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Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation:
Implications for β and ββ half-lives
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Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions
are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron
quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp,
is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden
spin-dipole (SD) 2− transitions. The present calculations are done using realistic single-particle model spaces and
G-matrix based microscopic two-body interactions. In terms of the ratio k = MpnQRPA/Mqp the studied decays fall
into two groups: for GROUP 1, which consists of transitions involving non-magic nuclei, the ratio turns out to be
k = 0.29 ± 0.15. For GROUP 2, consisting of transitions involving semimagic nuclei, the ratio is 0.5–0.8 for half
of the decays and less than 5 × 10−3 for the other half. The magnitudes of the NMEs for several nuclei of GROUP 2
depend sensitively on the size of the used single-particle space and the energies of few key single-particle orbitals
used in the pnQRPA calculation, while no such dependence is found for the transitions involving nuclei of
GROUP 1. Comparing the NME ratios k of GROUP 1 with those of the earlier GT and SD calculations, where
also experimental data are available, the expected “experimental” half-lives for the decays between the 0+ ground
state of the even-even reference nuclei and the J π = 3+,4−,5+,6−,7+,8− states of the neighboring odd-odd nuclei
are derived for possible experimental verification. The present results could also shed light to the magnitudes
of the NMEs corresponding to the high-forbidden unique 0+ → J π = 3+,4−,5+,6−,7+,8− virtual transitions
taking part in the neutrinoless double beta decays.
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I. INTRODUCTION

The (single) β-decay processes have been well understood
for decades (see, e.g., [1]), and have been backed up by
countless experiments. Recently, in the research of single β
decay, transitions with ultralow Q values and of high forbid-
denness have attracted attention [2–9]. However, predicting
nuclear observables is not straightforward, and most nuclear
models tend to produce good results only for some specific
region(s) of the nuclear landscape. Recent research regarding
the spin-dipole (SD) [10] and Gamow-Teller [11] nuclear
matrix elements (NMEs) has shown that the observed NMEs
of medium-heavy nuclei are reduced roughly by a constant
factor compared to the ones predicted by the two-quasiparticle
(two-qp) and proton-neutron random-phase approximation
(pnQRPA) models. The reduction from the two-quasiparticle
NME to that of the pnQRPA was denoted by k, and the
reduction from the pnQRPA NME to the experimental NME
was denoted by kNM. We adopt the same notation in the
present work. The reduction factor k was inferred to be
caused by the spin-isospin correlations, whereas the reduction
factor kNM was interpreted to come from the nuclear medium
and many-body effects not explicitly included in the two
models. A similar study regarding the magnetic hexadecapole
NMEs showed that the observed NME is reduced by a
constant factor with respect to the NMEs of the two-qp model
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and the microscopic quasiparticle-phonon model (MQPM)
[12].

In the present article we take a closer look at the suppression
of the NMEs of the second- and higher-forbidden unique β
decays when going from the two-qp level to the pnQRPA
level of sophistication. The studied decays involve β−, EC
(electron capture), or β+/EC (decaying by both the β+ and
EC channels) transitions. The transitions are overwhelmingly
between ground states of medium-heavy nuclei and involve
always an even-even reference nucleus and the adjacent odd-
odd nucleus. To extend the scope of the present investigations
we include also the known excited long-lived isomeric states
of the odd-odd nuclei in our analysis. No experimental data
exist for the half-lives of the discussed decays but some of
them can, in principle, be measured to verify the predicted
half-lives of the present work.

In a Kth forbidden (K = 1,2,3, . . .) unique beta decay
the difference in the angular momenta of the mother and
daughter nuclei is �J = K + 1, and the parity changes in
the odd-forbidden and remains the same in the even-forbidden
decays [13]. The change in angular momentum and parity
for different degrees of forbiddenness is presented in Table I.
Based on the suppression of the NMEs when going from
the two-qp to the pnQRPA description, and on the earlier
works on the suppression of the GT and SD NMEs, we
make a prediction of the factor by which the true half-lives
are increased with respect to the pnQRPA half-lives. The
corresponding predicted half-lives can, in principle, be used to
optimally design experiments for the measurement of the true
half-lives of these transitions.

2469-9985/2017/95(1)/014322(17) 014322-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.014322


JOEL KOSTENSALO AND JOUNI SUHONEN PHYSICAL REVIEW C 95, 014322 (2017)

TABLE I. The change in angular momentum and parity in a Kth
forbidden unique β decay.

K 1 2 3 4 5 6 7

�J 2 3 4 5 6 7 8
πiπf −1 +1 −1 +1 −1 +1 −1

The nuclear β-decay research has recently been given a
boost by the search for the double beta (ββ) decays, in
particular their neutrinoless variant (0νββ decay), and by
the astro-neutrino-nuclear processes involved in supernova
detection. Studies of these processes aim at gaining knowledge
on the nature of the neutrino, whether it is a Majorana particle
or not, and absolute mass-scales of neutrinos [14–19]. The
half-lives for 0νββ decays are extremely long, and competing
processes, like the two-neutrino ββ (2νββ) decay, can make
the detection of a 0νββ decay very hard. Sometimes highly
forbidden beta decays compete with the ββ decay, like in the
decay of 48Ca where the experimentally observed 2νββ decay
has competing nonunique and unique forbidden β decays
to the 4+, 5+, and 6+ states in 48Ti [4,5]. What bridges
the gap between the presently discussed highly-forbidden
unique β decays and the 0νββ decay is the fact that the
0νββ decay is a two-step process where the 0+ ground
state of the initial even-even nucleus is connected to the
virtual states of the intermediate odd-odd nucleus, which, in
turn, are connected by similar transitions to the 0+ ground
state of the final even-even nucleus. Part of these connecting
transitions are forbidden unique β transitions to and from
the Jπ = 2−,3+,4−,5+,6−,7+,8− intermediate states. This is
why the suppression of the NMEs of high-forbidden unique β
decays in the pnQRPA formalism is of great interest.

The theoretical prediction of β-decay and ββ-decay half-
lives is not without issues. The axial-vector coupling constant
gA and the particle-particle interaction parameter gpp of
pnQRPA have not been given an unambiguous value [20].
The gpp values in the range 0.6–0.8 and quenched gA values
of approximately 0.6–0.7 seem to make the pnQRPA and
experimental Gamow-Teller β and 2νββ NMEs agree [21,22].
The various issues concerning the determination of the value
of gpp are discussed in [23]. A more systematic determination
of the gpp values and effective values of gA for Gamow-Teller
ground-state to ground-state β decays is carried out in [24,25].
The decay rates depend on the second power of gA for the β and
on the fourth power for ββ decays, and so the understanding of
the behavior of gA is important for more accurate predictions
of the half-lives. The mentioned studies have concentrated
on examination of allowed and first-forbidden β decays but
there are not many methods on the market which can study
the quenching of gA for higher-forbidden β transitions. One
of these is the spectrum-shape method (SSM) introduced
in [20]. In the SSM the shape of the energy spectrum of
the emitted electrons in a (high-)forbidden nonunique beta
decay is exploited to access the effective values of the weak
coupling constants. The presently discussed forbidden unique
β transitions can directly be used for the same purpose once
experimental data for the corresponding half-lives become
available.

II. THEORETICAL FORMALISM

In this section we give a short overview of the theory behind
the performed calculations. The theoretical half-lives of Kth
forbidden unique β decays are defined in terms of reduced
transition probabilities BKu and phase-space factors fKu. The
BKu is given by the NME, which in turn is given by the single-
particle NMEs and one-body transition densities. The half-life
can be written as (see [13] and Sec. II B below)

t1/2 = κ

fKuBKu
, (1)

where κ is a constant with value [26]

κ = 2π3
�

7ln 2

m5
ec

4(GF cos θC)2
= 6147 s, (2)

where GF is the Fermi constant and θC is the Cabibbo angle.

A. Phase-space factors

The phase-space factor f
(±)
Ku for the Kth forbidden unique

β± decay is [13]

f ∓
Ku =

(
3

4

)K (2K)!!

(2K + 1)!!

∫ E0

1
S

(∓)
Ku (Zf ,ε)dε, (3)

where S
(∓)
Ku is the shape function, which depends on the degree

of forbiddenness. The shape function can be approximated, for
example, using the Primakoff-Rosen approximation presented
in Ref. [27], but, in order to get more realistic values for the
phase-space factors, the exact expressions, presented in [28],
are used in this work. The phase-space factor used for the
EC decays is presented in [29]. The general formulation for
calculating phase-space factors is presented rigorously in [1].
The nonunique case is also presented in detail in [3].

B. Reduced beta transition probability

The reduced beta transition probability can be written in
terms of the NME MKu as

BKu = g2
A

2Ji + 1
|MKu|2, (4)

where Ji is the angular momentum of the mother nucleus.
For gA we adopt here the value gA = 1.25 and calculate
the β-decay half-lives by introducing the quenching into the
computed NMEs. The NME in (4) can be expressed as [13]

MKu =
∑
ab

M (Ku)(ab)(ψf ||[c†ac̃b]K+1||ψi), (5)

where the factors M (Ku)(ab) are the single-particle matrix
elements and the quantities (ψf ||[c†ac̃b]K+1||ψi) are the one-
body transition densities, with ψi being the initial-state and ψf

being the final-state nuclear wave functions. The operator c
†
a

creates a nucleon and the operator c̃a annihilates a nucleon on
orbital a (for more details see [13]). The single-particle matrix
elements are given by [30]

M (Ku)(ab) = (2.590 × 10−3 × b [fm])Km(Ku)(ab), (6)
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where b is the oscillator length given by

b = 197.33√
940 × (45A1/3 − 25A−2/3)

fm. (7)

In Eq. (6) the quantity m(Ku)(ab) is the scaled single-particle
matrix element given in the Biedenharn-Rose (BR) phase
convention as

m(Ku)(ab) = (−1)(lb−la+K)/2 × 1

2
√

(K + 1)(2K + 3)

× (−1)la+ja+jb+K+1 × 1 + (−1)la+lb+K

2
ĵa ĵb

×
(

ja jb K + 1
1
2

−1
2 0

)

× [
(−1)Kĵa

2 + (−1)ja+jb+1ĵb
2

(8)

+ 2(K + 1)(−1)la+ja+K− 1
2
]
R̃

(K)
ab , (9)

where the ji and li stand for the total angular momentum and
orbital angular momentum of the orbital i, respectively, and
R̃

(K)
ab is the scaled radial integral. The calculation of the values

of the radial integrals is discussed in detail in [13]. The BR
phase convention is used in the calculations, since then in the
BCS picture all vacancy amplitudes are positive, whereas in
the Condon-Shortley (CS) convention the sign depends on li .

