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Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos,
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The Barcelona-Catania-Paris-Madrid functional recently proposed to describe nuclear structure properties of
finite nuclei is generalized as to include a realistic effective mass. The resulting functional is as good as the
previous one in describing binding energies, radii, deformation properties, etc. In addition, the description of
giant quadrupole resonance energies is greatly improved.
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I. INTRODUCTION

In a recent paper [1], we developed an energy density
functional theory for finite nuclei inspired by the Kohn-
Sham (KS) approach where the bulk part was fitted to the
microscopic results of Baldo et al. [2]. They were obtained
with the Brueckner Hartree-Fock (BHF) approach including
a three-body force taken from Ref. [3]. The interaction term
of the equations of state (EOS) for symmetric nuclear and
pure neutron matters were represented by polynomials of
integer powers in the density supplemented by a quadratic
interpolation for asymmetric matter. In this way, a very
faithful representation of the microscopic energy per particle
E(ρp,ρn)/A as a function of proton (p) and neutron (n)
densities was obtained for densities up to about three times
saturation density (ρ0). As discussed at length in Ref. [1]
this work is part of an ongoing effort in the nuclear physics
community to obtain energy density functionals applicable
all over the nuclide chart and able to provide an accurate
description of many nuclear properties—see Refs. [4–7] for
some examples in different contexts. The functional of [1] has
proven also to be useful in the description of the equation of
state (EOS) of neutron stars from the outer crust to the core on
a microscopical basis [8].

In order to account for finite nuclei where surface effects
are relevant, a very simple Hartree type of term was added
with a single Gaussian as effective central two-body force. Its
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strength was fixed from the first-order term of the polynomial
fit and, thus, only one free parameter, the range, was left for
adjustment. A second adjustable parameter was given by the
strength WLS of the spin-orbit force which was not extracted
from the microscopic calculation though, in principle, this
might be possible [9–11]. A third parameter came from the
fact that the microscopic equilibrium value of the energy per
particle had to be slightly renormalized by about 10−2 percent
because in finite nuclei this value gets coupled with the surface
energy. In this case, all coefficients of the polynomials in
ρn,ρp have then been changed by the same factor. With only
those three adjustable parameters, namely r0, WLS, and E/A
of the infinite system, the root mean square (rms) deviations
from experimental masses and charge radii were 1.58 MeV
and 0.027 fm, respectively [1]. An analogous procedure for
constructing the functional was followed in Ref. [12]. A
variant of this approach was adopted in Ref. [13], where a
Skyrme force was derived from BHF calculations in nuclear
matter, rather than directly the functional. A peculiarity of the
Barcelona-Catania-Paris-Madrid (BCPM) functional is that,
like in Ref. [12] but contrary to most of the Skyrme functionals,
its effective mass m∗ is equal to the bare one m = m∗. The
question of effective mass is a quite subtle one. In principle
there are two types of effective masses, the so-called k mass
and the ω mass [14]. The k mass stems from the nonlocality
and, thus, from the momentum (k) dependence of the static
Hartree-Fock type of mean field which, to fix the ideas, may be
derived from a Brueckner G matrix [15]. A typical value of the
effective k mass is m∗ = 0.7m. On the other hand the so-called
ω mass is obtained in considering dynamic corrections to
the single particle self-energy which lead to an energy (�ω)
dependence. Most of the time a coupling of the single particle
motion to higher configurations or to collective modes is
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considered [14] and this compensates to a large percentage
the reduction of the k mass with respect to the bare mass,
so that the combined effect is that the total effective mass
becomes close to the bare mass again. This effect, however,
only holds for the states close to the Fermi energy whereas in
the calculation of the ground state energy all configurations
enter, so that a precise decision of whether one should take a
reduced effective mass or not is difficult to make unless one
really undertakes a reliable microscopic calculation for the
ω mass and includes it in the self-consistent mean field cycle.
This, however, tremendously complicates the whole approach.
Anyway, it seems to be a fact that EDF’s with or without
reduced masses are about equally successful and it must be
concluded that apparently the ambiguity of the effective mass
can be very efficiently mocked up by a renormalization of
finite size properties such as, e.g., the surface energy. On the
other hand, for excited states the story can be different. The
sensitivity to the effective mass depends on the multipolarity of
the excitations. If the single particle self-energy is introduced,
it should be taken off-shell and it is not straightforward to
include an effective mass. Furthermore self-energy effects
can be strongly compensated by vertex corrections, like the
exchange of collective modes between the particle and the
hole [16].

It is our intention in this work to extend our BCPM-EDF to
include an effective density dependent mass which we extract
again from the same G-matrix calculations [2,17] as it was
done for the ground state energy. Also for proton and neutron
effective masses we will adjust a polynomial fit in the density.
The number of open parameters will stay the same as in the
original BCPM-EDF. We shall call the new EDF BCPM∗.

