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The competition between α and β decays is investigated for neutron-deficient Pa, U, Np, and Pu
isotopes. β+/electron-capture (EC) decay rates are calculated within the deformed quasiparticle random-phase
approximation with realistic nucleon-nucleon (NN ) interactions. Contributions from allowed Gamow-Teller and
Fermi transitions as well as first-forbidden transitions are considered. α-decay calculations are performed within
the generalized density-dependent cluster model. Effects of differences between neutron and proton distributions
and nuclear deformation are taken into account. In the calculations, Reid-93 NN interactions are used for β+/EC
decays, while Michigan three-range Yukawa effective interactions, based on the G-matrix elements of Reid NN

potentials, are used for α decay. The calculated β-decay half-lives show good agreement with the experimental
data over a range of magnitude from 102 to 105 s. The resulting total half-lives including α and β contributions
are found to be in good agreement with the experimental data, together with the α/β-decay branching ratios.
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I. INTRODUCTION

The exploration for the limits of nuclear stability is one of
the hot topics in current nuclear physics research. There is a
worldwide effort to synthesize and investigate nuclei at the
extremes such as high isospins and superheavy masses [1–6].
For exotic nuclei far from the stability line, most nuclear
ground states are unstable against β decay to approach the
stability line, either β− decay for neutron-rich isotopes or
β+ and electron-capture (EC) decay for neutron-deficient
isotopes. Near the drip lines they could even decay by nucleon
emission to reduce their extremely high isospins. As for
heavier elements, the nuclei are also unstable against α decay
or spontaneous fission. In searching for the nuclear limits, the
first thing one learns about a newly synthesized nucleus is its
radioactive decay. The radioactive decay is usually the first
tool to identify new nuclides and elements and hence also
the first means to know its structure properties. Coincident
observations of β and γ spectra have been used as powerful
spectroscopic tools for exotic nuclei [7,8]. Very recently EC
decay of 229U has been investigated by γ -γ coincidence data
and conversion electron measurements and a detailed level
scheme in 229Pa has been achieved [8]. In the heavy and
superheavy mass region, new neutron-deficient isotopes have
been populated by α decay and identified by observing α-decay
events [9–12]. Very recently neutron-deficient U isotopes
216,221,222U have been produced as evaporation residues in
fusion reactions where α-α correlations or α-decay chains are
used to identify new isotopes and isomers [11,12].

There is a competition between β+/EC and α decays in
the radioactive decay of neutron-deficient isotopes of actinide
elements [13,14]. Their decay spectrums afford an excellent
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opportunity to investigate the structure properties of deformed
heavy nuclei. Even a rough measurement of their half-lives and
individual decay energies can provide important information
on the proton-rich limit of stability for heavy nuclei. However,
experimental decay data are rare for these neutron-deficient
isotopes due to low statistics, especially for β+/EC decay. In
this work, we intend to investigate the β+/EC and α decays of
neutron-deficient Pa, U, Np, and Pu isotopes. The calculation
of β+/EC-decay rates is based on the deformed quasipar-
ticle random phase approximation (QRPA) with realistic
nucleon-nucleon (NN ) interactions in large single-particle
bases [15–17]. It is expected that more intruder single-particle
states emerging in deformed heavy nuclei would enhance
contributions from first-forbidden (FF) transitions [18,19].
So FF transitions are consistently considered within the
deformed QRPA framework. The first attempt to include FF
contributions was made within the statistical gross theory [20].
Later, Möller et al. computed allowed Gamow-Teller (GT)
transitions within the deformed QRPA with separable GT
residual interactions and estimated the average properties of
FF decay by the gross theory for nuclear β− decay [21,22].
In the past decade, microscopic QRPA treatments of FF
transitions were also made to study the β− decay of r-process
waiting-point nuclei [15,23,24]. On the contrast, microscopic
calculations of FF transitions are rare for nuclear β+/EC
decay, in particular for heavy nuclei, because β+ and EC
decays require different considerations and formulas of FF
contributions [16,25]. Besides, various QRPA calculations of β
decay have been shown to be successful for short-lived isotopes
far from stability [26–34], but the QRPA results for long-lived
isotopes are much less documented. In this context, another
challenge in the present QRPA calculations is to reproduce
the β+/EC-decay half-lives of long-lived isotopes, since
the neutron-deficient Z = 91–94 isotopes under investigation
exhibit β-decay half-lives longer than 100 s in most cases.
α-decay calculations are performed within the generalized
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density-dependent cluster model (GDDCM) [35–37]. The
α-core potential is constructed in the double-folding model
with effective NN interactions using the neutron and proton
density distributions of daughter nuclei [35–38], and the effects
of nuclear deformation and neutron skin thickness are taken
into account [36,37]. The aim of the investigation is to describe
the competition between β+/EC and α decays precisely.
Michigan three-range Yukawa (M3Y) effective interactions
are used in the double-folding model for α-decay calculations.
In order to gain more consistency, realistic Reid-93 NN
interactions are used in the Brückner G matrix for β-decay
calculations instead of the previously used charge-dependent
Bonn (CD-Bonn) NN interaction.