The one-body transition densities in (5) can be written in
the pnQRPA picture for β− decays as [31]

(ωf ||[c†pc̃n]K ||0+
g.s.) = δKJf

Ĵf

(
upvnX

ωf

pn + vpunY
ωf

pn

)
(10)

and for β+/EC decays as

(ωf ||[c†nc̃p]K ||0+
g.s.) = δKJf

Ĵf

(
unvpX

ωf

pn + vnupY
ωf

pn

)
, (11)

where the pnQRPA vacuum is the 0+ ground state of the
even-even reference nucleus of the transition, and u and v
are the vacancy and occupation amplitudes given by the BCS
calculation [13]. The two-qp matrix element can be obtained
from (10) and (11) by setting X = 1 and Y = 0. The final state
ωf can be written as [32]

|ωf 〉 =
∑
pn

(
X

ωf

pn [a†
pa†

n]Jf
+ Y

ωf

pn [ãpãn]Jf

)|pnQRPA〉, (12)

where X and Y are the forward- and backward-going am-
plitudes, a† and ã are the BCS quasiparticle creation and
annihilation operators, and |pnQRPA〉 is the pnQRPA vacuum.

The proton and neutron pairing gaps �p and �n needed
for solving the BCS equations can be calculated using the
three-point formulas [33,34]

�p(A,Z) = 1
4 (−1)Z+1[Sp(A + 1,Z + 1)

− 2Sp(A,Z) + Sp(A − 1,Z − 1)],

�n(A,Z) = 1
4 (−1)A−Z+1[Sn(A + 1,Z)

− 2Sn(A,Z) + Sn(A − 1,Z)], (13)

where Sp is the proton separation energy and Sn the neutron
separation energy.

III. NUMERICAL APPLICATION OF THE FORMALISM

Half-lives and partial half-lives were calculated for
148 β−, EC, and β+/EC transitions. This was done with
both the two-qp model and the more advanced pnQRPA
approach. In the two-qp model the transition is presumed
to happen between the two single-particle states which give
the largest absolute value for the two-qp NME, while, in the
pnQRPA configuration, mixing of all possible proton-neutron
configurations, producing the state of interest in the involved
odd-odd nucleus, is taken into consideration.

The single-particle energies needed to solve the BCS
equations were calculated using the Woods-Saxon potential
with the Bohr-Mottelson parametrization [35] in a small
model space with an inert core. For nuclei with mass number
A = 50–60 the core was chosen to consist of eight protons
and neutrons with the valence space spanning the range
0d5/2– 0g9/2. For the nuclei with larger A a core of 20
protons and neutrons was assumed. For A = 74 the valence
space was spanned by the single-particle orbitals in the range
0f7/2– 0h11/2, for A = 84–108 in the range 0f7/2– 0h9/2, and
for A = 110–146 in the range 0f7/2– 2p1/2. For each degree of
forbiddenness one NME associated with an electron capture
and a β− transition was calculated in the so-called large
no-core model space, where an inert core was not assumed
and additional, higher lying, (quasistationary) single-particle
states were added. This was done to test if the expanding of
the model space had any effect on the calculated half-lives.
For the third-forbidden decays only the electron-capture case
was studied, since there were no third-forbidden β− decays in
the studied transitions. The proton and neutron Fermi surfaces
were well contained in the used model spaces to guarantee a
realistic BCS treatment of the quasiparticle correlations. The
residual interaction used for both the BCS and the pnQRPA
was the Bonn-A G matrix [36]. The particle-hole and particle-
particle two-body interaction matrix elements were scaled by
the corresponding parameters gph and gpp (see, e.g. [32]).
For the present calculations the default values gph = 1.0 and
gpp = 1.0 were adopted. The uncertainties of the computed
half-lives due to the errors in the NMEs were approximated
by letting these two parameters vary by 10% from the default
value. The dependence of the nuclear matrix elements on the
parameters gpp and gph was examined by calculating the values
of a selected set of decays in both the large and the small model
space for different values of the two parameters.

The computed pairing gaps were adjusted to fit the
experimental values by tuning the pairing parameters g

p
pair

and gn
pair. The experimental values were calculated using the

three-point formulas (13) and the experimental separation
energies given in [37]. The values used for the pairing
parameters are listed in Tables II and III.

The Q values and their experimental errors, found
in [38], were used for the calculation of the phase-space
factors [28] and their uncertainties. The value of the
nuclear-medium/many-body reduction factor kNM was inferred
from [11]. We use an uncertainty of 10% for this factor. The
contribution of these uncertainties, along with the uncertainties
arising from the computed NMEs, was taken into account in
the error estimation of the computed half-lives.
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TABLE II. Renormalization parameters of pairing interaction
for the studied even-even reference nuclei in the mass region A =
50–102. In the second column the parameter gn

pair for neutrons is
given, and in the third column the parameter gp

pair for protons is given.

Nucleus gn
pair gp

pair

50Ca 1.185 0.923
50Cr 1.09 1.165
50Ti 1.12 1.126
52Cr 1.08 0.945
52Ti 1.19 1.125
54Cr 1.19 1.16
54Fe 1.06 1.07
54Ni 1.162 0.88
56Cr 1.19 1.14
56Fe 1.18 1.08
58Fe 0.98 1.15
58Ni 1.075 0.953
60Fe 0.955 1.115
60Ni 0.98 1.07
62Fe 1.025 1.06
62Ni 1.04 0.953
74Kr 1.16 0.972
74Se 1.14 1.05
84Kr 1.083 0.91
84Se 1.00 0.976
84Sr 1.10 0.92
86Kr 0.975 0.937
86Sr 1.155 1.02
86Zr 1.26 1.07
88Mo 1.21 1.12
88Sr 0.95 0.95
88Zr 1.152 0.96
90Kr 1.105 0.938
90Mo 1.159 1.072
90Sr 1.162 0.961
90Zr 0.912 0.87
92Mo 0.885 1.01
92Zr 1.17 0.92
94Mo 1.165 1.06
94Ru 0.88 1.025
94Zr 0.93 0.88
96Mo 1.02 1.062
96Pd 1.115 1.02
96Ru 1.154 1.105
98Mo 0.95 1.11
98Pd 1.13 1.057
98Ru 1.09 1.185
98Zr 0.76 1.01
100Cd 1.115 1.02
100Mo 0.98 0.99
100Pd 1.12 1.088
100Ru 1.03 1.19
100Zr 0.91 0.90
102Cd 1.11 1.055
102Pd 1.05 1.105

TABLE III. Same as table II for mass region A = 104–146.

Nucleus gn
pair gp

pair

104Cd 1.05 1.08
104Mo 0.90 0.98
104Pd 0.988 1.12
104Ru 1.02 0.976
106Cd 1.00 1.005
106Sn 1.15 0.60
108Cd 1.00 1.10
108Sn 0.985 0.705
110Cd 0.97 1.10
110Sn 1.015 0.88
110Te 1.02 0.928
112Sn 0.98 0.79
112Te 1.01 0.995
114Cd 0.985 1.077
114Sn 0.968 0.74
114Te 0.955 0.995
116Cd 1.003 1.073
116Sn 0.905 0.67
116Te 1.05 0.93
118Cd 0.885 0.947
118Sn 0.91 0.50
120Cd 0.95 0.946
120Pd 0.98 0.946
120Sn 0.89 0.56
120Te 0.90 0.93
122Cd 0.983 0.935
122Sn 0.94 0.52
122Te 0.89 0.93
124Cd 1.00 0.93
124Sn 0.98 0.40
124Te 1.139 0.942
126Sn 1.095 0.60
126Te 1.09 0.915
128Sn 1.115 0.68
128Te 1.100 0.89
130Ba 1.09 0.985
130Ce 1.05 0.955
130Sn 1.065 0.67
130Te 1.079 0.88
130Xe 1.079 0.965
132Ba 0.967 1.00
132Ce 1.164 1.06
132Sn 0.90 0.75
132Te 1.025 0.88
134Ba 1.065 0.965
134Ce 1.085 0.985
134Nd 1.066 1.076
134Te 1.205 0.90
134Xe 1.065 0.89
136Ba 1.025 0.935
136Te 1.25 0.697
136Xe 0.90 0.842
138Ba 1.19 0.875
138Ce 1.04 0.97
138Xe 1.25 0.92
146Gd 0.90 0.90
146Sm 1.24 0.935
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IV. RESULTS AND DISCUSSION

The main results of this article are presented in Tables IV–X,
and below we discuss how they were obtained.

A. Nuclear matrix elements and half-lives for the
two-quasiparticle and pnQRPA models

The pnQRPA and two-qp-model calculated NMEs
(columns 4 and 5) and the corresponding phase-space factors
and expected half-lives, including their uncertainties (columns
6 and 7), are listed in Tables IV–X for each degree of
forbiddenness separately. In column 1 the corresponding
transition and in column 2 the decay mode are given. Column 3
lists the proton-neutron configuration responsible for the two-
qp NME. Most of the studied decay transitions are ground-state
to ground-state, but to widen the scope of the present study,
transitions between a ground state and an excited state were
studied in cases where the excited state was measured to be
isomeric, i.e. having an exceptionally long γ -decay half-life.
The isomeric states involved in the calculations are marked by
an asterisk in Tables IV–X.

The β-decay half-lives vary by many orders of magnitude
mainly because of the varying degree of forbiddenness. As
a rule of thumb, a decrease or increase of the Q value
of about 1 MeV, or whether the decay is to or from the
pnQRPA vacuum, both increase or decrease the half-life by
approximately one order of magnitude. On the other hand,
one degree of forbiddenness changes the half-life by close
to four orders of magnitude. For example, in the case of
the second-forbidden decays, the variation in the Q value
alone, from around 1 MeV [54Mn(3+) → 54Fe(0+)] to the
enormous 9.3 MeV [52Sc(3+) → 52Ti(0+)] is enough to make
a difference of up to nine orders of magnitude in the half-lives.
This is purely a phase-space effect and has no exotic origin like
interfering atomic effects (unlike in the case of the ultra-low Q
values, see Refs. [6–9]), due to the fact that even the smaller Q
value is of the order of 1 MeV, well suitable for the phase-space
description of the present work.

