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Fission barriers of two odd-neutron actinide nuclei taking into account the time-reversal symmetry
breaking at the mean-field level
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Background: For a long time, fission barriers of actinide nuclei have been mostly microscopically calculated
for even-even fissioning systems. Calculations in the case of odd nuclei have been performed merely within
a so-called equal-filling approximation (EFA) as opposed to an approach taking explicitly into account the
time-reversal-breaking properties at the mean-field level—and for only one single-particle configuration.
Purpose: We study the dependence of the fission barriers on various relevant configurations (e.g., to evaluate the
so-called specialization energy). In addition, we want to assess the relevance of the EFA approach as a function
of the deformation, which has been already found for the ground-state deformation.
Methods: Calculations within the Hartree–Fock plus BCS approach with self-consistent particle blocking have
been performed by using the SkM∗ Skyrme effective interaction in the particle-hole channel and a seniority force
in the particle-particle channel. Axial symmetry has been imposed throughout the whole fission path while the
intrinsic parity symmetry has been allowed to be broken in the outer fission barrier region.
Results: Potential-energy curves have been determined for six different configurations in 235U and four in 239Pu.
Inner and outer fission barriers have been calculated along with some spectroscopic properties in the fission
isomeric well. These results have been compared with available data. The influence of time-reversal-breaking
mean fields on the solutions has been investigated.
Conclusions: A sizable configuration dependence of the fission barrier (width and height) has been demonstrated.
A reasonable agreement with available systematic evaluations of fission-barrier heights has been found. The EFA
approach has been validated at the large elongations occurring at the outer-barrier region.
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I. INTRODUCTION

A microscopic understanding of the nuclear fission process
remains one of the most complex and challenging problem in
low-energy nuclear physics.

Although fission-barrier heights are not observable quan-
tities, they play an important role in determining whether
the excited compound nucleus deexcites through neutron
evaporation or fission. They are also a necessary input for the
calculations of fission cross sections. From a different point
of view, they allow us to describe quantitatively the nuclear
stability with respect to spontaneous fission in competition
with other decay modes, particularly α decay.

Over the years, many microscopic calculations of the
average fission paths of heavy nuclei have been performed
within mean-field approaches supplemented by the treatment
of nuclear correlations without or with the restoration of
some symmetries spuriously broken by the mean field. While
most of fission-barrier calculations have been performed for
even-mass (with even proton and neutron numbers) nuclei
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(see, e.g., Refs. [1–11] for recent related works), there are
comparatively very few microscopic studies dedicated to
odd-mass nuclei and even fewer to odd-odd nuclei. The
main reason is the complication caused by the breaking of
time-reversal symmetry at the mean-field level for a nuclear
system involving an odd number of neutrons and/or protons,
considered as identical fermions.

One of the earlier microscopic studies of spectroscopic
properties in odd-mass actinides at very large deformation was
performed by Libert and collaborators [12] for the bandhead
energy spectra in the fission-isomeric well of 239Pu within
the rotor-plus-quasiparticle approach. More recently, fission-
barrier calculations were performed within the Hartree–Fock–
Bogoliubov approach by Goriely et al. [13] for nuclei with
a proton number Z between 88 and 96. The resulting fission
barriers were then used for the neutron-induced fission cross-
section calculations as part of the RIPL-3 project published
in Ref. [14]. Around the same time, Robledo et al. have
performed fission-barrier calculations of the 235U [15] and
239Pu [16] nuclei, within the equal-filling approximation
(EFA) presented, e.g., in Ref. [17]. In practice, the EFA
consists of occupying pairwise the lowest single-particle
energy levels—exhibiting the twofold Kramers degeneracy—
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and “splitting” the unpaired nucleon into two time-reversal
conjugate states with an equal occupation 0.5. In this way, the
time-reversal symmetry is not broken and the calculations are
performed in a way which is very similar to what is done when
describing the ground state of an even-even nucleus.

There are actually two different formalisms in which this
EFA is implemented. One as used in Refs. [15,16] deals
with self-consistent calculations of one-quasiparticle states.
It has been shown to provide the same results as the exact
blocking results within this frame for the time-even part of
the densities [18]. Another EFA approach will be considered
here in some cases for the sake of comparison with the
corresponding exact calculations, which are the subject of our
study. It corresponds here to an equal-filling approximation to
self-consistent blocked one-particle states.