This article is organized in the following way. In Sec. II, the
deformed QRPA with realistic NN interactions is explained
for β+/EC decay and the GDDCM is presented for α decay.
In Sec. III, the practical aspects of α- and β-decay calculations
are discussed in detail. In Sec. IV, calculations are separately
performed for β+/EC and α decay and their competition
is discussed and compared with the experimental data. A
summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Deformed QRPA with realistic N N interactions
for weak-decay calculations

The decay rates (in s−1) for the weak process transforming
a proton into a neutron are given by

λ = ln 2

K

∑
f

λif , (1)

where the sum in f runs over daughter states within the
Qβ window (i.e., Eex < Qβ) and the constant K is de-
fined as K = 2π3

�
7 ln 2/m5

ec
4 = 6170 s. For β± decay, the

quantity λif is expressed in the form of the phase space
integral [15,16,18,19,39],

λif =
∫ W0

1
dWC(W )F (Z,R,W )(W0 − W )2W

√
W 2 − 1,

(2)
where W0 and W are the maximum energy and the total
energy (including the rest energy) of the β particle in units
of mec2, Z and R are separately the atomic number and the
nuclear radius of the daughter nucleus, C(W ) is the so-called
shape factor depending on nuclear transition matrix elements,
and F (Z,R,W ) is the Fermi function which accounts for the
Coulomb distortion of the electron wave function near the
daughter nucleus. The β maximum energy W0 for β+ decay
is given by W0 = (Qβ − Eex)/mec

2 − 1, where Eex is the
excitation energy of the final state with respect to the ground
state of the daughter nucleus. For EC decay, the quantity λif

is expressed in the sum form [16,25],

f =
∑

x

nxCxf
ε
x , (3)

where the sum in x runs over all electron subshells from which
an electron can be captured, nx is the fractional occupation
number of the electron in the subshell x, and Cx and f ε

x are,

respectively, the shape factor and the phase space factor for
the subshell x.

First, allowed Fermi and GT transitions are taken into
account. Their shape factors are not dependent on the β energy
W or the electron subsehll x and have the form

C(W ) = BGT =
(

gA

gV

)2

eff

|〈f ‖�σ �τ±‖i〉|2
2Ji + 1

, (4a)

C(W ) = BF = |〈f ‖�τ±‖i〉|2
2Ji + 1

, (4b)

where (gA/gV )eff is the effective ratio of axial and vector
coupling constants owing to the quenching of the GT strength.
Then, contributions from FF transitions are considered. In the
case of β+ decay, the shape factor of FF transitions depends
on the β energy W . If only dominant terms are considered, it
can be written as [15,16,18,19]

C(W ) = k(1 + aW + b/W + cW 2), (5)

where k, ka, kb, and kc are the nuclear matrix elements
associated with nuclear structure and their detailed expressions
are given in Refs. [15,16,18,19]. In the case of EC decay, the
shape factor of FF transitions is associated with the electron
subshell. The shape factor for the subshell x (i.e., K , LI ,
LII , MI , MII , . . .) can be expressed in terms of tensorial
rank [16,25],

Cx = C(0)
x + C(1)

x + C(2)
x . (6)

The detailed expressions for C(0,1,2)
x can be found in

Refs. [16,25].
On top of axially symmetric deformed mean-field calcula-

tions, the deformed proton-neutron QRPA with realistic NN
interactions is employed to calculate the shape factors for
allowed Fermi and GT transitions as well as for FF transitions.
Here, we adopt an intrinsic coordinate frame for deformed
calculations. In this frame, the projection K of the angular
momentum on the symmetric axis and the parity π are good
quantum numbers. The quasiparticle picture is constructed
by the BCS treatment of nuclear pairing correlations and
the QRPA phonon excitation operator is defined with the
quasiparticle operators as

Q
†
m,Kπ =

∑
pn

[
Xm

pn,Kπ α
†
pα

†
n̄ − Ym

pn,Kπ ap̄an

]
, (7)

where the sum in (pn) runs over the quasiparticle pairs pn̄
with 
p − 
n = K and πpπn = π , α†

τ (ατ ) are quasiparticle
creation (annihilation) operators, and α

†
τ̄ (ατ̄ ) are the time-

reversed operators of α†
τ (ατ ). The coefficients Xm

pn,Kπ and
Ym

pn,Kπ are, respectively, the forward and backward-going am-
plitudes of the mth QRPA phonon characterized by projection-
spin Kπ and energy ωm

Kπ . They can be derived by solving the
QRPA equations, where the two-body interaction matrix ele-
ments in the deformed single-particle basis are evaluated based
on the Brückner G matrix with Reid-93 NN interactions.
The details for the deformed interaction matrix elements are
given in Refs. [15,16,40]. Here the Reid-93 NN interaction is
employed in the Brückner G matrix calculation instead of the
CD-Bonn interaction, as mentioned in the introduction. The
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Reid-93 potential [41], as an updated regularized version of
the Reid soft-core potential, consists of the one-pion-exchange
(OPE) and non-OPE parts. The neutral-pion and charged-pion
exchanges are distinguished in the OPE part, and the non-OPE
part contains 50 phenomenological potential parameters Aip

and Bip (the index i labels the different partial waves and p
is an integer) which were determined to fit the NN scattering
data available [41].

In the case of even-even nuclei, one can treat the ground
state of parent nuclei as the BCS vacuum |0̃〉i = |QRPA〉 ≈
|BCS〉 and the final states in the neighboring odd-odd nuclei as
the QRPA phonon excited states |m〉f = Q

†
m,Kπ |QRPA〉. The

amplitude for β+/EC transitions from |0̃〉i to the mth phonon
state |m〉f is then expressed in the intrinsic frame by [15,16]

〈mKπ |β+
JK |0̃〉 =

∑
pn

〈p|TJK |n〉[vpunX
m
pn,Kπ + upvnY

m
pn,Kπ

]
.

