry whenever necessary and can be equally
applied independently of the closed-shell, sub-closed-shell,
or genuinely open-shell character of the system under study.
This makes the method extremely versatile.

Although IMSRG and SCGF techniques have not been
applied to the pairing Hamiltonian problem throughout the
superfluid phase transition (while CC has), their accuracy in
the best current level of implementation is of the order of
a few percent error in the ground-state correlation energy of
singly open-shell nuclei. In view of that, results obtained in the
present work indicate that the truncated CI method based on
low-order projected qp excitations constitutes an interesting
method to pursue. To go beyond the present proof-of-principle
calculation, our objective is to implement the method for ab
initio calculations of mid-mass open-shell nuclei.

Last but not least, one should note that the highly accurate
character of the method is achieved at the price of giving up
on size extensivity. It is a common feature of all truncated
CI methods that is also shared by the PoST method of
Ref. [59]. The increasing relative error from 0.006% to 0.1%
and to 0.15% when increasing the particle number from
N = 8 to N = 16 and to N = 20 might already be a trace
of it. Restoring size consistency demands the inclusion of
very high excitation levels and possibly all excitations, which
is prohibitive. Although giving up on size extensivity is
somewhat unconventional from the perspective of modern
many-body methods, and although it deserves attention as
larger systems are studied, it is the price one is willing to
pay to obtain a highly accurate description at a reasonable
computational cost.
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