Many of the studied decays are part of a long decay chain,
including decays with different degrees of forbiddenness. In
Fig. 1 a simple decay chain, including some of the studied
A = 110 nuclei, is presented. The chain consists purely of
ground-state to ground-state β+ and β+/EC decays. In Fig. 2
a more complicated A = 96 chain is presented. This chain
includes both β+/EC and β− decays, and some of the decays
are to or from a first excited state which is a long-lived isomer.

In order to determine how the experimental values of the
half-lives of these decays will most likely differ from the values
given by the models, we compare our results to the earlier
results for the Gamow-Teller (GT) 1+ and the first-forbidden
spin-dipole (SD) 2− decays. In the latter case [10] the authors
compared the values of the experimental, pnQRPA-calculated
and two-qp-calculated SD NMEs. It was found that the ratio
k = MQRPA/Mqp was approximately 0.4, while the ratio kNM =
Mexp/MQRPA was about 0.5. In this study the geometric mean
of the β+ and β− NMEs, with a common mother or daughter
nucleus, was used in the evaluation of the ratios. The geometric

mean of n real numbers a1, . . . ,an is defined as

mgeom =
(

n∏
i=1

ai

)1/n

, (14)

and in the case of the studied SD matrix elements it reduces to

mgeom = [M−(SD2)M+(SD2)]1/2, (15)

where M±(SD2) is the transition matrix element for the β±
transition 2− → 0+ [10]. In the study [11], regarding the mean
matrix elements of the GT decays, the ratio k was found to be
approximately 0.38, and the ratio kNM was found to be about
0.6. This study included a large number of decays, and the
behavior of k and kNM as a function of A was determined
in much more detail than in the earlier study regarding the
SD NMEs. For the second- or higher-forbidden decays we
do not have experimental data, but we can still calculate the
ratio of the pnQRPA and two-qp NMEs. In case this ratio
is close to the ones of GT and SD matrix elements, we can
make a prediction of the ratio kNM = Mexp/MQRPA for the
higher-forbidden decays by extrapolating from the kNM of the
GT and SD decays (see Sec. IV B).

The pairing gaps were adjusted to fit the experimental
values of the pairing gaps by tuning the pairing parameters
g

p
pair and gn

pair. The pairing parameters used for the calculations
of the nuclear matrix elements are listed in the Tables II and III.

In Tables IV–X it is seen that for most decays the NMEs
given by pnQRPA are about 2–3 times smaller than those given
by the two-qp model, regardless of the degree of forbiddenness.
However, there seem to be some noticeable exceptions. The
pnQRPA NMEs seem to be around 3–4 orders of magnitude
smaller than those of the two-qp model for many of the decays
including a semimagic even-even reference nucleus. Since the
ratios of the corresponding NMEs are so different, it is best to
study the ratio k separately for the (semi)magic and nonmagic
reference nuclei. In Fig. 3 the ratios MpnQRPA/Mqp are given
for decays including a nonmagic reference nucleus and in
Fig. 4 for decays including a (semi)magic one. The degree of
forbiddenness is given by the shape and color coding. For mass
numbers with several NMEs calculated for the nonmagic cases,
the geometric mean, defined in Eq. (14), was used as the value
of k. For the (semi)magic cases the geometric mean was not
used, since for some mass numbers A there were NMEs which
could differ by three orders of magnitude, rendering the use of
the geometric mean dubious. Unlike in the first-forbidden case,
studied in [10], the variance of the geometric mean of decays
with a common mother or daughter nucleus (see Fig. 5) did
not seem to be significantly different than the variance of k for
all decay transitions (see Fig. 3). Therefore, in the nonmagic
case, the value of k was extracted from all calculated decays
using the geometric mean (14) for the full isobaric chains.

In order to make the rest of the paper easier to follow let us
label the decays with a nonmagic even-even reference nucleus
GROUP 1 and the rest belong to GROUP 2. Exactly one half
of the presently discussed transitions belong to GROUP 1,
the other half to GROUP 2. The k values for GROUP 1 are
presented in Fig. 3 and for GROUP 2 in Fig. 4. For GROUP 1
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TABLE IV. Nuclear matrix elements and phase-space factors f for the second-forbidden unique β−, β+, and β+/EC decays, computed
by the pnQRPA and two-qp models. The corresponding two-qp p-n configuration is also given. The transitions are 0+ ↔ 3+, where 0+ is
the ground state of the participating even-even nucleus. The involved excited isomeric states are marked with an asterisk (*). The expected
“experimental” half-lives are scaled from the pnQRPA half-lives using the scaling factor ξ presented in Table XII.

Transition Mode p-n conf. |MpnQRPA| (fm2) |Mqp| (fm2) f Expected t1/2

52V → 52Cr β− 0f7/2 - 1p1/2 4.94(4) × 10−6 4.95 × 10−4 1.66(4) × 104 4.7(9) × 103 yr
52Ti → 52V β− 0g9/2 - 0d3/2 2.42(2) × 10−4 6.81 × 10−4 66(2) 70(20) yr
52Sc → 52Ti β− 0d3/2 - 0g9/2 1.98(2) × 10−4 6.56 × 10−4 1.98(3) × 107 22(5) h
54V → 54Cr β− 0d3/2 - 0g9/2 2.52(2) × 10−4 6.65 × 10−4 1.92(4) × 106 6(2) d
54Mn → 54Fe β− 0d3/2 - 0g9/2 3.52(2) × 10−4 6.80 × 10−4 3.86(5) × 10−2 4.0(9) × 105 yr
54Mn → 54Cr EC 0g9/2 - 0d3/2 1.88(2) × 10−4 6.87 × 10−4 8.70(18) × 10−2 6(2) × 105 yr

β+ 7.29(11) × 10−5 7(2) × 108 yr
EC/β+ 8.71(11) × 10−2 6(2) × 105 yr

56Cr → 56Mn β− 0g9/2 - 0d3/2 2.47(2) × 10−4 6.95 × 10−4 16(2) 280(60) yr
56Mn → 56Fe β− 0d3/2 - 0g9/2 2.78(2) × 10−4 6.83 × 10−4 1.01(5) × 104 2.5(6) yr
94Nb ∗ → 94Mo β− 0f5/2 - 0h11/2 3.12(2) × 10−4 1.12 × 10−3 186(12) 110(30) yr
94Nb ∗ → 94Zr EC 0h11/2 - 0f5/2 3.85(3) × 10−4 1.18 × 10−3 3.38(5) × 10−2 2.9(6) × 105 yr
96Pd → 96Rh∗ EC 0h11/2 - 0f5/2 8.89(35) × 10−7 1.19 × 10−3 183(4) 1.9(4) × 106 yr

β+ 69.0(3) 5(1) × 106 yr
EC/β+ 252(7) 1.4(3) × 106 yr

96Rh∗ → 96Ru EC 0h11/2 - 0f5/2 1.76(1) × 10−4 1.18 × 10−3 7.29(7) × 103 9(2) yr
β+ 5.02(8) × 104 1.2(3) yr

EC/β+ 5.75(9) × 104 1.1(3) yr
104Mo → 104Tc β− 0f5/2 - 0h11/2 3.01(2) × 10−4 1.14 × 10−3 245(50) 26(6) yr
104Tc → 104Ru β− 0f5/2 - 0h11/2 2.30(2) × 10−4 1.11 × 10−3 5.17(20) × 105 50(10) d
110Te → 110Sb EC 0f5/2 - 0h11/2 1.09(1) × 10−4 1.21 × 10−3 4.99(5) × 103 10(2) yr

β+ 9.55(16) × 103 5(1) yr
EC/β+ 1.45(3) × 104 3.4(7) yr

110Sb → 110Sn EC 0h11/2 - 0f5/2 1.46(1) × 10−4 1.18 × 10−3 5.78(7) × 104 3.3(7) yr
β+ 6.1(2) × 105 120(30) d

EC/β+ 6.7(2) × 105 110(30) d
112Te → 112Sb EC 0f5/2 - 0h11/2 2.95(2) × 10−4 1.17 × 10−3 744(23) 9(2) yr

β+ 353(20) 19(4) yr
EC/β+ 1.10(5) × 103 6(2) yr

112Sb → 112Sn EC 0h11/2 - 0f5/2 1.40(6) × 10−6 1.24 × 10−3 2.03(4) × 104 1.0(2) × 105 yr
β+ 1.13(3) × 105 1.9(5) × 104 yr

EC/β+ 1.33(4) × 105 1.6(4) × 104 yr
114Te → 114Sb EC 0f5/2 - 0h11/2 2.10(2) × 10−4 1.21 × 10−3 53.1(5) 250(50) yr

β+ 2.19(5) 6(2) × 103 yr
EC/β+ 55.3(6) 240(50) yr

114Sb → 114Sn EC 0h11/2 - 0f5/2 4.28(3) × 10−4 1.25 × 10−3 8.1(2) × 103 2.8(6) yr
β+ 2.5(1) × 104 320(90) d

EC/β+ 3.3(2) × 104 250(60) d
116Te → 116Sb EC 0f5/2 - 0h11/2 5.88(4) × 10−4 1.16 × 10−3 2.19(3) 800(200) yr

β+ 5.9(3) × 10−4 2.9(6) × 107 yr
EC/β+ 2.19(3) 800(200) yr

116Sb → 116Sn EC 0h11/2 - 0f5/2 5.29(4) × 10−4 1.26 × 10−3 1.75(2) × 103 8(2) yr
β+ 1.85(3) × 103 8(2) yr

EC/β+ 3.61(4) × 103 4(1) yr
120Pd → 120Ag β− 0h11/2 - 0f5/2 4.52(3) × 10−4 1.26 × 10−3 4.10(4) × 105 5.6(6) d
120Ag → 120Cd β− 0f5/2 - 0h11/2 3.30(3) × 10−4 1.02 × 10−3 1.61(1) × 107 2.9(8) d
130Ce → 130La EC 0h11/2 - 0f5/2 2.04(2) × 10−4 9.89 × 10−4 28.6(4) 500(100) yr

β+ 2.00(6) × 10−1 7(2) × 104 yr
EC/β+ 28.8(4) 500(100) yr

130La → 130Ba EC 0h11/2 - 0f5/2 5.40(4) × 10−4 1.25 × 10−3 8.09(3) × 103 1.7(4) yr
β+ 1.09(6) × 104 1.3(3) yr

EC/β+ 1.90(9) × 104 270(60) d
132Sn → 132Sb∗ β− 0p1/2 - 1f7/2 7.98(28) × 10−11 6.91 × 10−4 5.45(6) × 103 1.7(4) × 1013 yr
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TABLE V. The same as Table IV for the third-forbidden unique 0+ ↔ 4− transitions.