Although the EFA is likely to be a reasonable ap-
proximation, a proper microscopic description of odd-mass
nuclei requires a priori the consideration of all the effects
brought up by the unpaired nucleon. This nucleon gives rise
to nonvanishing time-odd densities entering the mean-field
Hamiltonian. The terms involving time-odd densities vanish
identically in the ground state of even-even nuclei. Their
presence for odd-mass nuclei increases the computing task.
As discussed, e.g., in Refs. [19,20], the time-odd densities
cause a spin polarization of the even-even core nucleus which
results in the removal of the Kramers degeneracy of the
single-particle states. The recent work of Ref. [21] shows
that the static magnetic properties of deformed odd-mass
nuclei can be properly described when taking into account
the effect of core polarization induced by the breaking of the
time-reversal symmetry at the mean-field level. Therefore, it
is our purpose here to study the effect on fission barriers of
the time-reversal symmetry breaking. To do so, we calculate
fission-barrier profiles of odd-mass nuclei within the self-
consistent blocking approach in the HF + BCS framework,
taking the time-reversal symmetry breaking at the mean-field
level into account.

As is well known, some geometrical intrinsic solutions are
broken near both inner and outer barriers. The intrinsic parity
is violated for elongations somewhat before the outer-barrier
region and beyond [22]. The axial symmetry is also known
from a very long time to be violated in static calculations
around the inner barrier; an effect which is increasing
with Z in the actinide region from, e.g., thorium isotopes
[23].

Recently it has been suggested that the outer barrier of
actinide nuclei should also correspond to triaxial shapes [24].
However, the triaxial character of the fission path in both
barriers might vanish or be strongly reduced upon defining it as
a least-action trajectory upon making some ansatz on adiabatic
mass parameters as well as on the set of collective variables to
be retained. This was first discussed in Ref. [25] for superheavy
nuclei. There, all quadrupole and octupole (axial and nonaxial)
degrees of freedom were considered. The mass parameters
were calculated according to the Inglis–Belyaev formula [26].
Such a result was recently confirmed in nonrelativistic [27] and
relativistic [24,28] mean-field calculations. The calculations of
mass parameters have been significantly improved by using the
nonperturbative adiabatic limit of the time-dependent Hartree–

Fock–Bogoliubov (ATDHFB) approach first discussed and
used in Ref. [29], later revisited in Ref. [30]. Moreover, the
intensities of pairing fluctuations have been included in the
set of collective variables together with the two axial and
nonaxial quadrupole degrees of freedom. Calculations in 240Pu
and 264Fm in Ref. [27] as well as 250Fm and 264Fm in Ref. [28]
have drawn similar conclusions about the disappearance or
strong quenching of the triaxiality of the fission paths. These
results have been shown to imply very strong consequences
on the spontaneous fission half-lives.

From these considerations, and keeping in mind the
somewhat preliminary character of our exploration of fission
barriers of odd nuclei, we have deemed as a reasonable first
step to stick here to purely axial microscopic static solutions.

This paper is organized as follows: In Sec. II, a brief
presentation of the self-consistent blocking Hartree-Fock plus
BCS (HF + BCS) formalism and some of its key aspects are
given together with some technical details of the calculations.
Our results will be presented in Secs. III and IV. Finally, the
main results are summarized and some conclusions drawn in
Sec. V.

II. THEORETICAL FRAMEWORK

The fission-barrier heights have been obtained from
deformation-energy curves whereby the quadrupole moment
has been chosen as the driving coordinate. The total energy
at specific deformation points has been calculated within
the HF + BCS approach with blocking, and we refer to
this as a self-consistent blocking (SCB) calculation. We first
discuss the details of our SCB calculations in Sec. II A, while
our approximate treatment for the restoration of rotational
symmetry using the Bohr–Mottelson (BM) unified model
is presented in Sec. II B. A detailed discussion about the
expressions relating our mean-field solutions to the BM model
can be found in Ref. [31], and we shall only retain the relevant
expressions herein. Section II C is devoted to the treatment
of the moment of inertia entering the rotational energy in the
BM model, and Sec. II D to some technical aspects of the
calculations.