The paper is organized as follows. In Sec. II the method-
ology used to introduce a nonconstant effective mass in
the BCPM functional is presented along with details on
the calculation of finite nuclei. In Sec. III we present the
results of the fit of the new functional to the rms deviation
of binding energies. With the new set of parameters we
have performed some nuclear structure calculations, like the
evaluation of potential energy surfaces relevant to fission and
the estimation of the excitation energies of giant monopole and
giant quadrupole resonances.

II. METHODS

The BCPM energy density functional derived in Ref. [1] is
inspired by the KS density functional theory [18]. Although the
original KS theory is local, it has been extended to the nonlocal
case, i.e., including effective mass and spin-orbit contributions
(see Ref. [19] and references therein). Our functional uses a
simple polynomial of the total density ρ = ρn + ρp up to fifth
order and of the asymmetry parameter β = (ρn − ρp)/ρ up to
second order, to fit the realistic equation of state of symmetric
and neutron matters obtained with a state of the art microscopic
calculation with realistic forces. We use the same polynomial
for finite nuclei but this time in powers of the density of the
finite nucleus

ρ(�r) =
∑
ij

φ∗
i (�r)ρjiφj (�r). (1)

Here, the φi(�r) are some basis wave functions (in our case,
harmonic oscillator wave functions) and ρji is the Hermitian
density matrix. To incorporate other effects not present or
difficult to address in nuclear matter like the spin-orbit inter-
action or surface energy repulsion, additional terms discussed
below are incorporated into the functional. The kinetic energy
is treated at the quantum mechanical level by introducing the
kinetic energy density

τ (�r) =
∑
ij

�∇φ∗
i (�r)ρji

�∇φj (�r). (2)

The total energy of a finite nucleus is then given by

E = T + E∞
int + EFR

int + Es.o. + EC, (3)

where T is the kinetic energy,

E∞
int =

∫
d�rρ(�r)[Ps(�r)(1 − β2(�r)) + Pn(�r)β2(�r)] (4)

is the bulk energy, given in terms of the polynomials Ps(ρ) and
Pn(ρ) for symmetric and neutron matter and the asymmetry
density β(�r) = (ρn(�r) − ρp(�r))/ρ(�r), EFR

int is a finite range sur-
face term, Es.o. is the spin-orbit energy taken from the Skyrme
or Gogny forces, and EC is the standard Coulomb repulsion
including the exchange energy in the Slater approximation,
see [1] for a definition of the different terms. This energy
is supplemented by a density-dependent zero-range pairing
interaction. Finally, a rotational energy correction, relevant in
deformed nuclei, is subtracted, see below.

The inclusion of an effective mass in BCPM is carried out
by means of adding and subtracting an appropriate kinetic
energy term to the original kinetic energy density

�
2

2mq

τq → �
2

2m∗
q

τq − B(ρq)τ∞
q (5)

with

�
2

2m∗
q

τq = �
2

2mq

τq + B(ρq)τq, (6)

where B(ρq) = �
2

2mq
(mq/m∗

q − 1). In this expression m∗
q is the

coordinate dependent effective mass for protons q = p or
neutrons q = n, τq is the quantal kinetic energy density of
Eq. (2) for each kind of nucleon, and τ∞

q is the kinetic energy

density in the uniform medium τ∞
q = 3

5 (3π2)2/3ρ
5/3
q (�r). This

substitution guarantees that the kinetic energy at nuclear matter
level remains the same as before. With this redefinition of the
kinetic energy the functional now reads

E = T ∗ + E∞ ∗
int + EFR

int + Es.o. + EC, (7)

where

T ∗ =
∑

q

∫
d�r �

2

2m∗
q(�r)

τq(�r), (8)

and E∞ ∗
int is obtained by subtracting

∑
q

B(ρq)τ∞
q (9)
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from the energy E∞
int given in Eq. (4). The rationale behind this

procedure is to preserve the nuclear matter EoS of BCPM and,
therefore, all the nuclear matter properties of this functional—
see [1] for a discussion.

It should be noted that above functional is not gauge
invariant, feature which should hold, if one treats rotating
nuclei or other motions involving nonvanishing currents. Like
for Skyrme forces, it is, however, easy to repair this deficiency.
One indeed checks that the following replacement:

Bτ → B(τ − j2/ρ) (10)

with j the current, makes this piece of the functional gauge
invariant. One realizes that for the case of Skyrme forces
B ∝ ρ and, thus the usual combination ρτ − j2 is recovered.
It is evident that all the properties and consequences of a
gauge invariant functional, amply studied in the case of Skyrme
forces [20,21], can be taken over to our case. This concerns, for
instance, the gauge invariant rewriting of the spin-orbit term
[20,21]. Also the finite range surface term is gauge invariant,
since it is of the Hartree-type, see [20]. Therefore with Eq. (10)
the whole BCPM* functional is easily written in a moving
frame, since Galilean invariance is just a special case of a
general local gauge transformation.