Transition Mode p-n conf. |MpnQRPA| (fm3) |Mqp| (fm3) f Expected t1/2

74Kr → 74Br∗ EC 1p3/2 - 1d5/2 7.29(5) × 10−6 1.32 × 10−5 11.3(3) 5(1) × 105 yr
β+ 1.12(4) 5(1) × 106 yr

EC/β+ 12.5(3) 4.1(9) × 105 yr
74Br ∗ → 74Se EC 1d5/2 - 1p3/2 4.96(4) × 10−6 1.43 × 10−5 2.13(2) × 104 500(200) yr

β+ 3.04(4) × 105 330(80) yr
EC/β+ 3.26(4) × 105 310(60) yr

86Zr → 86Y EC 1p3/2 - 1d5/2 5.89(4) × 10−6 1.46 × 10−5 4.1(5) × 10−2 1.9(6) × 108 yr
β+ 1.9(6) × 10−7 4(2) × 1013 yr

EC/β+ 4.1(5) × 10−2 1.9(6) × 108 yr
86Y → 86Sr EC 1d5/2 - 1p3/2 9.21(6) × 10−6 1.55 × 10−5 2.64(6) × 103 1.1(3) × 104 yr

β+ 6.5(3) × 103 4(2) × 103 yr
EC/β+ 9.2(3) × 103 3.2(7) × 103 yr

88Mo → 88Nb EC 1p3/2 - 1d5/2 6.61(5) × 10−6 1.49 × 10−5 131(2) 5(1) × 104 yr
β+ 30.2(8) 2.1(5) × 105 yr

EC/β+ 162(3) 3.9(8) × 104 yr
88Nb → 88Zr EC 1d5/2 - 1p3/2 7.43(5) × 10−6 1.57 × 10−5 5.83(4) × 104 90(20) yr

β+ 4.58(5) × 105 11(3) yr
EC/β+ 5.17(5) × 105 10(2) yr

88Zr → 88Y EC 1p3/2 - 1d5/2 4.09(3) × 10−6 1.50 × 10−5 1.6(2) × 10−4 1.0(3) × 1011 yr
88Y → 88Sr EC 0h11/2 - 0g9/2 1.56(6) × 10−8 1.58 × 10−5 136(5) 7(2) × 1010 yr

β+ 53(4) 1.9(4) × 1011 yr
EC/β+ 189(8) 5(1) × 1010 yr

90Mo → 90Nb∗ EC 1p3/2 - 1d5/2 4.77(4) × 10−6 1.51 × 10−5 5.6(6) 2.2(6) × 106 yr
β+ 9(2) × 10−2 1.3(4) × 108 yr

EC/β+ 5.7(6) 2.2(6) × 106 yr
90Nb ∗ → 90Zr EC 0h11/2 - 0g9/2 7.87(6) × 10−6 1.65 × 10−5 1.28(5) × 104 340(80) yr

β+ 5.5(3) × 104 80(20) yr
EC/β+ 6.7(4) × 104 70(20) yr

146Gd → 146Eu EC 1d5/2 − 2p3/2 1.54(6) × 10−5 1.98 × 10−5 2.8(2) × 10−2 2.8(6) × 1012 yr
β+ 9.8(9) × 10−17 9(3) × 1021 yr

EC/β+ 2.8(2) × 10−2 2.8(6) × 1012 yr
146Eu → 146Sm EC 1d3/2 - 0h11/2 7.25(5) × 10−6 2.57 × 10−5 1.46(2) × 103 2.2(5) × 104 yr

β+ 92(2) 3.5(7) × 105 yr
EC/β+ 1.55(3) × 103 2.1(5) × 104 yr

the reduction factor k amounts to

k = MpnQRPA

Mqp
= 0.29 ± 0.15 (GROUP 1). (16)

For GROUP 2 there does not exist a meaningful value for
k that could be assigned to the group as a whole. For
approximately half of the decays in GROUP 2 the k value
is exceptionally large, around 0.5–0.8. For the other half the k
value is very low, less than 5 × 10−3. Only a few decays have
k values in the region 0.005–0.5, and for these the k value is
relatively low compared to the decays in GROUP 1, between
0.008 and 0.15. Approximately half of the decays for each
degree of forbiddenness have a very low k value. Only for
third-forbidden decays are these low values not seen, but this
is statistically insignificant since there are only three studied
cases.

In Fig. 3 the NMEs of GROUP 1 fall roughly into three
regions, with the mass ranges A = 50–88, A = 90–120, and
A = 122–146. In the first region the k value appears to have a
constant mean of 0.4, with a low variance. The k values of the
second region seem to be more scattered, with the mean value

slightly lower than in the first region, and the values decrease
as the mass number increases. The third region has a lower
mean than the first two regions, but the scattering is not so
large. The factors k for these three regions, for each degree
of forbiddenness, are listed in Table XI. For comparison, the
second and third columns of the table include also the results
of the earlier works [11] and [10] for the Gamow-Teller 1+
and spin-dipole 2− NMEs. The general trend for k is to
decrease as A increases. The average reduction factors are
k = 0.39, k = 0.31, and k = 0.24 for the first, second and
third regions respectively. The reduction factor, however, is
not a monotonic function of the degree of forbiddenness.
The average values are slightly higher for the third- and
fifth-forbidden than for the second- and fourth-forbidden
decays, and for the seventh-forbidden decays the k value is the
lowest. For the second- and fifth-forbidden decays the k value
does not depend sensitively on the mass number, whereas in
the third- and especially fourth-forbidden cases the reduction
factor decreases significantly as A increases. The average of
the reduction factors of the regions shown in the last line of
Table XI was calculated to average out the effect of the different
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TABLE VI. The same as Table IV for the fourth-forbidden unique 0+ ↔ 5+ transitions.

Transition Mode p-n conf. |MpnQRPA| (fm4) |Mqp| (fm4) f Expected t1/2

50Sc → 50Ti β− 1s1/2 - 0g9/2 8.13(5) × 10−8 1.47 × 10−7 5.7(2) × 106 8(2) × 104 yr
50Ca → 50Sc β− 1p3/2 - 0f7/2 1.11(4) × 10−7 1.70 × 10−7 1.04(4) × 105 2.1(5) × 105 yr
50Mn∗ → 50Cr EC 1p3/2 - 0f7/2 7.32(5) × 10−8 1.49 × 10−7 4.36(1) × 104 1.3(3) × 107 yr

β+ 1.80(1) × 106 3.1(7) × 105 yr
EC/β+ 1.84(1) × 106 3.1(7) × 105 yr

58Co∗ → 58Ni β− 0f7/2 - 1p3/2 1.08(1) × 10−7 1.44 × 10−7 3.28(10) × 10−7 8(2) × 1017 yr
58Co∗ → 58Fe EC 1p3/2 - 0f7/2 7.62(5) × 10−8 1.86 × 10−7 2.90(2) × 10−1 1.8(4) × 1012 yr

β+ 8.12(8) × 10−3 6(2) × 1013 yr
EC/β+ 2.98(2) × 10−1 1.7(4) × 1012 yr

60Fe → 60Co β− 1p3/2 - 0f7/2 7.98(6) × 10−8 1.89 × 10−7 2.7(4) × 10−9 1.6(4) × 1019 yr
60Co → 60Ni β− 1s1/2 - 0g9/2 9.39(7) × 10−8 1.65 × 10−7 171(1) 2.0(5) × 109 yr
62Fe → 62Co∗ β− 1p3/2 - 0f7/2 7.17(5) × 10−8 1.93 × 10−7 46.2(44) 1.2(4) × 109 yr
62Co∗ → 62Ni β− 1s1/2 - 0g9/2 5.70(22) × 10−11 1.66 × 10−7 3.12(15) × 105 3.0(6) × 1012 yr
98Zr → 98Nb∗ β− 0h11/2 - 1p1/2 2.11(2) × 10−7 3.20 × 10−7 12.0(8) 1.1(3) × 109 yr
98Nb∗ → 98Mo β− 0g9/2 − 2s1/2 1.93(2) × 10−7 2.78 × 10−7 9.32(17) × 104 1.9(5) × 106 yr
98Pd → 98Rh∗ EC 1p1/2 - 0h11/2 1.91(2) × 10−7 2.99 × 10−7 1.7(2) × 10−1 9(3) × 1010 yr

β+ 4.4(8) × 10−5 3.7(9) × 1014 yr
EC/β+ 1.7(2) × 10−1 9(3) × 1010 yr

98Rh ∗ → 98Ru EC 0h11/2 - 1p1/2 5.52(4) × 10−8 3.20 × 10−7 3.94(8) × 103 5(2) × 108 yr
β+ 2.08(7) × 103 1.0(3) × 109 yr

EC/β+ 6.0(2) × 103 3.5(8) × 108 yr
100Zr → 100Nb∗ β− 1d5/2 - 1d5/2 1.97(2) × 10−7 3.97 × 10−7 766(78) 2.0(6) × 107 yr
100Nb∗ → 100Mo β− 0f7/2 - 0h11/2 1.43(1) × 10−7 2.49 × 10−7 7.19(34) × 106 4.4(9) × 104 yr
100Cd → 100Ag EC 1p1/2 - 0h11/2 2.02(2) × 10−8 3.14 × 10−7 415(6) 6(2) × 108 yr

β+ 45.0(10) 6(2) × 109 yr
EC/β+ 460(7) 5(2) × 108 yr

100Ag → 100Pd EC 0h11/2 - 1p1/2 9.65(7) × 10−8 3.24 × 10−7 1.40(4) × 105 5(2) × 106 yr
β+ 2.79(11) × 105 2.5(6) × 106 yr

EC/β+ 4.19(14) × 105 1.7(4) × 106 yr
100Pd → 100Rh∗ EC 1p1/2 - 0h11/2 1.72(2) × 10−8 2.99 × 10−7 1.29(20) × 10−10 1.5(4) × 1022 yr
100Rh∗ → 100Ru EC 1d5/2 - 1d5/2 5.64(4) × 10−8 3.65 × 10−7 194(11) 1.0(2) × 109 yr