(8)

The one-body operators TJK for FF transitions are connected
with the following operators: [�r × �σ ]λ with λ = 0, 1, 2, and
�r , as well as relativistic vector operator �α and axial charge
operator γ5 (for detailed forms, see Refs. [15,16]). Note that
the absolute calculation of β-decay rates requires the excitation
energy of the final state Eex with respect to the ground state
of the daughter nucleus. But the resulting QRPA energies ωKπ

are referred to the ground state of the parent nucleus and thus
cannot be directly used. For even-even systems, the excitation
energy Eex of the final state can be obtained by subtracting
a reference energy E0 from the QRPA energy ωm

Kπ [30],
i.e., Eex = ωm

Kπ − ω0, where ω0 represents the ground-state
energy of the odd-odd daughter nucleus. Here the ω0 value is
determined as the lowest QRPA energy eigenvalue by solving
the QRPA matrix equations with various Kπ [15,16,23,24].

The case of odd-mass nuclei is more complicated. The
ground state of parent nuclei is described as one quasiparticle
state |τ 〉i = α†

τi
|0〉, where the unpaired nucleon occupies the

single-particle orbital of the lowest energy. There are two
types of β transitions available. One is a phonon excitation
where the odd nucleon acts only as a spectator, named
�ν = 2 transitions [42]. In this case, the intrinsic transition
amplitude is essentially the same as the even-even case,
but the blocked spectator is excluded from the sums in
Eqs. (7) and (8). The other is a transition between one
quasiparticle states in which the unpaired odd nucleon is
involved, named �ν = 0 transitions [42]. In view of the
coupling between the single quasiparticle and the QRPA
phonon, phonon correlations to one-quasiparticle states are
introduced in first-order perturbation theory. The explicit
expression for the transition amplitude can be found in
Ref. [43]. In this work, the allowed transition amplitude for the
phonon-correlated one-quasiparticle state is exactly calculated
in terms of the formalism presented in Ref. [43]. But for
FF decay, we consider only the one-quasiparticle transitions
without phonon correlations for simplicity, since FF decay is
a higher-order process. For odd-mass systems, the excitation
energy Eex of the final state is derived in a different manner for
�ν = 2 and �ν = 0 transitions. We take the β+/EC decays
of odd-neutron nuclei, for example. For �ν = 2 transitions

with the unpaired nucleon as a spectator, the excitation
energy Eex is given by Eex = (ω + En,spect) − Ep0 , where ω
is the QRPA energy, En,spect is the quasiparticle energy of
the odd neutron, and Ep0 is the lowest proton quasiparticle
energy. The term (ω + En,spect) denotes the energy of the
daughter configuration with respect to the ground state of the
neighboring even-even nucleus (Z,N − 1), and Ep0 denotes
the ground-state energy of the daughter nucleus with respect
to the even-even nucleus (Z,N − 1). For �ν = 0 transitions
with the unpaired neutron involved, the excitation energy Eex

is given by Eex = Ep − Ep0 , where Ep is the quasiparticle
energy of the resulting odd proton [33,34,42]. In terms of these
two different determinations of Eex, it is found that the �ν = 0
transitions are able to occur in the low-excitation-energy region
typically below twice the neutron pairing gap while the �ν = 2
transitions only occur in the higher excitation energy region.
This feature is particularly important for long-lived nuclei with
small β-decay energies [17].

B. GDDCM for α-decay calculations

α decay is traditionally understood as a two-body phe-
nomenon, a single α cluster interacting with a core nucleus
via a microscopic potential. Within the GDDCM, the α-
core potential is numerically constructed using the double
folded integral of effective NN interactions plus proton-proton
Coulomb interactions with the density distributions of α
particles and daughter nuclei [35–37],

VNorC(r) = λ

∫
dr1dr2ρ1(r1)υ(s = |r + r2 − r1|)ρ2(r2),

(9)

where λ is used to renormalize the nuclear potential to
reproduce an equivalent local potential (λ = 1 for the Coulomb
potential). υ(s) is the effective NN interaction between a
constituent nucleon in the α particle and one in the core
nucleus. The popular M3Y NN interaction, based on the
G-matrix elements of the Reid potential, is used for the nuclear
potential. ρ1(r1) and ρ2(r2) are the matter/charge density
distributions of the α particle and the residual core nucleus,
respectively. The neutron and proton density distributions of
the α cluster are expected to exhibit spherical symmetry and
have the same form. They are described by a standard Gaussian
form that is obtained from electron scattering data, ρ1(r1) =
ρ0

1 exp(−0.7024r2
1 ), where ρ0

1 is determined by integrating the
density distribution equivalent to the nucleon number. For the
residual core nucleus, its density distribution could deviate
from spherical symmetry. An axially symmetric shape with
quadrupole and hexadecapole deformations (β2, β4) is usually
considered. Furthermore, the neutron and proton distributions
of the core nucleus are not exactly the same on the nuclear
surface. In this work, the neutron and proton distributions of
core nuclei are assumed to be of the two-parameter Fermi
(2pF) form,

ρτ
2 (r2) = ρτ

0

1 + exp
[(

r2 − Rτ
1/2

)
/aτ

] , (10)

where τ = n or p, and the half-density radius Rτ
1/2 is

related to the mass number and deformation of the nucleus,

014323-3



DONGDONG NI AND ZHONGZHOU REN PHYSICAL REVIEW C 95, 014323 (2017)

Rτ
1/2 = rτA

1/3[1 + β2Y20(θ ) + β4Y40(θ )]. The rms neutron
and proton radii of the core nucleus are then conveniently
written as

Rτ ≡ 〈r2〉1/2 =
[ ∫

ρτ
2 (r)r4drd


/ ∫
ρτ

2 (r)r2drd


]1/2

.