A. Self-consistent-blocking calculations

We assume that the nucleus has an axially symmetrical
shape such that the projection �k of the total angular momen-
tum onto the axial symmetry z axis ĵz of the single-particle
state |k〉,

〈k|ĵz|k〉 = �k, (1)

is a good quantum number. The intrinsic left-right (parity)
symmetry was allowed to be broken around and beyond the
top of the outer-barrier, where such a symmetry breaking is
known to lower the outer barrier. For our description of odd-
mass nuclei, we have merely considered seniority-1 nuclear
states in which only one single-particle state is blocked. The
lowest nuclear Kπ state, in general, corresponds to an unpaired
nucleon blocked in the single-particle state which is the nearest
to the Fermi level with quantum numbers such that �k = K
and, when parity symmetry is not broken, πk = π . In practice,
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the blocking procedure translates to setting the occupation
probability v2

k of the blocked single-particle state and its pair-
conjugate state to 1 and 0, respectively.

Such a blocking procedure in an odd-mass nucleus re-
sults in the suppression of the Kramers degeneracy of the
single-particle spectrum. As a consequence of time-reversal
symmetry breaking at the mean-field level, the pairs of
conjugate single-particle states needed for the BCS pairing
treatment cannot be pairs of time-reversed states. However,
without recourse to the Bogoliubov treatment, we were able
to unambiguously identify pair-conjugate states by searching
for the maximum overlap in absolute value between two
eigenstates of the mean-field Hamiltonian, |k〉 and |̃k〉, such
that |〈k|(T̂ |̃k〉)|, where T̂ denotes the time-reversal symmetry
operator, is as close to 1 as possible. These partner states
|k〉 and |̃k〉 are dubbed as pseudopairs and they serve as
Cooper pairs in our BCS framework. The value for this
overlap will be exactly 1 when time-reversal symmetry is not
broken. This procedure for establishing the BCS-pair states
when time-reversal symmetry is broken at the mean-field level
has been implemented earlier in the work of Ref. [32]. A
more detailed discussion can also be found in Appendix A of
Ref. [31].

The breaking of the time-reversal symmetry induces terms
which are related to the nonvanishing time-odd local densities
in the Skyrme energy density functionals (see Appendix A).
These time-odd local densities are the spin-vector densities
sq , the spin-vector kinetic energy densities Tq , and the current
densities jq , where the index q here represents the nucleon
charge states. These time-odd local densities contribute in such
a way that the expectation value of the energy is a time-even
quantity, as it should be.

B. Bohr–Mottelson total energy

The total energy within our Bohr–Mottelson approach (see
the detailed discussion of Ref. [31]), is written as

〈IMKπα|ĤBM|IMKπα〉
= 〈

�α
Kπ

∣∣Ĥeff

∣∣�α
Kπ

〉 − 1

2 J 〈J2〉core

+ �
2

2 J
[
I (I + 1) − K(K − 1)

+δK, 1
2
a(−1)I+ 1

2

(
I + 1

2

)]
(2)

with |IMKπα〉 being the normalized nuclear state defined by

|IMKπα〉 =
√

2I + 1

16π2

[
DI

MK

∣∣�α
Kπ

〉
+ (−)(I+K)DI

M−KT̂
∣∣�α

Kπ

〉]
. (3)

In the notation above, I and M are the total angular momentum
and its projection on the symmetry axis in the laboratory
frame, respectively. The state |�α

Kπ 〉 refers to the intrinsic
nuclear state, while DI

MK is a Wigner rotation matrix. The
〈J2〉core quantity is the expectation value of the total angular-
momentum operator for a polarized even-even core. In our
model, Coriolis coupling has been neglected except for the

case of K = 1/2 in which its effect has been accounted for
by the decoupling parameter term. The moment of inertia J
and the decoupling parameter a have been computed from
the microscopic solution of the polarized even-even core (see
Ref. [31]).

For the bandhead state (I = K), the Bohr–Mottelson total
energy reduces to

EKπα = 〈Ĥeff〉 − 1

2 J 〈J2〉core + �
2

2 J (2K − δK, 1
2
a). (4)

For given quantum numbers K and π (when the intrinsic parity
symmetry is present) the fission-barrier heights have then
been calculated as differences of the Bohr–Mottelson energy
in Eq. (4) at the saddle points and the normally deformed
ground-state Kπ solution.