β+ 20.9(18) 9(2) × 109 yr
EC/β+ 214(12) 9(2) × 108 yr

102Cd → 102Ag EC 1p1/2 - 0h11/2 1.81(2) × 10−7 3.15 × 10−7 5.9(2) 3.0(7) × 109 yr
β+ 3.7(3) × 10−2 4.8(1) × 1011 yr

EC/β+ 5.9(2) 3.0(7) × 109 yr
102Ag → 102Pd EC 1d5/2 - 1d5/2 1.18(1) × 10−7 3.60 × 10−7 1.52(3) × 104 3.0(7) × 107 yr

β+ 1.16(3) × 104 4.0(9) × 107 yr
EC/β+ 2.67(6) × 104 1.7(4) × 107 yr

104Cd → 104Ag EC 1p1/2 - 0h11/2 1.66(2) × 10−7 3.16 × 10−7 1.48(7) × 10−3 1.4(3) × 1013 yr
β+ 8(4) × 10−13 3(2) × 1022 yr

EC/β+ 1.48(7) × 10−3 1.4(3) × 1013 yr
104Ag → 104Pd EC 1d5/2 - 1d5/2 1.41(1) × 10−7 3.97 × 10−7 872(9) 3.7(8) × 108 yr

β+ 163(3) 2.0(5) × 109 yr
EC/β+ 1.04(2) × 104 3.1(7) × 108 yr

104Rh∗ → 104Ru EC 0h11/2 - 1p1/2 1.93(2) × 10−7 3.33 × 10−7 3.28(9) × 10−3 5(2) × 1013 yr
β+ 3.12(38) × 10−10 6(2) × 1020 yr

EC/β+ 3.28(9) × 10−3 5(2) × 1013 yr
104Rh∗ → 104Pd β− 1p1/2 - 0h11/2 1.97(2) × 10−7 3.00 × 10−7 102(2) 1.6(4) × 109 yr
114In∗ → 114Cd EC 1d5/2 - 1d5/2 1.05(1) × 10−7 4.61 × 10−7 6.00(3) × 10−2 1.0(2) × 1013 yr

β+ 1.86(3) × 10−6 3.1(6) × 1017 yr
EC/β+ 6.00(3) × 10−2 1.0(2) × 1013 yr

114In∗ → 114Sn β− 1p3/2 - 1f7/2 7.61(29) × 10−10 3.70 × 10−7 18.4(1) 6(2) × 109 yr
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TABLE VII. The same as Table IV for the fourth-forbidden unique 0+ ↔ 5+ transitions.

Transition Mode p-n conf. |MpnQRPA| (fm7) |Mqp| (fm7) f Expected t1/2

116In∗ → 116Cd EC 1d5/2 - 1d5/2 1.19(1) × 10−7 4.70 × 10−7 1.53(1) × 10−6 3.0(6) × 1017 yr
116In∗ → 116Sn β− 1p3/2 - 1f7/2 4.52(18) × 10−10 3.74 × 10−7 2.94(1) × 103 1.1(3) × 1013 yr
118Cd → 118In∗ β− 1d5/2 - 1d5/2 1.34(1) × 10−7 4.72 × 10−7 2.7(14) × 10−6 1.2(5) × 1016 yr
118In∗ → 118Sn β− 1p3/2 - 1f7/2 2.85(11) × 10−10 3.78 × 10−7 7.44(16) × 104 1.1(3) × 1012 yr
120Cd → 120In∗ β− 1d5/2 - 1d5/2 1.46(1) × 10−7 4.82 × 10−7 1.15(44) 2.4(8) × 1010 yr
120In∗ → 120Sn β− 1p3/2 - 1f7/2 1.86(8) × 10−13 3.81 × 10−7 7.4(9) × 105 2.5(6) × 1017 yr
122Cd → 122In∗ β− 1d5/2 - 1d5/2 1.58(2) × 10−7 4.90 × 10−7 175(42) 1.3(4) × 108 yr
122In∗ → 122Sn β− 1p3/2 - 1f7/2 3.27(13) × 10−12 3.84 × 10−7 8.5(9) × 106 7(2) × 1013 yr
124Sb∗ → 124Sn EC 0h11/2 - 1p1/2 2.27(2) × 10−8 3.70 × 10−7 2.55(10) × 10−6 5(2) × 1018 yr
124Sb∗ → 124Te β− 1p3/2 - 1f7/2 3.20(13) × 10−9 3.85 × 10−7 526(4) 1.2(3) × 1012 yr
126Sn → 126Sb∗ β− 1d5/2 - 1d5/2 2.55(9) × 10−8 5.05 × 10−7 2.95(1 mag) × 10−7 3(1 mag) × 1018 yr
126Sb∗ → 126Te β− 1p3/2 - 1f7/2 3.51(14) × 10−9 3.90 × 10−7 8.0(8) × 103 7(2) × 1010 yr
128Sn → 128Sb∗ β− 1d5/2 - 1d5/2 2.47(9) × 10−8 5.13 × 10−7 5.4(7) × 10−2 1.8(4) × 1013 yr
128Sb∗ → 128Te β− 1p3/2 - 1f7/2 3.35(13) × 10−9 3.93 × 10−7 57.2(4) × 104 1.0(2) × 1010 yr
130I → 130Te EC 1d5/2 - 1d5/2 2.55(2) × 10−8 4.86 × 10−7 4.3(4) × 10−8 2.3(6) × 1020 yr
130I → 130Xe β− 1p3/2 - 1f7/2 4.60(3) × 10−9 3.96 × 10−7 630(8) 5(1) × 1011 yr
136Cs → 136Xe EC 1d5/2 - 1d5/2 7.55(29) × 10−10 4.82 × 10−7 5.2(27) × 10−17 2.2(8) × 1032 yr
136Cs → 136Ba β− 1p3/2 - 1f7/2 3.63(2) × 10−9 4.08 × 10−7 131(12) 4(1) × 1012 yr
138La → 138Ba EC 0h11/2 - 0h11/2 1.14(5) × 10−9 4.70 × 10−7 1.91(4) × 10−1 8(2) × 1015 yr

β+ 7.8(4) × 10−6 2.0(5) × 1020 yr
EC/β+ 1.91(4) × 10−1 8(2) × 1015 yr

138La → 138Ce β− 1p1/2 - 1f7/2 4.66(3) × 10−9 4.11 × 10−7 1.0(1) × 10−2 9(3) × 1015 yr

TABLE VIII. The same as Table IV for the fifth-forbidden unique 0+ ↔ 6− transitions.

Transition Mode p-n conf. |MpnQRPA| (fm5) |Mqp| (fm5) f Expected t1/2

84Se → 84Br∗ β− 0h11/2 - 0g9/2 3.27(3) × 10−11 5.89 × 10−9 1.5(5) × 10−2 1.7(8) × 1019 yr
84Br∗ → 84Kr β− 0f7/2 - 1d5/2 1.79(2) × 10−9 5.04 × 10−9 9.8(9) × 104 1.1(3) × 1010 yr
84Rb∗ → 84Kr EC 0g9/2 - 1p3/2 2.31(2) × 10−9 5.53 × 10−9 5.16(7) 1.3(3) × 1014 yr

β+ 1.76(4) × 10−1 3.8(7) × 1015 yr
EC/β+ 5.33(7) 1.3(3) × 1014 yr

84Rb∗ → 84Sr β− 0f7/2 - 1d5/2 2.90(2) × 10−9 5.05 × 10−9 4.00(9) × 10−3 1.1(3) × 1017 yr
86Rb∗ → 86Kr EC 0h11/2 - 0g9/2 5.48(21) × 10−12 5.99 × 10−9 1.14(1) × 10−5 1.0(4) × 1025 yr

β+ 7.3(3) × 10−19 1.6(4) × 1038 yr
EC/β+ 1.14(1) × 10−5 1.0(4) × 1025 yr

86Rb∗ → 86Sr β− 0f7/2 - 1d5/2 2.09(2) × 10−9 5.11 × 10−9 3.90(3) 2.1(5) × 1014 yr
120Pd → 120Ag∗ β− 1f7/2 - 1d5/2 3.06(2) × 10−9 1.26 × 10−8 2.26(4) × 105 2.8(7) × 108 yr
120Ag∗ → 120Cd β− 0g9/2 − 2p3/2 4.65(3) × 10−9 7.57 × 10−9 2.52(26) × 108 1.4(4) × 106 yr
132Ce → 132La∗ EC 0g9/2 − 2p3/2 2.84(2) × 10−9 8.81 × 10−9 4.0(17) × 10−5 1.8(7) × 1018 yr

β+ 3(3 mag) × 10−20 2(3 mag) × 1033 yr
EC/β+ 4.0(17) × 10−5 1.8(7) × 1018 yr

132La∗ → 132Ba EC 1f7/2 - 1d5/2 6.49(5) × 10−9 1.37 × 10−8 5.3(6) × 103 3.4(8) × 1010 yr
β+ 390(70) 5(2) × 1011 yr

EC/β+ 5.7(7) × 103 3.2(8) × 1010 yr
134Nd → 134Pr EC 0g9/2 − 2p3/2 3.46(3) × 10−9 8.90 × 10−9 10.3(12) 5(1) × 1012 yr

β+ 2.1(4) × 10−2 2.3(7) × 1015 yr
EC/β+ 10.3(12) 5(1) × 1012 yr

134Pr → 134Ce EC 1f7/2 - 1d5/2 6.41(5) × 10−9 1.37 × 10−8 1.28(8) × 105 1.4(4) × 109 yr
β+ 2.72(23) × 104 7(2) × 109 yr

EC/β+ 1.56(10) × 105 1.2(3) × 109 yr
136Te → 136I∗ β− 1f7/2 - 1d5/2 3.16(3) × 10−9 1.42 × 10−8 3.81(22) × 104 1.5(5) × 109 yr
136I∗ → 136Xe β− 0g9/2 − 2p3/2 5.56(4) × 10−9 9.09 × 10−9 5.29(2) × 108 5(1) × 106 yr
138Xe → 138Cs∗ β− 1f7/2 - 1d5/2 5.12(3) × 10−9 1.43 × 10−8 87(5) 8(3) × 1010 yr
138Cs∗ → 138Ba β− 0g9/2 − 2p3/2 7.00(5) × 10−9 9.17 × 10−9 6.30(2) × 105 6(2) × 106 yr
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TABLE IX. The same as Table IV for the sixth-forbidden unique 0+ ↔ 7+ transitions.