(11)

Despite the same 2pF form, different sets of parameters, (rn,
an) and (rp, ap), are used to characterize their differences.
Their differences are gauged by the neutron skin thickness
�rnp. There are two extreme cases, namely, neutron skin
type and neutron halo type distributions [44,45]. The neutron
skin type distribution is understood as rn > rp and an = ap,
while the neutron halo type distribution is understood as
rn = rp and an > ap [44,45]. In the skin type case, the
diffuseness parameters are fixed at an = ap = 0.54 fm and
the radius parameters rn and rp are separately determined
in terms of the neutron and proton rms radii, where the
rms proton radius Rp is taken from the experimental rms
charge radii and the rms neutron radius Rn is obtained by
the relationship Rn = Rp + �rnp. In the halo type case, the
diffuseness parameter is fixed at ap = 0.54 fm, the radius rp is
determined in terms of the experimental rms charge radii for
the proton distribution, and then the diffuseness parameter an

for the neutron distribution is determined in terms of the rms
neutron radius Rn = Rp + �rnp.

In the spherical approximation, the Schrödinger equation
for the α-daughter system is numerically integrated in the
spherical double-folding potential with outgoing wave bound-
ary conditions. The renormalized factor λ of the nuclear
potential is adjusted to reproduce the experimental α-decay
energy and the quantum features (n�j ) of the α cluster [46].
After achieving the cluster wave function un�j (r), one can
calculate the decay width in terms of the distorted-wave
approach [36,37],

� = 4μ

�2k

∣∣∣∣
∫ ∞

0
F�(kr)

[
VN (r) + VC(r) − V

p
C (r)

]
un�j (r)dr

∣∣∣∣
2

,

(12)

where k = √
2μQα/�, F�(kr) is the regular Coulomb func-

tion, and V
p
C (r) is the pointlike Coulomb potential V

p
C (r) =

Z1Z2e
2/r . In the axially deformed case, the α particle can be

emitted in any direction of the space, resulting in anisotropic
α emission from an ensemble of oriented nuclei. This could
be simply evaluated by integrating the partial width along the
orientation [47],

� =
∫ π/2

0
�(θ ) sin θdθ, (13)

where θ is the angle between the symmetry axis of the core
nucleus and the direction of the α-particle emission, and �(θ ) is
calculated as in the spherical case (12). Such a straightforward
technique has been widely used to calculate not only α-decay
half-lives but also sub-barrier fusion cross sections between
a spherically deformed pair of nuclei [47]. Ultimately, one
should multiply the decay width by the α-preformation factor
Pα which measures the extent to which the α cluster is

formed on the nuclear surface. As before, one can take the
same preformation factor for certain kinds of α emitters
(even-even, odd-mass, and odd-odd), keeping the number of
free parameters used in the model to a minimum [35–37].
Then, α-decay half-lives are calculated by the relationship
T1/2 = � ln 2/(Pα�).

III. CALCULATION DETAILS

In weak-decay calculations, the single-particle basis is
obtained by solving the Schrödinger equation in the axially de-
formed Woods-Saxon potential with the universal parametriza-
tion [48]. The single-particle model space for protons and
neutrons contains some resonant states with energies up to
8 MeV in addition to bound states. In practice, we include
the neutron single-particle levels with energies from −15.0 to
8.0 MeV and the proton single-particle levels with energies
from −10.0 to 8.0 MeV, corresponding to the three major har-
monic oscillator shells around the Fermi level in the spherical
limit. The quasiparticle energies Eτ and pairing amplitudes
(vτ ,uτ ) for protons and neutrons are separately obtained by
solving the BCS equations with constant pairing gaps. The
empirical pairing gaps �τ are extracted from the nucleon
separation energies [49]. Then, different intrinsic excitations
Kπ are considered using the QRPA matrix equations. Both
particle-particle (pp) and particle-hole (ph) interaction matrix
elements are considered by the Brückner G matrix with Reid-
93 NN interactions and they are renormalized by the strength
parameters gph and gpp. We use the same gph and gpp for all
components Kπ . This makes the calculation straightforward
and keeps the relative strength of different components. It is
well known that the ph strength mainly determines the energy
position of GT giant resonances (GTGRs) at a high excitation
energy. An appropriate value of gph can be achieved by the
measurements or systematics on the GTGR energy [26]. Here
the gph strength is fixed at a value of approximately gph = 1.20
for the heavy nuclei under investigation. The pp strength
affects the QRPA energy of low-lying states and the transition
strength to these states, both of which have direct influence on
weak-decay rates. The sensitivity of the calculated results to
the gpp strength has been analyzed in Refs. [15,17], and here
we do not repeat it. Two points should be noted, which are of
particular relevance to the present calculation. For the heavy
nuclei of this study, their β-decay energies are not so large. So
the quasiparticle �ν = 0 transitions generally prevail over the
phonon �ν = 2 transitions in odd-mass systems, because they
always appears in the low-lying tail of the strength distribution
and exactly enter in the narrow Qβ window. As already shown
in Ref. [17], the gpp strength has direct influence on the �ν = 2
transitions but affects the �ν = 0 transitions only through the
weak phonon correlations emerging in first-order perturbation.
Consequently, the calculated half-lives show weak dependence
upon the gpp strength for the odd-mass nuclei. Besides, it
is known that larger gpp strengths bring in smaller QRPA
energies ωKπ . The excitation energy Eex of final states is taken
as the difference between the QRPA energies in the case of
even-even nuclei, as demonstrated above. This could reduce
the effect of the gpp strength on the excitation energy of final
states to some extent. With these in mind, the gpp strength is
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fixed at gpp = 1.0 in our calculations instead of a least-squares
fit to the experimental half-lives.