Pairing correlations, required to describe open shell nuclei,
are introduced by means of a density-dependent zero-range
force of the type suggested by Bertsch and Esbenssen [22]

VPair(�r1,�r2) = V0

{
1 − η

[
ρ

( �r1 + �r2

2

)/
ρ0

]α}
δ(�r1 − �r2).

(11)

This force is widely used in nuclear structure calculations
[23] including the BCPM functional [2,24]. The parameters
V0 = −481 MeV fm3, η = 0.45, the saturation density ρ0 =
0.16 fm−3, and α = 0.47 are taken from [23] and correspond
to a fit of the nuclear matter pairing gap of Gogny D1 with
an effective mass of 0.67. Although our effective mass at
saturation is higher (see below) we have preferred to keep
the present parametrization of the pairing interaction for
consistency with BCPM. The same energy window of 60 MeV
from the bottom of the HF potential as in [23] has been used
in the present calculation.

The two-body kinetic energy correction, which accounts for
the lack of translational invariance, is taken as in [1]. The final
ingredient of the energy is the rotational energy correction
εrot which is estimated using the rotational approximation
εrot = 〈� �J 2〉/(2JY ) defined in terms of the Yoccoz moment
of inertia JY [25] and computed using the HFB like intrinsic
wave function corresponding to the variational minimum of the
HFB energy. This rotational correction is subtracted from the
functional’s energy in the spirit of the projection after variation
(PAV) method applied to rotational symmetry restoration—see
[25–27] for a thorough overview of the method. Note that
the rotational energy correction plays an important role in
deformed nuclei and its inclusion is relevant to describe masses
along the whole periodic table. In strongly deformed midshell
heavy nuclei the rotational energy correction can reach values
as large as 6 or 7 MeV. This correction, however, is almost
negligible in magic or semimagic nuclei, which are basically

spherical. Due to the fact that the spherical-deformed transition
is sharp, the rotational correction goes from zero to some MeV
at the transition point leading to sharp variations in the binding
energy plot—see below.

The finite nuclei calculations have been carried out with
an adapted HFBAXIAL [28,29] computer code preserving axial
symmetry. The quasiparticle operators are expanded in a
three-dimensional axially symmetric harmonic oscillator basis
with varying number of oscillator shells depending on mass
number as to guarantee a weak dependence of binding energies
with the basis size. In [1] we used a phenomenological formula
to extrapolate binding energies to the value corresponding to
an infinite size HO basis. As this phenomenological procedure
has proven in our case to lead to some difficulties for
weakly deformed or shape coexisting nuclei and it has been
recently questioned [30], we have preferred to change our
computational strategy by increasing the basis size used in
Ref. [1]. In order to study the impact of truncation errors in
the absolute binding energies and the parameter fit, we have
defined three basis sets. In the first set (basis 1) the size of the
bases used are 15 major shells for Z � 50, 17 major shells for
52 � Z � 82, and 19 major shells for 84 � Z � 110. The next
two sets are obtained by increasing by two shells (basis 2) and
four shells (basis 3) the bases in each Z interval. The oscillator
basis preserves axial symmetry and therefore depend upon two
oscillator lengths b⊥ and bz. In principle, those two lengths
should adapt to the geometry of the nucleus as to minimize the
energy. However, given the large number of shells used in the
three basis sets and the relatively small typical value of the β2

quadrupole deformation parameter encountered in the ground
state of atomic nuclei (typically less than 0.35 in absolute
value) we have considered more practical to keep them equal
(b⊥ = bz = b) for the binding energy calculations used to fit
the parameters of the functional. The oscillator length b of the
basis depends on mass number and the traditional b = A1/6 (in
fm) formula found in any nuclear physics textbook, sometimes
with slightly different numerical factors, has been used. In this
way a costly nucleus by nucleus optimization is avoided. The
error induced by this simplification is not relevant given the
large size of the basis. With this set up, all quantities depending
on energy differences, like one or two neutron separation
energies, α decay Q values, etc., are expected to converge to
less than 50 keV for most of the nuclei considered as verified
by comparing the S2n values obtained with basis 2 and basis
3. These results concerning the convergence of S2n with the
basis size are in consonance with the findings in [30] as shown
in their Fig. 11.

Only even-even nuclei have been considered in the present
study as the proper treatment of odd nuclei will require a HFB
plus blocking scheme that implies the consideration of the
“time odd” sector of the functional. This sector is not easily
fixed by nuclear matter properties and only affects very weakly
bulk properties like binding energies (the only quantity used to
fix the functional) or radii. Odd nuclei were neither considered
in Ref. [1].