Transition Mode p-n conf. |MpnQRPA| (fm6) |Mqp| (fm6) f Expected t1/2

54Co∗ → 54Fe EC 0d5/2 - 0g9/2 1.32(6) × 10−13 4.71 × 10−11 1.34(1) × 106 1.8(4) × 1017 yr
β+ 7.10(1) × 106 3.3(7) × 1016 yr

EC/β+ 8.45(1) × 106 2.8(6) × 1016 yr
54Ni → 54Co∗ EC 0g9/2 - 0d5/2 7.21(26) × 10−14 4.71 × 10−11 1.94(17) × 106 2.7(6) × 1016 yr

β+ 9.6(11) × 106 5(2) × 1015 yr
EC/β+ 1.15(13) × 107 5(1) × 1015 yr

92Nb → 92Zr EC 1d5/2 - 0g9/2 7.03(5) × 10−11 1.56 × 10−10 9.14(12) × 10−3 9(2) × 1019 yr
β+ 3.89(10) × 10−7 2.1(3) × 1024 yr

EC/β+ 9.14(12) × 10−3 9(2) × 1019 yr
92Nb → 92Mo β− 1p3/2 - 0h11/2 8.79(6) × 10−11 1.42 × 10−10 1.26(11) × 10−11 4(1) × 1028 yr
94Ru → 94Tc EC 1p3/2 - 0h11/2 1.08(4) × 10−13 1.46 × 10−10 3.7(2) × 10−4 6(2) × 1025 yr

β+ 2.1(3) × 10−10 1.1(3) × 1032 yr
EC/β+ 3.7(2) × 10−4 6(2) × 1025 yr

94Tc → 94Mo EC 1d5/2 - 0g9/2 5.95(4) × 10−11 1.59 × 10−10 442(6) 2.6(6) × 1015 yr
β+ 10.9(3) 1.1(3) × 1017 yr

EC/β+ 453(7) 2.5(6) × 1015 yr
96Tc → 96Mo EC 1d5/2 - 0g9/2 8.63(6) × 10−11 1.62 × 10−10 2.81(7) 2.0(5) × 1017 yr

β+ 5.6(3) × 10−3 1.0(3) × 1020 yr
EC/β+ 2.81(7) 2.0(5) × 1017 yr

96Tc → 96Ru β− 1p3/2 - 0h11/2 9.39(7) × 10−11 1.47 × 10−10 4(2) × 10−13 1.1(4) × 1030 yr
106Sn → 106In EC 1p3/2 - 0h11/2 1.17(35) × 10−10 1.64 × 10−10 17.2(11) 2.5(6) × 1015 yr

β+ 3.58(33) × 10−2 1.2(3) × 1018 yr
EC/β+ 17.3(11) 2.5(6) × 1015 yr

106In → 106Cd EC 1d5/2 - 0g9/2 1.29(1) × 10−10 1.77 × 10−10 2.92(8) × 105 1.9(4) × 1012 yr
β+ 3.96(14) × 104 1.4(3) × 1013 yr

EC/β+ 3.31(10) × 105 1.7(4) × 1012 yr
108Sn → 108In EC 1p3/2 - 0h11/2 9.72(5) × 10−11 1.67 × 10−10 2.4(2) × 10−2 2.6(7) × 1018 yr

β+ 5.9(9) × 10−7 1.1(3) × 1023 yr
EC/β+ 2.4(2) × 10−2 2.6(7) × 1018 yr

108In → 108Cd EC 1d5/2 - 0g9/2 6.31(24) × 10−11 1.79 × 10−10 1.0(3) × 104 2.2(5) × 1014 yr
β+ 403(14) 5(2) × 1015 yr

EC/β+ 1.0(3) × 104 2.2(5) × 1014 yr
110Sn → 110In EC 1p3/2 - 0h11/2 8.75(4) × 10−11 1.66 × 10−10 9(6) × 10−10 9(6) × 1025 yr
110In → 110Cd EC 1d5/2 - 0g9/2 6.27(5) × 10−11 1.83 × 10−10 191(9) 1.2(3) × 1016 yr

β+ 1.5(1) 1.5(4) × 1018 yr
EC/β+ 192(9) 1.2(3) × 1016 yr

numbers of representative cases inside each mass region. This
gives a meaningful k for the whole mass range A = 50–146
to be compared with the results of the earlier works on the
allowed and first-forbidden transitions.

Even though k is not a smooth function of A, there are a few
interesting smaller patterns in Figs. 3 and 4. In Fig. 3 there is
a clear increasing linear behavior for the seventh-forbidden
decays for A = 118–126 and a decreasing one for A =
126–132. These are all β− decays where the p-n configuration
giving the largest contribution to the NME is 0h11/2 - 1d5/2.
Another similar pattern is seen for the fourth-forbidden
decays with A = 114–122. These are both β+/EC and β−
decays with the main contributing p-n configuration being
1d5/2 - 1d5/2. In Fig. 4 there are also structured patterns for
the seventh-forbidden β± decays, the main contributing p-n
configuration being 0g9/2 - 1f7/2. Regularities of similar range
are not seen for transitions of other degrees of forbiddenness.
For example the k values for the second-forbidden β+/EC
decays 110,112,114,116Te → Sb do not follow a clear pattern

even though the dominating p-n configuration in the NMEs is
0f5/2 - 0h11/2 for all of these decays.

The fact that these patterns include both β+ and β−
transitions suggests that there is no difference in the behavior
of the NMEs of these two decay types, at least for the cases
where the β+ decay feeds to 0+ ground state of the even-even
nucleus. To verify this we have investigated the values of k
separately for the β+/EC and β− decays. The results are given
in Figs. 6 and 7. Visibly in the figures the k values do not seem
to behave any way differently for the β+/EC and β− decays.

The effect of Pauli blocking on β+/EC decays is well
know for the allowed Gamow-Teller transitions. This blocking
grows stronger for heavy nuclei and further away from the
stability line towards the neutron-rich side of the nuclear
chart. In the present case of highly forbidden β transitions
the Pauli blocking is caused by the factor vpun present in the
one-body transition density (11). The effect of Pauli blocking
can be examined by recording the values of the vpun factors
as functions of mass number A in the case of 0+

gs → Jπ
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TABLE X. The same as Table IV for the seventh-forbidden unique 0+ ↔ 8− transitions.

Transition Mode p-n conf. |MpnQRPA| (fm7) |Mqp| (fm7) f Expected t1/2

116Te → 116Sb∗ EC 1d5/2 - 0h11/2 2.54(2) × 10−13 5.26 × 10−12 4(2) × 10−5 2(1) × 1026 yr
β+ 1.11(15) × 10−17 8(3) × 1038 yr

EC/β+ 4(2) × 10−5 2(1) × 1026 yr
116Sb∗ → 116Sn EC 0g9/2 - 1f7/2 3.50(14) × 10−15 5.11 × 10−12 8.94(15) × 105 5(2) × 1019 yr

β+ 3.95(9) × 103 1.2(3) × 1022 yr
EC/β+ 8.98(15) × 105 5(2) × 1019 yr

116In∗ → 116Cd EC 0h11/2 - 1d5/2 6.99(5) × 10−13 5.38 × 10−12 2.18(2) × 10−8 9(2) × 1029 yr
116In∗ → 116Sn β− 0g9/2 - 1f7/2 3.50(14) × 10−15 5.11 × 10−12 5.51(1) × 103 1.5(4) × 1023 yr
118Cd → 118In∗ β− 0h11/2 - 1d5/2 8.76(6) × 10−13 5.45 × 10−12 3.12(1 mag) × 10−12 2(1 mag) × 1032 yr
118In∗ → 118Sn β− 0g9/2 - 137/2 4.06(16) × 10−15 5.17 × 10−12 5.07(16) × 105 2.7(5) × 1020 yr
120Cd → 120In∗ β− 0h11/2 - 1d5/2 9.86(7) × 10−13 5.59 × 10−12 4.34(14) × 10−2 1.4(3) × 1022 yr
120In∗ → 120Sn β− 0g9/2 - 137/2 5.45(21) × 10−15 5.28 × 10−12 7.02(10) × 106 5(1) × 1019 yr
120Sb∗ → 120Sn EC 0h11/2 - 1d5/2 2.77(2) × 10−12 5.69 × 10−12 28.5(13) 2.9(6) × 1019 yr

β+ 1.25(9) × 10−3 7(2) × 1023 yr
EC/β+ 28.5(13) 2.9(6) × 1019 yr

120Sb∗ → 120Te β− 0g9/2 - 1f7/2 2.84(11) × 10−12 4.81 × 10−12 3.6(5) × 10−6 3(1) × 1026 yr
122Cd → 122In∗ β− 0h11/2 - 1d5/2 1.10(1) × 10−12 5.74 × 10−12 38(15) 1.3(7) × 1019 yr
122In∗ → 122Sn β− 0g9/2 - 1f7/2 3.07(12) × 10−15 5.37 × 10−12 3.2(5) × 108 3(2) × 1018 yr
122Sb∗ → 122Sn EC 0h11/2 - 1d5/2 3.49(3) × 10−12 5.79 × 10−12 3.38(13) × 10−2 2.4(5) × 1022 yr