Another important quantity is the quenching of the QRPA
calculations for heavy nuclei. For the case of 0− FF transitions,
the tensor part of 0− FF transitions seems to be enhanced due
to meson exchange current effects. So the enhancement factor
ε = gA/gfree

A = 2.0 is usually adopted for the tensor part while
the factor ε is fixed at 1.0 for the scalar part, as shown in
Refs. [15–19,23,24]. Except for the 0− FF case, the quenching
effect is considered by using the effective ratio (gA/gV )eff =
q(gA/gV )free for both GT and FF transitions [50,51]. To
determine the quenching factor q, it is assumed that the
quenching factor is the same for GT and FF transitions. Here
its value is determined by comparing the calculated half-lives
with the experimental data. A choice of q = 0.325 turns out
to well reproduce the β-decay half-lives. It should be pointed
out that the experimental data would be better reproduced if
the quenching factor is regarded to vary with the different
transition operators as shown in Ref. [19]. Unfortunately, this
procedure is not allowed at present, because there is little
information available concerning the β+/EC decay spectrum
of heavy nuclei with A 
 230. Note that the q value presented
here is smaller than some other pnQRPA calculations such
as the relativistic pnQRPA built on the relativistic Hartree-
Bogoliubov (RHB) model with q = 0.79 [52], the density
function plus continuum QRPA model with q = 0.90 [53,54],
and some pnQRPA calculations based on realistic NN interac-
tions with q = 0.40–0.63 [24,50,51]. Very recently Deppisch
and Suhonen have performed a statistical analysis of the
effective axial-vector coupling constant gA in the pnQRPA
with Bonn-A interactions for the isobaric chains with A =
62–142 [55]. A considerable quenching of gA is confirmed,
as shown in Refs. [50,51]. Marketin et al. have performed
a large-scale calculation of β-decay rates for neutron-rich
nuclei with 8 � Z � 110 within the RHB plus relativistic
pnQRPA model [52], where the quenching of q = 0.79 is
used for both GT and FF transitions of all nuclei. It is seen
that their calculations predict shorter decay half-lives in the
heavier mass region with N > 126 and Z ∼ 82, suggesting
a smaller quenching factor for these heavy nuclei. This also
gives an active response to the quenching factor adopted in the
present calculations. In addition, we would like to point out
that the authors of Refs. [56,57] have taken more complicated
configurations into account on top of self-consistent calcula-
tions with Skyrme density functionals, such as the coupling
between one- and two-phonon configurations [56] and the
particle-vibration coupling [57]. It is demonstrated that the
low-lying GT strength is shifted downwards and becomes
fragmented, leading to a clear decrease of the calculated
β-decay half-lives for neutron-rich magic nuclei. Including
more complicated states is supposed to improve β-decay
calculations, but it requires suitable treatment of various
couplings and large configuration spaces, in particular for
deformed systems. This is an interesting issue and worthy
of further investigation.

In α-decay calculations, the experimental rms charge radii
are used to obtain the double-folding potentials when available;
otherwise the simple relationship deduced from systematics
of the experimental data is adopted [58], which is given

TABLE I. Effects of the single-particle spectra on β-decay results
for some Pu isotopes. The experimental spin parities and β-decay
half-lives are taken from Ref. [14]. Calculations are separately
performed with the two different level schemes: the universal and
optimal parametrizations of the Woods-Saxon potential.

Nucl. Expt. Universal Optimal

J π T1/2,β (s) J π T1/2,β (s) J π T1/2,β (s)

231Pu 3/2+a 593 3/2+ 393 5/2− 660
232Pu 0+ 2.25 × 103 0+ 393 0+ 390
233Pu 5/2+a 1.26 × 103 5/2− 1.59 × 103 3/2+ 812
234Pu 0+ 3.37 × 104 0+ 5.77 × 103 0+ 5.17 × 103

235Pu 5/2+ 1.52 × 103 5/2+ 4.50 × 103 5/2+ 4.85 × 103

aValues estimated from trends in neighboring nuclides.

by R = (r0 + r1A
−2/3 + r2A

−4/3)A1/3 with r0 = 0.891(2),
r1 = 1.52(3), and r2 = −2.8(1) fm. Considering that the
experimental �rnp data are rare with large statistical error
bars, following Refs. [36,37], the linear relationship between
�rnp and the asymmetry δ = (N − Z)/A is used for all heavy
nuclei, which is expressed as �rnp = [−0.03(2) + 0.90(15)δ]
fm [45]. Moreover, in order to avoid introducing additional
adjustable parameters into the present calculation, the Pα

values are fixed in terms of the previous systematic calcu-
lations [36,37], that is, Pα ∼ 0.078 for even-even nuclei and
Pα ∼ 0.051 for odd-mass nuclei.

As is always the case, the calculation of the present type de-
pends to some extent on the single-particle spectrum adopted.
For α decay, the single-particle level schemes just affect the α
clustering of four valence nucleons at the nuclear surface. It
has been shown that the α-preformation factors vary smoothly
in the open-shell region for heavy nuclei [59,60]. So α-decay
rates are significantly determined by the dynamic properties of
α clusters (i.e., the barrier penetration probability) rather than
the single-particle properties. By contrast, β-decay properties
are closely associated with nuclear structure and have more
dependence upon the single-particle level schemes. Here the
deformed single-particle basis is achieved with an axially
deformed Woods-Saxon potential for β+/EC decays. To
discern such an unfortunate dependence, β-decay calculations
are performed with two different single-particle level schemes
corresponding to the universal and optimal Woods-Saxon
parametrizations [48]. The significant difference between the
universal and optimal parametrizations lies in the spin-orbit
potential: the strength λ and radius r0−so parameters separately
show characteristic oscillations as function of the nucleon
number for protons and neutrons in the optimal case, while
they are fixed as λp = 36, λn = 35, r