The effective masses m∗
n and m∗

p for neutrons and protons
are obtained in the uniform system in terms of the neutron and
proton single particle potentials Un and Up, calculated within
the Brueckner-Hartree-Fock (BHF) procedure. At the Fermi
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FIG. 1. Proton (p, full line) and neutron (n, dotted line) effective
masses corresponding to the linear fit of Eq. (13) are plotted as a
function of the density for different values of the isospin asymmetry
parameter β.

momenta kFq one has

mq

m∗
q

= 1 + mq

�2kFq

(
dUq(k)

dk

)
k=kFq

, (12)

where q = n, p and mq is the bare nucleon mass. The effective
mass is a function both of the total density ρ and of the
asymmetry β = (ρn − ρp)/ρ.

We used Eq. (12) in a systematic calculation of the neutron
and proton effective masses for a set of total densities, ranging
from 0 to 0.2 fm−3, and asymmetries β from 0 to 1. We found
that the neutron and proton effective masses can be fitted by a
simple polynomial expression

m∗
n

mn

= a0(ρ) + a1(ρ)β;
m∗

p

mp

= a0(ρ) − a1(ρ)β,

(13)

where

a0 = 1 − 1.744025ρ + 2.792075ρ2,

a1 = 0.090795ρ + 2.981724ρ2 (14)

are dimensionless parameters depending on the density ρ. For
this expression to make sense the density ρ has to be given in
units of fm−3. Taking saturation density as ρsat = 0.16 fm−3

we get from the above fit the values m∗
n/mn = m∗

p/mp = 0.79
for β = 0.

This expression can be extended to negative values of β,
provided we simply interchange neutrons and protons, as it
must be. Since the neutron and proton effective masses have
a symmetric splitting, see Eq. (13) and Fig. 1, they have a
continuous derivative at β = 0. A closer comparison with the
microscopic results reveals that the fit with a linear dependence
on β looks not enough for the whole range up to β = 1 (pure

neutron matter). Although the deviations could be taken into
account by introducing higher powers in β, the linear fit is
good up to values of β ≈ 0.5, which are within the range of
values appearing in stable nuclei, with the exception of very
light nuclei, for which the BCPM functional is not expected
to be applicable. Therefore, we keep the fit of Eqs. (13)
and (14) neglecting the deviations, which can appear at very
large asymmetries. We are aware, however, that in situations
of large asymmetry, like in Wigner-Seitz cells in neutron stars,
our simple linear dependence will not be enough. In Ref. [31]
the neutron to proton mass splitting is expressed as (m∗

n −
m∗

p)/m = (0.27 ± 0.25)β, while more recently [32] a similar
analysis gives (0.41 ± 0.15)β. From Eq. (14) at saturation one
finds 0.18β for BCPM∗, i.e., a splitting that agrees in the sign
but it appears to be on the small side. In any case one should
appreciate the rough agreement between phenomenology and
theory what is not obvious nor trivial and is not found in
most parametrizations of the Skyrme or Gogny functionals. In
finite nuclei the polynomial fit in Eq. (13) is maintained but
using the finite nucleus density instead of the nuclear matter
one.

III. RESULTS

In this section we discuss first the fitting of the free
parameters of the BCPM∗ functional to minimize the rms
binding energy difference with the experimental data. The
functional so obtained is then used to carry out calculations to
asset its merits regarding quadrupole deformation properties
and excitation energies of giant resonances.

A. Binding energies and radii

As a consequence of the introduction of the effective mass
in finite nuclei, a readjustment of some of the parameters
of BCPM is required. The most affected is the spin-orbit
interaction strength, which is inversely proportional to the
effective mass and, therefore, is going to have a value in
BCPM∗ closer to the value of other functionals like Gogny
D1S or D1M with effective masses not equal to the bare
one. The reason for such dependence is the link between the
spin-orbit strength and the magic numbers: WLS has to be large
enough as to bring intruder orbital down to the lower major
shell. Decreasing the effective mass increases the gap between
major shells and, therefore, a larger WLS value is required. The
spin-orbit strength along with the other two range parameters
r0L and r0U (see [1] for more information) are readjusted as to
fit the binding energies of spherical and deformed even-even
nuclei in a similar manner as in [1]. As a first step we carried
out a comprehensive study with the basis 1 set (see above
for the definition) in order to find the optimal values of
the parameters minimizing the rms for the binding energy
difference using the AME 2012 experimental compilation
including 620 even-even nuclei [33]. The rms value obtained
in this way is σE = 1.65 MeV which is slightly higher
than the original BCPM value of 1.58 MeV obtained with
only 579 even-even nuclei (1.61 MeV when the AME 2012
compilation is considered). The values of the fitted parameters
are r0U = r0L = 0.7520 fm and WLS = 112 MeV fm5. We