C. Calculation of moment of inertia

Special attention has been paid to the moment of inertia
entering the core rotational energy term given by Erot =
〈Ĵ2〉core/2J . The usual way to handle it is to use the Inglis–
Belyaev (IB) formula [26]. It is not satisfactory for at least
three reasons. It is derived within the adiabatic limit of the
Routhian Hartree–Fock–Bogoliubov approach. The Routhian
approach is, as is well known, only a semiquantal prescription
to describe the rotation of a quantal object. Moreover, it is
not clear, as we will see, that the corresponding collective
motion is adiabatic. Finally, the IB formula corresponds to
a well-defined approximation to the Routhian–Hartree–Fock–
Bogoliubov approach.

Concerning the last point, as discussed in Ref. [29], the
IB moment of inertia ought to be renormalized to take into
account the so-called Thouless–Valatin corrective terms [33]
studied in detail in Ref. [29]. They arise from the response of
the self-consistent fields with respect to the time-odd density
(as, e.g., current and spin vector densities) generated by the
rotation of the nucleus which is neglected in the IB ansatz. To
incorporate these corrective terms in our current approach, the
moments of inertia yielded by the IB formula, JBel, are scaled
by a factor α whose value is taken to be 0.32 following the
prescription of Ref. [34]:

J ′ = JBel(1 + α). (5)

As a result, one should diminish by the same percentage the
rotational correction evaluated upon using the IB moment
of inertia. Let us remark that the above correction concerns
adiabatic regimes of rotation.

Projecting after variation the 0+ state out of a HF + BCS
solution, corresponds, of course, in principle to a better
approach to the determination of the ground-state energy.
This has been performed in Ref. [35] for the fission barrier
of 240Pu upon using two Skyrme force parametrizations (SLy4
and SLy6 [36,37]). These works clearly show that using the IB
approach leads to an overestimation of the rotational correction
by about 10%–20% in the region of the inner barrier and
fission-isomeric state and by more than 80% close to the outer
barrier. A word of caution on the specific values listed above
should be made, however, since these calculations yield a first
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TABLE I. Rotational energy (in MeV) calculated from Belyaev
formula (IB) and the intrinsic vorticity model (IVM) at the ground-
state deformation of four even-even nuclei as a function of the total
angular momentum Iav defined in Eq. (6).

Nucleus Iav IB IVM

234U 12.988 2.371 1.232
236U 12.905 2.423 1.255
238Pu 13.146 2.441 1.266
240Pu 13.143 2.408 1.232

2+ energy in the ground-state band which is about twice its
experimental value (83 instead of 43 keV).

A third theoretical estimate stems from the consideration
of a phenomenological approach belonging to the family of
variable moment of inertia models. It describes the evolution
of rotational energies in a band by consideration of the
well known Coriolis antipairing (CAP) effect [38] in terms
of intrinsic vortical currents (see, e.g., Ref. [39]). The IB
treatment of the moment of inertia corresponds to a global
nuclear rotation which is adiabatic, i.e., corresponding to a
low angular velocity � or, equivalently, to a rather small value
of the total angular momentum (also referred to as spin).
However, one can compute the average value of the total
angular momentum Iav spuriously included in the mean-field
solution as

Iav(Iav + 1)�2 = 〈Ĵ2〉, (6)

where Ĵ is the total-angular-momentum operator, and find
that the value of Iav even at ground-state deformation cannot
be considered as small (one finds there that Iav ≈ 13).
Consequently, the moment of inertia entering the rotational
correction term should reflect the fact that the average � is
large.

Recently, a polynomial expression for the moment of inertia
as a function of � denoted as J (�) has been proposed
according to this approach to the Coriolis antipairing effect
(see Ref. [40] and a preliminary account of it in Ref. [41]).
This model shall be referred to as the intrinsic vorticity model
(IVM) in the discussion herein. The IVM was found to work
well for the rotational bands in the ground-state deformation
for some actinide nuclei; for instance, a very good agreement
for 240Pu for a value of I as high as Iav ≈ 30 (where it
predicts a rotational energy differing by only 70 keV from
the experimental value).

Table I lists the spurious rotational energy obtained with the
IB formula as compared with the IVM rotational energy for a
given value of the total angular momentum Iav in the ground-
state of even-even nuclei. In all cases, the spurious rotational
energy evaluated with the IB moments of inertia is larger by
about a factor of two with respect to the values obtained in the
IVM approach. Therefore, the rotational energy obtained with
the IB formula should be reduced by approximately 50%. The
same amount of correction is assumed to apply as well to all
other deformations.