p
0−so = 1.20 fm, and

rn
0−so = 1.31 fm in the universal case. The details can be

found in Ref. [48]. Table I displays the numerical results for
some Pu isotopes. As can be seen, there are minor changes
in the β-decay half-lives calculated with the different level
schemes for the even-even Pu isotopes. But for 231,233Pu, the
single-particle levels occupied by the last unpaired neutron
are different in the two cases and the differences of the results
are relatively apparent within a factor of roughly 2. This is
attributed to the additional �ν = 0 transitions in odd-mass
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FIG. 1. Sensitivity of the calculated half-life to the decay energy
used in calculations for the β+/EC and α decays of 233Pu. The
β+/EC-decay results are shown by black solid lines (left axis:
calculated β-decay half-life, bottom axis: β-decay energy), while the
α-decay results are shown by red dashed lines (right axis: calculated
α-decay half-life, top axis: α-decay energy). Also, the experimental
β+/EC-decay and α-decay energies are, respectively, indicated by
black and red dotted lines.

systems which is directly correlated with the single-particle
spectrum.

IV. RESULTS AND DISCUSSION

The β-decay energy Qβ determines the window in the
low-lying tail of the β-strength distribution and has direct
influence on the size of the phase space. Figure 1 shows
the variation of the calculated half-life as a function of the
Qβ value for the β+/EC decay of 233Pu. When one changes
the Qβ value from 1.0 to 4.0 MeV, the calculated half-life
is decreased by about two orders of magnitude from 104 to
102 s. Furthermore, the decrease of the calculated half-life
becomes relatively smoother in the larger Qβ values. It is also
of interest to gain insight into the theoretical uncertainty owing
to the error bars of the Qβ values. For example, the error bar
of Qβ = 3610(100) keV for 229Pu leads to an uncertainty of
roughly −14.5/+17.0% in the calculated half-life T1/2,β =
2.27 × 102 s. For 232Pu, the experimental Qβ value is still
unknown and the value of 1000(100) keV deduced from
the Qβ values of neighboring isotopes is used instead [49].
The resulting uncertainty of the calculated half-life T1/2,β =
3.93 × 102 s is evaluated as −24.2/+34.7%. As one would
expect, the same Qβ error bar results in larger uncertainties
of the calculated half-lives for smaller Qβ values. It is well
known that the α-decay half-life is significantly dependent
upon its decay energy. The sensitivity of the calculated α-decay
half-life to the decay energy is also illustrated in Fig. 1 for the
α decay of 233Pu. As the decay energy Qα is varied from 5.0
to 8.0 MeV, the calculated half-life decreases sharply by about
14 orders of magnitude from 1013 to 10−1 s. Obviously, the

FIG. 2. Percentage of the contributions of FF transitions to the
β+/EC decay rates of the neutron-deficient Pa, U, Np, and Pu
isotopes.

α-decay half-life is much more sensitive to the decay energy
than the β-decay half-life. The error bar of experimental Qα

values is generally about 10 keV for the even-even isotopes,
while the error bar of Qα values is mostly more than 20 keV for
the odd-mass isotopes. Specifically, the experimental Qα value
for 232Pu is known as 6716(10) keV, yielding an uncertainty of
about −9.7/+10.3% in the calculated α-decay half-life. For
233Pu, the error bar of Qα = 6420(50) keV leads to an effect
of roughly −41.5/+69.4%.

FF transitions proceed with the change of parity and their
contributions to weak-decay rates are correlated with the
appearance of intruder single-particle orbitals. In heavy nuclei,
there are more intruder single-particle orbitals with different
parities around the Fermi levels. Thus it is expected that FF
transitions contribute to the weak-decay rate of heavy nuclei
in addition to allowed GT and Fermi transitions. Let us discern
the contribution of FF transitions to β-decay rates. The calcu-
lated branching ratios (BRs) of FF transitions are illustrated in
Fig. 2 for the Pa, Np, U, and Pu isotopic chains. The variation of
BRs with increasing neutron number shows some interesting
features. In Fig. 2(a), the BRs exhibit large values for the onset
Pa isotopes 219,221Pa corresponding to the spherical region.
Based on the spherical shell model, it can be easily understood
since the valence neutrons and protons separately occupy two
adjacent major shells with different parities. An accentuated
decrease is then seen after N = 130. This may be attributed
to the shape transition between spherical and deformed nuclei
and/or the known deformed neutron subshell N = 130. For the
Np isotopes, the moderately deformed isotope 221Np exhibit
similar BRs as the spherical Pa isotopes, the followed decrease
can be associated with the shape transition from spherical
to deformed systems, and then the obvious increase after
N = 130 can be understood as the result of the deformed
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TABLE II. Results for the neutron-deficient Pa, U, Np, and Pu isotopes where β+/EC decay is in competition with α decay. The experimental
data on β-decay energies, total half-lives, and β-decay branching ratios (BRs) are, respectively, shown in columns 2–4. Columns 5 and 6 give the
β+/EC decay half-lives deduced from the available data and the calculated values. Combined the β-decay results with the α-decay calculations,
the theoretical results concerning β-decay BRs and total half-lives are also given in the last two columns.