014318-4



BARCELONA-CATANIA-PARIS-MADRID FUNCTIONAL . . . PHYSICAL REVIEW C 95, 014318 (2017)

observe that as in the BCPM case, the minimization of the
binding energy favors equal values of the r0U and r0L ranges.
Concerning the binding energy per nucleon E/A in nuclear
matter, the same value as in BCPM, namely 15.98 MeV, yields
the lowest binding energy rms. Due to the truncation error
induced in the binding energies by using a finite dimensional
basis the previous values of the parameters are linked to the
basis set used. In order to explore the dependency of the
parameters with the basis size and to assess the convenience
of the basis sets used we have performed calculations with the
basis sets 2 and 3 which include many more HO states. Given
the weak dependence of σE with the spin-orbit strength and
E/A in nuclear matter we have kept them fixed in this study
and only the parameter r0U = r0L = r0 has been explored.
The quantity r0 has been explored in steps of 0.0005 fm
around the initial value. The results indicate that for the basis
2 calculation the optimal r0 value keeps its original value of
0.7520 fm with σE = 1.63MeV. In the case of basis 3 (23 HO
shells in the actinides) the optimal r0 value is 0.7525 and σE

slightly increases to 1.65 MeV. The weak variation of r0 and
the constancy of σE points to a good convergence of relative
binding energies already for basis 1. It also points to the fact
that in a global fit, what is slightly worsened in a region of the
periodic table can be compensated by slight improvements in
another region.

More insight is gained by looking at the specific behavior
of the binding energy difference as a function of neutron
number for each of the Z values considered. Those quantities,
as obtained with basis 3 are plotted in Fig. 2 (see figure caption
for an explanation of the different elements in the plot). In this
plot we observe a nice reproduction of experimental data for
heavy nuclei away from magic or semimagic numbers. Close
to magic numbers we observe in many cases a nonsmooth
behavior which is due, as explained in [1], to a deficiency on the
way the rotational energy correction used in the definition of
the binding energy is computed: As mentioned in the previous
section, the rotational energy correction is obtained using
the intrinsic wave function minimizing the HFB energy and,
therefore, it is zero for spherical intrinsic states. The correction
suddenly jumps by a couple of MeV when the spherical
to deformed transition takes place and the jump obviously
reflects in the binding energy. This deficiency could be cured
by computing the rotational energy correction in the variation
after projection (VAP) scheme but this procedure, even in an
approximate way, is much more costly to implement than the
present method. Work to find a convenient way to implement
the VAP is under way. We also observe that, for light nuclei the
agreement with the experimental binding energies deteriorates
and the dependence with proton and neutron number is not
well reproduced. This is a common feature of many (if not all)
functionals, including BCPM. The value of σE obtained with
BCPM and BCPM∗ is comparable to the one of many Skyrme,
Gogny, or relativistic functionals. However it cannot compete
with some models like HFB-21 [7] or Gogny D1M [5] that
include beyond mean field effects and more phenomenological
ingredients.

The onset of deformation can be easily seen in the figure
because deformed nuclei correspond to those nuclei with a
nonzero rotational correction. Spherical nuclei are obtained

near or at magic neutron or proton numbers while quadrupole
deformed ground states are obtained otherwise.

Concerning charge radii we have also computed the rms
deviation σR with respect to the 315 experimental data points
corresponding to even-even nuclei and published in the recent
compilation of Angeli et al. [34]. The theoretical radius is com-
puted using the standard formula rch =

√
〈r2〉HFB + 0.8752.

The value obtained for σR using the BCPM∗ functional is
σR = 0.024fm, which is around 15% better than the 0.027 fm
value obtained with BCPM. In Fig. 3 we plot the difference
between the theoretical and experimental value of the charge
radii as a function of the mass number A for the 315 even-even
nuclei with experimentally known charge radii [34]. Overall,
we see a very good agreement with experimental data, except
in some superheavy and light nuclei. These deficiencies were
also observed in the BCPM results of Ref. [1].

To summarize our findings, we present in Table I the values
of the BCPM∗ parameters along with the ones of BCPM. In
the table the rms of the binding energy and radii differences
and corresponding to even-even nuclei are also given.

As the nuclear matter EoS of BCPM has been preserved in
BCPM∗, all its nuclear matter parameters K , J , etc., remain
exactly the same as with BCPM and we refer the reader to
Ref. [1] for an extensive discussion of their values. In addition,
the BCPM∗ values of the range parameters of the surface term
have not changed substantially, with respect to the ones of
BCPM and, therefore, it is to be expected that the variance
analysis of σE with respect to the parameters r0L, r0U , and
WLS carried out in [1] is going to yield similar conclusions for
BCPM∗.