β+ 1.03(8) × 10−8 8(2) × 1028 yr
EC/β+ 3.38(13) × 10−2 2.4(5) × 1022 yr

122Sb∗ → 122Te β− 0g9/2 - 1f7/2 1.74(2) × 10−12 5.35 × 10−12 1.10(3) 3.0(6) × 1021 yr
124Cd → 124In∗ β− 0h11/2 - 1d5/2 1.21(1) × 10−12 5.88 × 10−12 6.5(9) × 104 6(2) × 1015 yr
124In∗ → 124Sn β− 0g9/2 - 1f7/2 1.17(5) × 10−15 5.45 × 10−12 2.16(17) × 109 3.4(8) × 1018 yr
124Sb∗ → 124Sn EC 0h11/2 - 1d5/2 4.13(3) × 10−12 5.90 × 10−12 2.02(12) × 10−9 2.9(8) × 1029 yr
124Sb∗ → 124Te β− 0g9/2 - 1f7/2 1.44(1) × 10−12 5.41 × 10−12 218(3) 2.2(5) × 1019 yr
126Sn → 126Sb β− 0h11/2 - 1d5/2 4.76(17) × 10−12 5.98 × 10−12 1.71(3) × 104 1.5(4) × 1015 yr
126Sb → 126Te β− 0g9/2 - 1f7/2 1.25(1) × 10−12 5.50 × 10−12 9.7(15) × 103 7(2) × 1017 yr
128Sn → 128Sb β− 0h11/2 - 1d5/2 5.11(18) × 10−12 6.13 × 10−12 2.5(5) × 10−4 9(3) × 1022 yr
128Sb → 128Te β− 0g9/2 - 1f7/2 1.02(1) × 10−12 5.60 × 10−12 1.96(16) × 105 5(2) × 1016 yr
130Sn → 130Sb β− 0h11/2 - 1d5/2 5.04(18) × 10−12 6.26 × 10−12 1.13(13) 2.0(5) × 1019 yr
130Sb → 130Te β− 0g9/2 - 1f7/2 7.85(6) × 10−13 5.69 × 10−12 2.71(14) × 106 6(2) × 1015 yr
132Sn → 132Sb β− 0h11/2 - 1d5/2 2.99(11) × 10−12 6.41 × 10−12 493(12) 1.3(3) × 1017 yr
132Sb → 132Te β− 0g9/2 - 1f7/2 4.92(4) × 10−13 5.80 × 10−12 1.36(2) × 107 2.8(6) × 1015 yr
134Te → 134I∗ β− 0h11/2 - 1d5/2 4.90(18) × 10−12 6.39 × 10−12 1.24(10) × 10−4 2.0(5) × 1023 yr
134I∗ → 134Xe β− 0g9/2 - 1f7/2 8.07(6) × 10−13 5.85 × 10−12 2.28(6) × 105 7(2) × 1016 yr
134Cs∗ → 134Xe EC 0h11/2 - 1d5/2 5.30(4) × 10−12 6.35 × 10−12 6.41(7) × 10−4 6(2) × 1023 yr

β+ 4.16(13) × 10−13 9(2) × 1032 yr
EC/β+ 6.41(7) × 10−4 6(2) × 1023 yr

134Cs∗ → 134Ba β− 0g9/2 - 1f7/2 1.46(1) × 10−12 5.85 × 10−12 1.89(1) 2.5(5) × 1021 yr
136Cs∗ → 136Xe EC 0h11/2 - 1d5/2 1.54(6) × 10−15 6.48 × 10−12 7.4(5) × 10−10 6(2) × 1036 yr
136Cs∗ → 136Ba β− 0g9/2 - 1f7/2 9.94(65) × 10−13 5.95 × 10−12 514(6) 2.0(5) × 1019 yr

transitions. The results are presented in Fig. 8. It appears
that the blocking increases, on average, with A as for the

FIG. 1. A decay chain including some of the studied A = 110
nuclei.

Gamow-Teller transitions. However, the blocking is not very
strong due to the fact that all the presently discussed nuclei
are very close to the bottom of the beta-stability line. Thus the

FIG. 2. A decay chain including some of the studied A = 96
nuclei.
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FIG. 3. Ratio k = MpnQRPA/Mqp as a function of mass the number
A for transitions involving only nonmagic reference nuclei. The
degree of forbiddenness K is marked by color and shape. For mass
numbers with several calculated transitions the geometric mean,
defined in Eq. (14), was used as the value of k.

FIG. 4. Ratio k = MpnQRPA/Mqp as a function of the mass number
A for transitions involving semimagic and magic reference nuclei.
The k value of the transition 132Sn(0+) → 132Sb∗(3+) is cut off since
it is much smaller than the other ones, at 1.15 × 10−7. Note the
logarithmic scale of the vertical axis.

FIG. 5. Geometric mean of the ratio k = MpnQRPA/Mqp of the β±

decay NMEs with a common mother or daughter nucleus. The symbol
coding of Fig. 3 is used.

FIG. 6. Same as Fig. 3 but with the k values calculated separately
for the β+/EC and β− decays. Note that the color/shape coding is not
the one of Fig. 3.

FIG. 7. Same as Fig 4 but with the k values calculated separately
for the β+/EC and β− decays. Note that the color/shape coding is not
the one of Fig. 4.

aspect of growing blocking when going towards neutron-rich
nuclei is missing in the present calculations.

In GROUP 2 the differences in the k values of decays
with neighboring reference nuclei can be several orders of
magnitude. What makes the tin isotopes interesting is that for
the second-forbidden transitions (see Table IV), in the case
of the β+ decay, the value of k for the decay involving the
isotope 112Sn (k = 0.0011) is much lower than for the other
A = 110,114,116 tins. In [10], regarding the SD 2− NMEs, the
decays involving the semi-magic nuclei 86Kr, 88Sr, and 122Sn
were included in the study, but the ratios for them did not
differ noticeably from the rest. This is commensurate with the
above list of large-k semimagic cases for the second-forbidden
transitions. For the very highly forbidden cases, 4th-, 6th-,
and 7th-forbidden in Tables VI, IX, and X, all the tin-related
transitions for the 6th-forbidden and the transitions containing
low-mass (A � 122) tins in the 4th- and 7th-forbidden cases
have rather large values of k. On the other hand, the 4th- and
7th-forbidden transitions for the heavier tins (A � 122) have
quite small ratios k.

The strong division of the semimagic, (mostly) tin-related,
transitions to the above-discussed cases of rather large and
quite small k values relates to different ground-state con-
figurations, different densities of the single-particle states
at the proton and neutron Fermi surfaces, and the resulting
differences in the BCS-based occupation and vacancy am-
plitudes. The NMEs of semi-magic nuclei are very sensitive
to the single-particle energies, in particular of (few) key
single-particle orbital(s). For a closer scrutiny of this effect, the

FIG. 8. Product of the proton occupation amplitude vp and
neutron vacancy amplitude un used for the calculation of the two-qp
and pnQRPA nuclear matrix elements of β+/EC 0+

gs → J π transitions
as a function of the mass number.
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FIG. 9. The NMEs given by pnQRPA as functions of the single-
particle energy of the 0h11/2 proton orbital for 112Sn and 114Sn.

single-particle energy of the proton orbital 0h11/2 was varied
to see the effect on the second-forbidden pnQRPA NMEs of
112Sn and 114Sn. As seen in Table IV, this is a key orbital, along
with the neutron 0f5/2 orbital, for all the cases involving a tin
isotope within the mass range 110 � A � 116. The results
are presented in Fig 9. The behavior of the NMEs is similar
for low single-particle energies, but there is a critical point at
−4.7 MeV at which the pnQRPA NME of 114Sn grows by two
orders of magnitude.

The critical point is the single-particle energy at which the
ground-state proton-neutron configuration changes from the
0g9/2 - 0g7/2 dominated at the lower energies to the 1d5/2 - 2s1/2

dominated at the higher energies of the 0h11/2 proton orbital.
The energies of the proton orbital used for the calculations
were −3.8 and −3.85 MeV for the 112Sn and 114Sn isotopes
respectively, which are on the right side of the critical point. In
the 110,116Sn isotopes the dominant configuration is the same
as in the 114Sn isotope, resulting in a pnQRPA NME which is
relatively large.

In the calculation of NMEs and half-lives presented in
tables IV–X the values gpp = gph = 1.00 were adopted for the
scaling parameters. These calculations were done in a model
space which assumed an inert core. We call these bases “small”
in what follows. For nuclei with mass number A = 50–60 the
core was chosen to consist of eight protons and neutrons with
the valence space spanning the range 0d5/2– 0g9/2. For the
nuclei with larger A a core of 20 protons and neutrons was
assumed, as discussed in Sec. III. In order to examine the effect
of expanding the single-particle bases of the calculations,
the calculations were extended to a “large” no-core model
space (see Sec. III) for some selected decays. For each
degree of forbiddenness one β− and one EC decay from the
mass range A = 74–116 were selected, with the exception of
the third-forbidden decays were there were only EC decays
available. The large no-core model spaces were spanned by
6 or 7 major oscillator shells containing the single-particle
states from 0s1/2 to the 2s-1d-0g-0h for A = 74–108 and to
2p-1f -0h for A = 116. For these selected decays the NME
was calculated for three values of gph: 0.80, 1.00, and 1.20,
and for the range gpp = 0.70–1.30. The results are presented
in Figs. 10–16.

FIG. 10. The NMEs related to the second-forbidden transitions
94Nb∗(3+)

EC−→ 94Zr(0+) (top panel) and 94Nb∗(3+)
β−
−→ 94Mo(0+)

(bottom panel) as a function of the scaling parameters gpp and gph.
The solid lines represent the results obtained by using the small model
space, i.e., with an inert core, and the dashed lines display the results
obtained in the no-core large model space.

For the decays belonging to GROUP 1 there is little
difference in the NMEs calculated in the large and small

model spaces, with the fourth-forbidden decay 104Rh(5+)
EC−→

104Ru(0+) as an exception. As seen in Fig. 12 the nuclear
matrix elements calculated using the large and small model
spaces differ by about 20–30% for similar values of gpp and

FIG. 11. The same as Fig. 10 but for the third-forbidden transition
74Br∗(4−)

EC/β+
−−−→ 74Se(0+).
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FIG. 12. The same as figure 10 but for the fourth-forbidden

transitions 104Rh∗(5+)
EC−→ 104Ru(0+) (top panel) and 104Rh∗(5+)

β−
−→

104Pd(0+) (bottom panel).

gph. The expected half-life for this decay is some 40% longer
in the large model space than in the small one.

The differences in the GROUP 2 decays, on the other hand,
can be much larger in some extreme cases. For example, for the

fifth-forbidden GROUP 2 transition 86Rb∗(6−)
EC−→ 86Kr(0+)

(see Fig. 13) the difference is three orders of magnitude. As
can be seen from Table VIII the decay has an exceptionally
small NME in the small basis calculation, and the large-basis
calculation restores its value to the same level as is common
for the other fifth-forbidden decays. Thus some of the NMEs
of GROUP 2 are unstable against variation in the model-space
size and the corresponding half-life cannot be computed accu-
rately. This comes back to the earlier-discussed effect of the
unstable pairing conditions in the corresponding (semi)magic
reference nuclei. Another example, though less striking, is

the seventh-forbidden transition 116In∗(8−)
β−
−→ 116Sn(0+) (see

Fig. 16) for which the small model space gives a NME which
is approximately 2.3 times larger than that given by the large
model space for most values of gpp and gph. Contrary to the
1+ Gamow-Teller decays, the computed NMEs depend only
very weakly on gpp for the highly forbidden β decays, and the
collapse point of the pnQRPA is very far from the gpp values
used in the present calculations (see Figs 10–16). The effect
of changing the value gph = 1.0 of the particle-hole parameter
amounts to only a small shift in the value of the NME, as seen
in the figures.