Nucl. Qβ (MeV) T
expt

1/2 BRβ (%) T
expt

1/2,β (s) T calc
1/2,β (s) BRcalc

β (%) T calc
1/2

219Pa 4.070(70) 53(10) ns 3 × 10−8a >100a 1.27 × 102 1.69 × 10−7 215 ns
221Pa 3.440(50) 5.9(17) μs ? 2.12 × 101a 2.35 × 102 7.45 × 10−6 17.5 μs
223Pa 2.930(70) 5.1(3) ms ? 5.67 × 101a 1.83 × 102 2.90 × 10−3 5.30 ms
225Pa 2.030(70) 1.7(2) s ? >100a 8.01 × 102 0.60 4.78 s
227Pa 1.026(7) 38.3(3) min 15(2) 1.53 × 104 4.63 × 103 53.8 41.49 min
220U 2.720(110)b 60 nsb ? 5.75 × 101a 7.92 × 100 1.95 × 10−6 155 ns
221U 4.110(110)b 0.70 μsb ? >100a 1.30 × 102 1.17 × 10−6 1.52 μs
222U 2.070(120)b 4.7(7) μs ? 1.12 × 101a 2.05 × 101 3.34 × 10−5 6.8 μs
223U 3.520(100) 55(10) μs ? 2.29 × 101a 9.23 × 101 2.64 × 10−4 243 μs
224U 1.851(26) 0.940(270) ms ? >100a 3.62 × 101 2.98 × 10−3 1.078 ms
225U 3.040(70) 61(4) ms ? >100a 3.02 × 102 3.35 × 10−2 101 ms
226U 1.296(17) 269(6) ms ? >100a 1.72 × 102 0.384 660 ms
227U 2.190(18) 1.1(1) min <6a >100a 1.14 × 103 3.8 0.72 min
228U 0.298(15) 9.1(2) min <5 >1.09 × 104 1.34 × 104 7.6 17.03 min
229U 1.313(7) 57.8(5) min ∼80 4.34 × 103 2.47 × 103 95.6 39.42 min
221Np 5.360(220)b 100 nsb ? 4.35 × 100a 2.49 × 101 9.98 × 10−7 248 ns
223Np 4.760(210)b 1 μsb ? 1.73 × 101a 1.94 × 101 5.15 × 10−5 9.98 μs
225Np 4.210(70) 3 msb ? 9.63 × 100a 1.33 × 102 1.05 × 10−3 1.4 ms
227Np 3.540(70) 510(60) ms ? 2.47 × 101a 1.16 × 102 0.80 926 ms
229Np 2.570(90) 4.00(18) min 32(11) 7.50 × 102 3.16 × 102 67.9 3.58 min
231Np 1.820(50) 48.8(2) min 98(1) 2.99 × 103 8.48 × 102 99.7 14.10 min
233Np 1.030(50) 36.2(1) min ∼100 2.17 × 103 4.55 × 103 99.9997 75.91 min
228Pu 2.480(60) 2.1(13) s <7a 4.74 × 101a 1.79 × 101 3.1 0.56 s
229Pu 3.610(100) 91(26) s 50(20) 1.82 × 102 2.27 × 102 5.1 11.52 s
230Pu 1.700(50) 1.70(17) min ? >100a 6.55 × 101 79.2 0.87 min
231Pu 2.660(60) 8.6(5) min 87(5) 5.93 × 102 3.93 × 102 95.3 6.24 min
232Pu 1000(100)b 33.7(5) min 90a 2.25 × 103 3.93 × 102 97.7 6.40 min
233Pu 2.100(70) 20.9(4) min 99.88(5) 1.26 × 103 1.59 × 103 99.68 26.43 min
234Pu 0.393(11) 8.8(1) h ∼94 3.37 × 104 5.77 × 103 99.4 1.59 h
235Pu 1.139(21) 25.3(5) min 99.9972(7) 1.52 × 103 4.50 × 103 99.9950 75.00 min

aValues are taken from the theoretical results of Möller et al. [21].
bValues are derived from trends in neighboring nuclei [14,49].

neutron subshell N = 130. One can also notice in Fig. 2(a)
that the variations of the BRs seem to show the opposite
behaviors for the Pa and Np isotopic chains. This may be a good
indication of the known deformed proton subshell Z = 92. For
the U isotopic chain in Fig. 2(b), the depression after N = 130
can be also correlated with the shape transition and/or the
deformed neutron subshell N = 130, while the bulge after
N = 134 can be an indication of the deformed neutron subshell
N = 134 for Z = 92. In the Pu isotopic chain there is an
evident bulge after N = 138, showing an indication of the
deformed neutron subshell N = 138 for Z = 94. Additionally,
the newly established EC-decay scheme of 229U demonstrates
that the FF contribution are comparable with the allowed
contribution. The present calculation yields the FF BR of about
46.0% for the β decay of 229U, giving an active response to
the new data. On the whole, FF transitions have significant
contributions to the β+/EC decay rates of heavy nuclei and
show good correlations with nuclear structure properties.

In the A 
 230 region, the β-decay BRs of many isotopes
are not experimentally determined or they are measured with

large error bars due to low statistics [13,14]. And hence their
experimental β-decay half-lives are unknown or known with
large uncertainties. In this case, some systematical calculations
are referred as preliminary such as the finite-range droplet
model plus QRPA [21]. The comparison of the calculated
β+/EC decay half-lives with the available data is displayed
in Table II. The second column is the experimental Qβ

value. The third and fourth columns are the experimental or
deduced data on total half-lives and β-decay BRs. Columns
5 and 6 separately list the deduced β-decay half-lives and the
calculated values. It is relevant to mention here that a precise
calculation of the β-decay half-lives of long-lived nuclei is a
formidably difficult task within the QRPA framework. Möller
et al. regarded that their half-life calculations are successful in
describing the β decay of short-lived nuclei far from stability
but they may be not reliable for long-lived nuclei near the
β-stability line; and hence only the theoretical results shorter
than 100 s were compared with the experimental data in
the tables [21,22]. Here, the known β-decay half-lives are
generally longer than 100 s (up to 105 s), as shown in column 5
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FIG. 3. Comparison of the calculated α-decay half-lives with the experimental values versus the neutron number N of parent nuclei for
the α decays of the neutron-deficient Pa, U, Np, and Pu isotopes. α-decay calculations are performed with the neutron skin type distribution.
Experimental α-decay data are not explicitly determined for some extremely neutron-deficient nuclei and deduced values suggested in
Refs. [14,49] are illustrated instead. These cases are indicated by blue dotted squares and recognized by quite large uncertainties.