B. Fission barrier heights

A fundamental aspect of any nuclear effective interaction
is its ability to produce reasonable deformation properties. For
this reason, we studied in Refs. [35,36] the quadrupole and
octupole deformation properties of some selected nuclei as
provided by the BCPM energy density functional and found a
good agreement with other well reputed functionals like Gogny
D1S [37]. On the other hand, the fission phenomenon, which
is described as the collective evolution of the nucleus from
its ground state to scission using the quadrupole deformation
parameter as driving coordinate, is perhaps the best testing
ground for deformation properties as it results from a subtle
competition between surface tension and Coulomb repulsion.
From the perspective of comparing with experimental data,
there are well established values of the fission barrier heights
in a number of actinides and super-heavies that could be
used. Those values are extracted in a model dependent way
from the behavior of the induced fission cross section as a
function of the energy and are routinely used as benchmarks of
theoretical fission models. In previous studies [38,39] we have
shown that the BCPM interaction produces quite reasonable
results for fission observables and, in any case, as good as
the ones obtained with other functionals including fission data
in their fitting protocols [40]. Therefore, we have repeated
some of the calculations to evaluate the impact of the effective
mass on those observables. In order to obtain barrier heights,
the computation of the energy landscape as a function of
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Black: HFB binding energy
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FIG. 2. Binding energy difference �B = Bth − Bexp (MeV) as a function of the shifted [by N0(Z)] neutron number N − N0(Z). The values
of Z and the neutron number shift N0(Z) are given in each panel. In all the panels the ordinate �B axis ranges from −6.5 MeV to 5.5 MeV
with long ticks at −6, −4, etc., MeV. The N − N0(Z) axis spans a range of 40 units with long ticks every ten units and short ones every two
units. For instance, for the nucleus of 132Ce (Z = 58, N = 74) the value of N0 is 66 and therefore N − N0 = 8. In every panel, a horizontal line
corresponding to �B = 0 has been plotted to guide the eye. Additional perpendicular lines signaling the position of magic neutron numbers
have also been included. Black curves correspond to theoretical binding energies computed with the HFB method whereas the red curves
additionally include the rotational energy correction εrot discussed in the text. The HFB calculations have been carried out with the basis 3 set.

the quadrupole moment is required. In this case and due to
the variety of shapes involved the HO basis used has to be
redefined as to include many more HO shells (26 shells) in the
z direction. In addition, to minimize truncation errors in the
deformation energies a careful optimization of the oscillator
length parameters is carried out at each value of the quadrupole
moment considered, see [41] for a convergence study. An
example of such kind of calculations is shown in Fig. 4 using

the paradigmatic case of 240Pu. For comparison, the results
obtained with BCPM and with the Gogny D1S functional
[37] are also plotted. The potential energy is given by the
HFB one including the standard rotational energy correction
εrot = 〈� �J 2〉/(2JY) [25]. The results for the three functionals
show a very similar behavior, with the position of maxima
and minima being almost the same in the three cases. It is
remarkable to notice the shoulder obtained with both BCPM
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FIG. 3. The experiment-theory deviation rch − rexp for the 315
even-even nuclei with known experimental data [34] is plotted as a
function of mass number A.

and BCPM∗ at Q20 = 90 b which is reminiscent of a second
isomeric well. The connection of this shoulder with the second
isomeric well observed in some U and Th isotopes deserves
further investigation. The values obtained for the two barrier
heights are given in Table II along with the corresponding
numbers for 234U, 244Pu, 242Cm, and 246Cm and compared
with experimental data.

We observe that both the results obtained with BCPM∗ as
well as the ones with BCPM are in quite good agreement
with experimental data [42], the ones obtained with BCPM∗

being slightly better. The results can not be taken as conclusive
because triaxiality is not allowed to develop in the first barrier.
However, the agreement of the calculations with experimental
data for the second barrier is very encouraging as, in this
case, triaxiality has proven to play a marginal role. The other
observable quantity relevant in fission studies is the excitation
energy of the fission isomer EI which is also given in the table
along with the existing experimental data for 240Pu and 242Cm.
The theoretical predictions are lower than the experimental
value by around 25% in the BCPM case and 40% with the new
BCPM∗.

In the five cases studied, reflection symmetry is broken
for quadrupole moments beyond the second fission barrier.
The behavior and values of the octupole moment for those
configurations are very similar to the ones obtained with
BCPM [38] and Gogny D1S, indicating that the good octupole

TABLE I. Values of the free parameters of BCPM [1] and BCPM∗

(this work) as determined by minimizing the rms of the binding energy
difference of even-even nuclei using the AME 2012 compilation [33].
The σE value is given along with the corresponding value of the rms
deviation of the radii. The results are obtained with basis 1 (see
text) and only a weak dependence of the r0U = r0L = r0 parameter is
observed when increasing basis size (see text for details).

WLS r0U r0L E/A σE σR

(MeV fm5) (fm) (fm) (MeV) (MeV) (fm)

BCPM 90.5 0.659 0.659 15.98 1.61 0.027
BCPM∗ 112 0.7520 0.7520 15.98 1.65 0.024

240Pu
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FIG. 4. Potential energy surface for fission, including the rota-
tional energy correction, computed as a function of the quadrupole
moment (in units of b = 100 fm2) for the Gogny D1S, BCPM, and
BCPM∗ functionals.

properties of those functionals [36,43] are preserved in the
present proposal. Work to analyze in more detail deformation
properties of BCPM∗ is in progress and will be reported
elsewhere.