Incidentally, the 50% reduction in the rotational energy at
all deformation happens to translate into lowerings of fission

barriers of the same magnitude as those obtained from the
angular-momentum-projection calculations of Ref. [35] in
240Pu.

One may note that, in both the exact or approximate
projection formalisms described above, one overlooks—as we
will do here—the possible effect of coupling of the pairing
mode with the collective shape degrees of freedom, as for
instance a possible Coulomb centrifugal stretching (see, e.g.,
Ref. [41]). Indeed, if any, this effect should be more important
at the angular-momentum value Iav than at much lower spins.

In view of this, we consider to fix ideas the following three
approaches to the calculation of the moment of inertia:

(i) the Inglis–Belyaev formula (IB),
(ii) the increase of the Inglis–Belyaev moment of in-

ertia by 32% (IB + 32%), to take into account the
Thouless–Valatin corrective terms,

(iii) the renormalization of the Inglis–Belyaev moment of
inertia by a factor of two (IB + 100%), which arises
from the 50% reduction in the rotational energy of the
intrinsic vorticity model.

D. Total nuclear energies within an approximate
projection on good-parity states

In the spirit of the unified model description of odd nuclei
disentangling the dynamics of an even-even core on one hand
and of the unpaired (odd) nucleon on the other, we factorize
the total wave function (with an obvious notation) as

|�tot〉 = |�core〉|φodd〉. (7)

Similarly, we decompose the total Hamiltonian in two separate
core and single-particle parts

Ĥ = Ĥcore + ĥodd. (8)

Upon projecting on good parity states both core and odd-
particle states we get

|�tot〉 = |�+〉 + |�−〉, (9)

where the good parity components of |�tot〉 may be developed
onto core and odd-particle good parity components as

|�+〉 = εη|�+
core〉|φ+

odd〉 +
√

1 − ε2
√

1 − η2|�−
core〉|φ−

odd〉
(10)

and, similarly,

|�−〉 = ε
√

1 − η2|�+
core〉|φ−

odd〉 +
√

1 − ε2η|�−
core〉|φ+

odd〉,
(11)

where all kets on the right-hand side (r.h.s.) of the two above
equations are normalized. As a result of this, and further
making the rough assumption that Ĥcore and ĥodd break only
slightly the parity, one gets approximately the energies of the
state described by the ket |�tot〉 after projection as

E+ = ε2η2(E+
core + h+

odd) + (1 − ε2)(1 − η2)(E−
core + h−

odd)

1 − (ε2 + η2) + 2ε2η2

(12)
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in the positive-parity case and similarly for the negative-parity
case,

E− = ε2(1 − η2)(E+
core + h−

odd) + (1 − ε2)η2(E−
core + h+

odd)

(ε2 + η2) − 2ε2η2
,

(13)

where E+
core and E−

core are the energies of the projected core
states and h+

odd and h−
odd are the diagonal matrix elements

〈φ+
odd|ĥodd|φ+

odd〉 and 〈φ−
odd|ĥodd|φ−

odd〉.
Only in special cases can we easily approximate from what

we know about the core projected energies the total projected
energy of the odd nucleus.

Let us illustrate the above in two simple cases: The first
one is a favorable one where the odd nucleon has an average
parity which is roughly equal to one in absolute value (e.g.,
such that roughly η = 1). Then, the total projected energies
will be given by

Eπ = Eπ
core + eodd, (14)

where eodd is the single-particle (mean-field) energy of the
unpaired nucleon. Now, we recall that the energy of the
core state projected onto a positive parity is lower than (or
equal to) what is obtained when projecting it on a negative
parity. Moreover, within the core plus particle approach, we
may approximate (à la Koopmans) the total projected nuclear
energy E(K,π ) of the odd nucleus corresponding to a (K,π )
configuration for the unpaired nucleon as

E(K,π ) = E+
core + eodd = Eint(K,π ) + �E+

core, (15)

where the intrinsic total energy Eint(K,π ) results from our
microscopic calculations for the considered single-particle
(K,π ) configuration and the corrective energy �E+

core is the
gain in energy obtained when projecting the core intrinsic
solution on its positive-parity component.