of Table II. However, one can see that the present calculations
show good agreement with the available experimental data.
The standard deviation for 11 isotopes is evaluated as σ = 0.46
corresponding to a factor of about 2.87. This is quite consistent
with the previous β+/EC decay calculation [16], where the
β-decay half-lives of neutron-deficient Kr, Sr, Zr, and Mo
isotopes are well reproduced within a factor of about 2.11 over
a wide range of magnitude from 10−2 to 107 s. Moreover,
predictions of β-decay half-lives are made for some more
neutron-deficient isotopes, which could be useful for future
experiments.

The experimental α-decay data for the heavy nuclei are
relatively full with respect to the β-decay data, since α decay
serves as a powerful tool to populate and identify heavy
neutron-deficient isotopes and half-lives of very neutron-
deficient isotopes are mainly determined by α decay. It has
been demonstrated in the previous α-decay studies [36,37]
that the neutron skin-type and neutron halo type treatments of
neutron skin thickness yield quite similar results concerning
α-decay half-lives. So here we take the neutron skin type
case for an example. Figure 3 shows the comparison of the
calculated α-decay half-lives with the experimental data versus
the neutron number of parent nuclei. For some extremely
neutron-deficient U and Np isotopes, their α-decay measure-
ments are unavailable in present facilities and the estimated
values suggested in Refs. [14,49] are displayed instead. These

cases are indicated by blue dotted squares and recognized
by quite large uncertainties. First, indication of deformed
neutron subshell closures are found from the available α-decay
half-lives. There is an evident bump at N = 134 in the U
isotopic chain, corresponding to the deformed neutron subshell
closure. There is also a bump at N = 130 in the Np isotopic
chain. Besides, the odd-even effect can be seen in the Pu
isotopic chain except for N = 138. Such an abnormal case
implies that the Pu isotope with N = 138 exhibits a smaller Qα

value than expected and hence N = 138 may be a deformed
subshell closure for Z = 94. These are consistent with the
results deduced from the above BRs analysis for FF transitions.
Second, the calculated results follow the experimental data
well over a wide range of magnitude from 10−8 to 108 s.
The largest deviation appears for the odd-mass isotope 229Pu
where the α-decay half-life is underestimated by about one
order of magnitude. This can be explained if the α decay of
229Pu is hindered with the angular momentum � �= 0. Indeed,
there exist some theoretical evidences for this [14], although
the experimental α spectrum of 229Pu is not available. If one
treats the decay as unfavored α decays, the Pα factor as well
as the barrier penetration probability would become smaller,
leading to a clear increase in the half-life and hence better
agreement with the experimental data.

To gain insight into the competition between β+/EC and
α decays, the above weak-decay and α-decay calculations
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FIG. 4. Deviations of the calculated total half-lives (including
β+/EC and α contributions) from the experimental half-lives for the
neutron-deficient Pa, U, Np, and Pu isotopes.

are combined to obtain the total decay half-lives as well as
the BRs of individual decay modes. The calculated β-decay
BRs and total half-lives are listed in the last two columns
of Table II. Based on the β-decay BRs, one can see that
α decay plays a crucial role in the radioactive decay of
very neutron-deficient isotopes and contributions from β+/EC
decay become more considerable with increasing neutron
number. Near the stability line, β+/EC decay takes the place
of α decay and dominates the radioactive decay of relatively
long-lived isotopes. For the sake of clarity, we also display
in Fig. 4 the deviations of the calculated total half-lives
from the experimental data for the neutron-deficient Pa, U,
Np, and Pu isotopes. Despite the deformations involved in
both β and α decays, the theoretical total half-lives agree
with the experimental ones well. The obvious derivations
from the experimental data occur for 223Np and 229Pu, where
their total half-lives are almost contributed by α decay. For
223Np, both the experimental α-decay energy and half-life
are still unknown and the estimated values with quite large
uncertainties are used for reference. For 229Pu, its α-decay
from ground states to ground states could be hindered by a
considerable hindrance to α-cluster formation together with
an additional centrifugal barrier to penetration. As a result, the

favored α-decay calculation yields an obvious underestimation
of its α-decay half-life, as explained above.

V. SUMMARY

In summary, we have investigated in this paper the compe-
tition between α and β decays for deformed neutron-deficient
Pa, U, Np, and Pu isotopes. β+/EC decay rates are calculated
within the deformed QRPA for even-even and odd-mass nuclei.
The residual particle-particle and particle-hole interaction
matrix elements in the deformed basis are determined based
on the Brückner G matrix with Reid-93 NN forces. The
contributions from both allowed (including GT and Fermi) and
FF transitions are considered using the QRPA equations with
different intrinsic excitations and the FF branching ratios are
discussed. The generalized density-dependent cluster model
(GDDCM) is employed to calculate α-decay half-lives. The
α-core potential is constructed in the double-folding model
with M3Y effective interactions based on the G matrix of
Reid NN potential, and differences between neutron and
proton distributions of daughter nuclei are taken into account.
Both β+/EC-decay and α-decay half-lives are computed and
compared with the available experimental data. The resulting
total half-lives contributed by β+/EC and α decays are
found to be in good agreement with the experimental data
and the calculated β-decay branching ratios agree with the
experimental data as well. Moreover, predictions of β-decay
half-lives and branching ratios are made for some very neutron-
deficient isotopes, where α decay plays a dominant role and β
decay has not been observed or measured up to now.
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