C. Monopole and quadrupole giant resonance energies

In our previous work we have discussed with some detail the
excitation properties of the BCPM energy density functional.
In particular, we analyzed the excitation energies of the scalar
giant monopole and quadrupole resonances (GMR and GQR,
respectively) following the sum rule approach described in
Ref. [44]. In this reference the m1 and m3 sum rules are
obtained for Skyrme forces, but its calculation can be easily
generalized to the BCPM and BCPM∗ cases. The m1 sum rules
are given by mM

1 = (2�
2/m)A〈r2〉 and m

Q
1 = (4�

2/m)A〈r2〉,
for the isoscalar monopole and quadrupole, respectively. Those
expressions are valid in the case of gauge invariant Skyrme
functionals as well as with the BCPM* functional using the
gauge invariant expression (10), see, e.g., [45]. Then the
previous expressions for the m1 sum rules are recovered, as
discussed in [46]. The m3 sum rule is computed at 1p1h RPA

TABLE II. First (EA) and second (EB ) fission barrier heights and
the excitation energy of the fission isomer (EI ) are given in MeV for
five typical actinide nuclei. Results obtained with BCPM∗ and BCPM
are given along with the experimental data from [42].

BCPM∗ BCPM Exp

EA EB EI EA EB EI EA EB EI
234U 5 5.8 1.8 5.6 5.6 2. 4.8 5.5 –
240Pu 6.2 5.5 1.7 7.3 5.8 2.1 6 5.15 2.8
244Pu 6.1 6.2 1.7 7.8 6.4 2.5 5.70 4.85 –
242Cm 6.3 4.3 1.1 7.4 4.5 1.5 6.65 5.0 1.9
246Cm 6.5 4.7 1.1 8 5.5 2.1 6 4.8 –
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TABLE III. Theoretical E3 and E1 estimates (in MeV) of the
average excitation energy of the GMR including pairing correlations.
The E3 estimate of the GQR, including pairing, is also displayed. The
experimental energy of the centroid and the corresponding error for
the GMR and GQR are given as well.

Nucleus E3(M) E1(M) E3(Q) Exp(M) Exp(Q)

90Zr 19.10 18.31 14.65 17.81 ± 0.32 14.30 ± 0.40
144Sm 16.45 15.66 12.59 15.40 ± 0.30 12.78 ± 0.30
208Pb 14.53 13.89 11.18 13.96 ± 0.20 10.89 ± 0.30
112Sn 17.73 16.96 13.64 16.1 ± 0.1 13.4 ± 0.1
114Sn 17.62 16.85 13.56 15.9 ± 0.1 13.2 ± 0.1
116Sn 17.50 16.81 13.48 15.8 ± 0.1 13.1 ± 0.1
118Sn 17.39 16.70 13.41 15.6 ± 0.1 13.1 ± 0.1
120Sn 17.28 16.59 13.34 15.4 ± 0.2 12.9 ± 0.1
122Sn 17.18 16.39 13.28 15.0 ± 0.2 12.8 ± 0.1
124Sn 17.08 16.28 13.22 14.8 ± 0.2 12.6 ± 0.1
106Cd 18.01 17.16 13.87 16.50 ± 0.19
110Cd 17.74 16.89 13.68 16.09 ± 0.15 13.13 ± 0.66
112Cd 17.61 16.85 13.59 15.72 ± 0.10
114Cd 17.48 16.65 13.50 15.59 ± 0.20
116Cd 17.36 16.53 13.42 15.40 ± 0.12 12.50 ± 0.66

level using the scaling approach [44,46]. Finally, we shall point
out that, as far as we will describe only even-even nuclei,
the time-odd quantities (i.e., currents) in the energy density,
needed in general to recover the m1 sum rule, will not give
any contribution to the above considered sum rules due to
the time-reversal symmetry in even-even nuclei [44,45]. Let
us mention again here that all properties and technicalities
of the Skyrme functionals concerning static and/or dynamic
properties of nuclei, studied since several decades [20,21] can
directly be taken over to the BCPM* functional. The only
difference is that the function B(ρ) is linear in ρ in the case of
Skyrme and more complicated in the case of BCPM*.

We found that the BCPM predictions for the excitation
energies of the GMR are in agreement with the results provided
by other mean field models, nonrelativistic and relativistic,
with a similar value of the incompressibility modulus K .
However, it was found that the experimental excitation
energies of the GQR were systematically underestimated
by about 1 MeV. The underlying reason for that was that in
BCPM the effective mass equals the bare one and it is known
that the GQR excitation energies are sensitive to the value of
the effective mass. We have repeated these calculations in the
present work using the BCPM∗ energy density functional. In
Table III we report the theoretical estimates of the excitation
energy of the GMR and GQR, computed with our new
functional, of a selected set of nuclei, for which the GMR
excitation energy is experimentally known.