On the contrary, whenever the average parity of the odd
nucleon state is close to zero such that roughly η2 = 1

2 one
would get, for instance, for the positive-parity projected state,

E+ = ε2E+
core + (1 − ε2)E−

core

2
+ ε2h+

odd + (1 − ε2)h−
odd

2
,

(16)

which cannot be simply evaluated without a detailed knowl-
edge of the projected wave functions.

E. Some technical aspects of the calculations

We have employed the SkM∗ [42] parametrization as
the main choice of the Skyrme force for our calculations.
This Skyrme parametrization has been fit to the liquid drop
fission barrier of 240Pu and is usually considered as the
standard parametrization for the study of fission-barrier prop-
erties; see, e.g., Refs. [11,43] within the HF framework and
Refs. [3,44,45] in the Hartree–Fock–Bogoliubov calculations.
Two other parametrizations will be also considered here in
some cases, namely the SIII [46] and the SLy5∗ [47] parameter
sets.

As was done in the study of low-lying bandhead spectra
in the ground-state deformation [31], to be consistent with

the fitting protocol and to respect the Galilean invariance, we
have neglected the terms involving the spin-current tensor
density J

μν
q and the spin-kinetic density Tq by setting

the corresponding coupling constants B14 and B15 (see
Appendix A for the definition of these constants) to zero
in the energy-density functional and the Hartree–Fock mean
field. To make this presentation self-contained, we recall in
Appendix A the expressions of the Skyrme energy-density
functional and the Hartree–Fock fields, together with the
coupling constants in terms of the Skyrme parameters. In
addition, we also neglected the terms of the form s · �s in the
energy-density functional, where s is the spin nucleon density,
and the corresponding terms of the Hartree–Fock Hamiltonian.
We shall refer to this as the minimal time-odd scheme where
only some combinations of the time-odd densities appearing
in the Hamiltonian density are taken into account. On the
other hand, the full time-odd scheme refers to the case
where all time-odd densities are considered when solving the
Hartree–Fock equations.

The pairing interaction has been approximated with a
seniority force which assumes the constancy of so-called
pairing matrix elements between all single-particle states
belonging to a restricted valence space. In our case, the valence
space has been chosen to include all single-particle states up to
λq + X, where λq is the chemical potential for the charge state
q and X = 6 MeV. A smoothing factor of Fermi type with a
diffuseness μ = 0.2 MeV (see, e.g., Ref. [48] for details) has
been used to avoid a sudden variation of the single-particle
valence space. The pairing matrix element is given by

gq = Gq

Nq + 11
, (17)

where Nq denotes the nucleon number of charge state q. The
pairing strengths Gq were obtained by reproducing as best as
possible the experimental mass differences �(3)

q (Nq) of some
well-deformed actinide nuclei (for odd-Nq values, see Ref. [31]
for further discussions). The obtained values when using the
SkM∗ parametrization are Gn = Gp = 16.0 MeV.

The calculated single-particle states have been expanded in
a cylindrical harmonic-oscillator basis. The expansion needs
to be truncated at some point, and this has been performed
according to the prescription of Ref. [49],

�ω⊥(n⊥ + 1) + �ωz

(
nz + 1

2

)
� �ω0(N0 + 2), (18)

where the frequencies ωz and ω⊥ are related to the spherical
angular frequency ω0 by ω3

0 = ω2
⊥ωz. The basis-size parameter

N0 = 14, which corresponds to 15 spherical major shells,
has been chosen. The two basis size parameters have been
optimized for a given Skyrme interaction at each deformation
point of the neighboring even-even nuclei while assuming axial
and parity symmetrical nuclear shapes. The optimized values
were then used for the calculations of the odd-mass nuclei.

Numerical integrations were performed by using the
Gauss–Hermite and Gauss–Laguerre approximations with 16
and 50 mesh points, respectively. The Coulomb exchange term
has been evaluated in a usual approximation generally referred
to as the Slater approximation [50] even though it was proposed
much earlier by von Weisæcker [51].
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III. FISSION-BARRIER CALCULATIONS

A. Fission barriers of odd-mass nuclei without
rotational correction

First, the HF + BCS calculations of deformation-energy
curves as functions of the quadrupole moment Q20, with
imposed parity symmetry, were performed in the two even-
even neighboring isotopes of a given odd-mass nucleus.
Subsequently, the calculations for the odd-mass nucleus were
then carried out starting from the converged solutions of either
one of the two even-even neighboring nuclei. It has been
checked that, as it should, the choice of the initial even-even
core solution to be used at a particular deformation point
does not affect the solution of the odd-mass nucleus when
self-consistency is achieved.