The above investigations suggest that the calculated NMEs
are very stable against variations of the gpp and gph parameters,

FIG. 13. The same as Fig. 10 but for the fifth-forbidden transition
86Rb∗(6−)

EC−→ 86Kr(0+). The results for the large model space are
presented in the top panel and for the small model space in the
bottom panel.

and that the collapse point of the pnQRPA is far away from the
physically acceptable range of these parameters. The NMEs of
GROUP 1 can be reliably predicted in the small model space,
the maximum deviations from the ones computed in the large
no-core model space being less than 30% around the value
gpp = 1.0, adopted for the half-life calculations. Hence, the
computed half-lives of the GROUP 1 decays in Tables IV–IX
are accurate enough for experimental verification. On the other
hand, the decays of GROUP 2 are not as stable against the
variation of the size of the model space as the decays of

FIG. 14. The same as Fig. 10 but for the fifth-forbidden transition
86Rb∗(6−)

β−
−→ 86Sr(0+).
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FIG. 15. The same as Fig. 10 but for the sixth-forbidden transi-

tions 92Nb(7+)
EC−→ 92Zr(0+) (top panel) and 92Nb(7+)

β−
−→ 92Mo(0+)

(bottom panel).

FIG. 16. The same as Fig. 10 but for the seventh-forbidden

transitions 116In∗(8−)
EC−→ 116Cd(0+) (top panel) and 116In∗(8−)

β−
−→

116Sn(0+) (bottom panel).

GROUP 1. Since these decays host (semi)magic reference
nuclei, small variations in the single-particle energies and in
the size of the model space can have a large effect on the
NMEs, especially in the cases where the NME is exceptionally
small. Thus, for some of these decays the prediction of
the corresponding half-life is practically impossible within
the theoretical scheme adopted in this work. It should be
noted that this does not compromise our main mission of
drawing conclusions about the suppression of the high-
multipole NMEs relevant for the 0νββ decays since the related
investigations are performed for the β decays belonging to
GROUP 1.

B. Expected half-lives of the decay transitions

The average of the ratios k of the pnQRPA and two-qp
NMEs of GROUP 1 agrees relatively well with the value given
for allowed GT decays in [11] and the first-forbidden unique
SD 2− decays in [10], as seen in the second and third columns
of Table XI. Inspired by the similarity of the GROUP 1 decays
to the GT and SD decays, we are led to the plausible conjecture
that the ratio kNM = Mexp/MpnQRPA for the GROUP 1 decays in
the present work is approximately the same as in [11] and [10].
This ratio, as extracted from [11], is approximately a stepwise
constant function of the mass number A as shown in the second
column of Table XII. The table lists also the factor

ξ = (kNM)−2 = t1/2(exp)/t1/2(pnQRPA), (17)

which can be used to scale the pnQRPA-calculated half-lives
to obtain the expected ones. We make the assumption that
the same factors ξ can also be applied to the decays of
GROUP 2. Then the factor ξ can be used to calculate the
expected “experimental” half-life values, listed in the last
column of Tables IV–X. Naturally, it would be of interest
to measure (some of) these expected half-lives to see if our
conjecture of extrapolating from the allowed GT 1+ decays and
first-forbidden unique SD 2− decays to the highly forbidden
unique decays is accurate enough.

A check of our conjecture would be desirable also for the
reason that the factor kNM could be used to scale the pnQRPA
NMEs related to the left and right virtual branches of the
0νββ decay. The left branch represents the NME related to the
virtual transition from the 0+ ground state of the even-even
mother nucleus to a multipole state Jπ in the odd-odd
intermediate nucleus. The right branch, in turn, connects the
same Jπ state to the 0+ ground state of the even-even daughter
nucleus. The high-multipole matrix elements computed here
represent the low-momentum-exchange limit of the ones
involved in the 0+ → Jπ = 3+,4−,5+,6−,7+,8− virtual tran-
sitions of each 0νββ-decay branch. In the 0νββ decay the
virtual transitions go through all the states of the intermediate
odd-odd nucleus and the contributions coming from different
excitation energies vary strongly from case to case, as
discussed in [39]. From the point of view of the exploitation
of the present results and the ones of the previous studies on
the allowed GT decays [11] and the first-forbidden unique
SD 2− decays [10], a favorable 0νββ case would be one
in which the dominant contribution(s) come(s) from among
the Jπ = 1+,2−,3+,4−,5+,6−,7+,8− multipoles and only few
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TABLE XI. Ratio k = MpnQRPA/Mqp as a function of the mass number A and degree of forbiddenness K for decays belonging to GROUP
1. The results of the earlier works for the Gamow-Teller (GT) and first-forbidden (K = 1) decays are quoted for comparison.

A GT [11] K = 1 [10] K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 Avg.

50–88 0.35 0.40 0.25 0.46 0.43 0.43 0.39
90–122 0.52 0.40 0.25 0.35 0.34 0.38 0.41 0.13 0.35
122–146 0.40 0.40 0.30 0.28 0.07 0.35 0.19 0.28

Avg. 0.42 0.40 0.27 0.36 0.28 0.39 0.41 0.16 0.34

low-lying intermediate states of the multipole(s) contribute. In
the best situation just the lowest-lying state of the involved
multipole(s) contributes significantly to the 0νββ-decay NME,
and we can speak about single-states(s) dominance (SSD)
of the 0νββ-decay amplitude (see [39]). In case of SSD the
present analysis is the most credible, and scaling by the factor
kNM could make sense. However, not even in the simple
case of the SSD is it clear how the present low energy and
low momentum-exchange study can be extended to the 0νββ
decay, which is a process of high momentum exchange.

V. CONCLUSIONS

In this work 148 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-
forbidden unique beta-decay transitions are studied by using
the two-quasiparticle (two-qp) and the more sophisticated
quasiparticle random-phase approximation (pnQRPA) models.
The calculations are done in realistic single-particle model
spaces, using Woods-Saxon single-particle energies and a G-
matrix based effective two-body interaction. Of special interest
is the ratio k = MpnQRPA/Mqp of the pnQRPA-calculated and
the two-qp-calculated nuclear matrix elements (NMEs). The
studied decays fall into two categories: GROUP 1, where
the even-even reference nucleus is nonmagic, and GROUP 2
where the reference nucleus is (semi)magic, each group
sharing half of the studied decay transitions. For GROUP 1
the k value decreases as the mass number increases, while
no such behavior is detected for GROUP 2. Except for the
seventh-forbidden decays, the degree of forbiddenness does
not affect the k values considerably.

Approximately half of the GROUP 2 decays have an
exceptionally large k value, around 0.5–0.8. The other half
of the decays have a k value less than 0.005, and only a few
decays have a k value between 0.005 and 0.5. The differences
in k values for GROUP 2 can be three orders of magnitude
for the decays of neighboring nuclei. The ambiguous behavior
of the decays involving a semimagic nucleus can be traced
back to the strong dependence of the corresponding NME on

TABLE XII. Ratio kNM = Mexp/MpnQRPA and the factor ξ =
(kNM)−2 = t1/2(exp)/t1/2(pnQRPA) for different mass regions based
on the results in Ref. [11]. Here the geometric mean of the β± NMEs
was used to determine k. The uncertainty of kNM is 10%, which gives
ξ an uncertainty of 20%.

A kNM ξ

50–96 0.67 2.2
98–136 0.46 4.7
138–146 0.82 1.5

the single-particle energies used in the calculation: A slight
change in the energy of a (few) key single-particle orbital(s)
can alter the magnitude of the NME by a considerable amount.
The dependence of the NME on the single-particle energies
is not exclusively a property of the semimagic nuclei, but the
dependence is magnified by the use of the BCS approach which
gives a sharp Fermi surface and a vanishing pairing gap at
magic nucleon numbers. At the same time, and for the above
reason, some of the GROUP 2 decays suffer from a rather
strong and arbitrary dependence on the size of the adopted
single-particle space. In these cases the predicted half-lives are
not reliable. The sometimes strong dependence of the NMEs
of GROUP 2 on the single-particle energies and the size of the
model space leads to the practical conclusion that the predicted
half-lives for decays containing (semi)magic nuclei have to be
taken with caution since sometimes their errors can be several
orders of magnitude.

The pnQRPA NMEs of GROUP 1 are reduced by an average
factor of k = 0.29 ± 0.15 with respect to the two-qp NMEs,
but some dependence on the mass number A and degree of
forbiddenness K is recorded. The average suppression of
the pnQRPA NME relative to the two-qp NME is in good
agreement with the ones found for the Gamow-Teller (GT) 1+
decays in [11] and the spin-dipole (SD) 2− decays in [10]. The
suppression stems from the spin-isospin correlations which are
taken into account at the pnQRPA level but not at the two-qp
level, as already noticed in the mentioned earlier studies. Since
the transition from two-qp picture to pnQRPA picture affects
the highly forbidden unique NMEs roughly the same way as the
SD and GT NMEs, the difference between the pnQRPA and the
experimental NMEs is most likely also similar. This means that
the pnQRPA NMEs can be conjectured to be reduced by an ap-
proximate A-dependent factor of kNM = 1.5–4.7 by additional
effects, like the nuclear-medium excitations and the many-
nucleon correlations going beyond the adopted many-body
framework [11]. By this conjecture the factor kNM can be used
to derive the expected “experimental” half-lives of the studied
decays, listed in the tables of this article. The listed expected
half-lives serve as a guide and incentive to adjust the sensitivi-
ties of potential experiments trying to measure (some of) these
transitions in order to validate or falsify our conjecture.

The suppression factors k and kNM, extracted in the present
and previous studies on the subject, could be relevant for
the calculation of the values of the NMEs related to the
0+ → 1+,2−,3+,4−,5+,6−,7+,8− virtual transitions involved
in the NMEs of the neutrinoless double beta (0νββ) decay. In
particular, the present results could be of importance in the
cases where the virtual transitions are dominated by one or
few transitions through low-lying state(s) of the intermediate
nucleus [single-state(s) dominance for given multipole(s)].
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The present study is the first of its kind and the obtained NMEs
can be seen to represent the low-momentum-exchange limit of
the ones involved in the 0νββ decay. It is not yet clear how the
present results can be extrapolated to determine the possible
suppression of the NMEs involved in the high-momentum-
exchange virtual transitions of the 0νββ decay.
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