Comparing with Table VII of [1], one can see that the
influence of the effective mass on the excitation energy of the
GMR is basically negligible, while it is noticeable in the case
of the GQR. This behavior can be understood in the scaling
approach as follows. The scaled m3 sum rules for the GMR
and the GQR (see Eqs. (A12) and (A17) of [1]) contain a
kinetic energy contribution coming from the second derivative
of the scaled energy density respect to the scaling parameter
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FIG. 5. Excitation energies of the monopole and quadrupole giant
resonances as a function of mass number A obtained with the
scaling approximation. The estimation 58A−1/3 for the quadrupole
and 86A−1/3 for the monopole [25] are drawn to guide the eye. The
dotted curve 67A−1/3 corresponds to the best fit of the quadrupole
excitation energy.

λ. According to the transformation of Eq. (5), used in BCPM∗

to account for the kinetic energy, it is easy to see that both
contributions τ and τ∞ scale as λ2 in the monopole case while
in the quadrupole one only τ , given by Eq. (2), contributes
as a consequence of volume conservation in the quadrupole
oscillation. As far as in BCPM∗ the effective mass m∗ is smaller
than the bare mass m, the m3 value and the excitation energy
of the GQR E3(Q) will be larger than the predictions of the
BCPM functional where m∗ = m. Therefore, the agreement
with the experimental values of the excitation energy of the
GQR is better when computed with the BCPM∗ functional, as
it can be seen in Table II.

In Fig. 5 we display the excitation energies of the monopole
and quadrupole oscillations along the whole periodic table.
Both follow a C A−1/3 law with coefficients CM = 86 and
CQ = 67 MeV, respectively. These values are roughly in
agreement with the empirical values given in [25] of 86 and
58 MeV for the monopole and quadrupole resonances.

IV. CONCLUSIONS

In this work we propose a variant of the BCPM energy
density functional published in [1], where the bare mass is
replaced by a density dependent effective mass m∗. Though
it may not be absolutely clear whether bare or effective mass
is preferable as we argued in the Introduction, it is certainly
true that for, e.g., giant resonances other than monopole and
dipole ones an effective mass m∗ < m is favored. Again we
used our strategy and deduced the effective mass from our
microscopic G-matrix results and adjusted separately proton
and neutron effective masses to our results of the Bruckner G
matrix using polynomials in the density. A linear interpolation
between proton and neutron effective masses was fitted to the
asymmetries prevailing in finite nuclei. It turns out that the
difference of both masses is quite a bit on the lower side of
what one generally finds in the literature. In finite nuclei the
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densities are then replaced by the local ones as obtained from
the HFB calculation. Some parameters have to be readjusted,
in first place this concerns the strength of the spin-orbit term,
which now has values much closer to the usual values of
Skyrme or Gogny functionals. Concerning the results, not
surprisingly, the ones for the giant quadrupole resonance are
now in significantly better agreement with experimental data.
Fission barriers from BCPM∗ are slightly better than those with
BCPM. On the other hand the excitation energy of the fission
isomer is slightly worse with BCPM∗ than with BCPM when
compared to the data for 240Pu and 242Cm. The rms value for
the binding energy is 1.65 MeV with BCPM∗ and 1.61 MeV
with BCPM, the rms value for the radii is 0.024 fm instead

of 0.027 fm. All in all it can be said that BCPM∗ practically
performs as well as BCPM for all quantities besides for the
GQR where it yields sensitively better results.
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102, 242501 (2009).

[6] T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318
(2008).

[7] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102,
152503 (2009).

[8] B. K. Sharma, M. Centelles, X. Vinas, M. Baldo, and G. F.
Burgio, Astron. Astrophys. 584, A103 (2015).

[9] R. R. Scheerbaum, Nucl. Phys. A 257, 77 (1976).
[10] M. Kohno, Phys. Rev. C 86, 061301(R) (2012).
[11] Y. Fujiwara, M. Kohno, T. Fujita, C. Nakamoto, and Y. Suzuki,

Nucl. Phys. A 674, 493 (2000).
[12] S. A. Fayans, JETP Lett. 68, 169 (1998).
[13] L. G. Cao, U. Lombardo, C. W. Shen, and N. V. Giai, Phys.

Rev. C 73, 014313 (2006).
[14] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25, 83

(1976).
[15] M. Baldo, G. F. Burgio, H.-J. Schulze, and G. Taranto, Phys.

Rev. C 89, 048801 (2014).
[16] G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod.

Phys. 55, 287 (1983).
[17] M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys. A
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