For odd-mass nuclei, the choice of the blocked states
have been limited to the low-lying bandhead states appearing
in the ground-state well. This corresponds to blocking the
single-particle states with quantum numbers �π = 1/2+,
5/2+, 7/2−, and 7/2+ for 239Pu and 235U, and the additional
two single-particle states with �π = 3/2+ and 5/2− for 235U.
In all cases, the single-particle state with the desired Kπ

quantum numbers nearest to the Fermi level is selected as the
blocked state at every step of the iteration process. However,
this selection criterion does not guarantee a converged solution.
There can be, indeed, a problem related to the oscillation of
the blocked state from one iteration to the next. In this case,
we were forced to perform, instead, two sets of calculations.
The blocked configuration with a lower-energy solution was
selected as the solution for the particular Kπ state.

The results of these calculations where intrinsic parity is
conserved are displayed in Figs. 1 (for 239Pu) and 2 (for 235U).
They lead, as is well known, to unduly high fission barriers for
two reasons: One is that a correction for the spurious rotational
energy content (as above discussed and substantiated below)
should be removed throughout the whole deformation-energy
curve. The second, specific to the outer barrier, is related to
the imposition of the intrinsic parity symmetry. This is why
parity-symmetry-breaking calculations have been considered.
Due to the huge amount of numerical effort that it involves,
we considered only some of the lower bandhead states in the
ground-state deformation. These are bandhead states with K =
1/2, 5/2, and 7/2 states for 239Pu, and 1/2, 3/2, and two 7/2
states for 235U. These parity-symmetry-breaking calculations
were performed starting from a converged parity-symmetric
solution of the respective Kπ configuration beyond the fission-
isomeric well. From this initial solution corresponding to a
given elongation (as measured by Q20), we blocked one single-
particle state with K = � and then performed calculations by
constraining the nucleus to a slightly asymmetrical shape at
a finite Q30 value for a few iterations. The constraint on Q30

was then released and the calculations were allowed to reach
convergence. Once an asymmetric solution was obtained, we
used it for calculating the next Q20 deformation point with an
increment of 20 barns.

The results of such parity-breaking calculations are reported
also in Figs. 1 and 2. Figure 3 illustrates a specific example: the
transition from a symmetrical equilibrium solution at Q20 =
95 b to increasingly asymmetrical equilibrium solutions upon
increasing Q20. At the top of the barrier (corresponding
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FIG. 1. Deformation-energy curves of 239Pu as functions of Q20 calculated with the SkM∗ parametrization and without taking the rotational
energy correction into account. The Kπ labels refer to the quantum numbers in the parity-symmetrical region (unfilled circles). The plotted
solutions when this symmetry is broken (filled circles) are obtained by continuity as functions of Q20.
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FIG. 2. Same as Fig. 1 but for 235U.

roughly to the Q20 = 110–130 b range) the attained octupole
deformations (as measured by Q30) reach large values which
are representative of the most probable fragmentation in the
asymmetrical fission mode experimentally observed at very
low excitation energy in this region. Of course, upon releasing
the symmetry constraint, the parity is no longer a good
quantum number. Thus, e.g., in Fig. 1, the parity-broken energy
curve associated with the label 1/2+ corresponds merely to a
K = 1/2 solution beyond the critical point, where the left-right
reflection symmetry is lost. This may cause some ambiguity
in how we define the fission barrier. For instance, in the case
of 235U (Fig. 2), we have two K = 7/2 solutions of opposite
parity. In Fig. 4, we report potential-energy curves for the two
K = 7/2 solutions followed by continuity upon increasing the
deformation from the parity-conserved region. It turns out that
the energy curves of these two solutions are crossing around
Q20 = 115 barns. The solution stemming at low Q20 from a
positive-parity configuration becomes energetically favored.
We could thus define a lowest K = 7/2 fission barrier by

jumping from one solution to the other. Yet, this overlooks
two problems. One which will be touched upon below, is the
projection on good parity states. The other is the fact that we
do not allow here for a residual interaction between the two
configurations; a refinement that is beyond the scope of our
current approach.

As expected, the parity-symmetry-breaking calculations
do yield a substantial effect on the intrinsic deformation
energies around the outer fission barrier. Its height for the
1/2 configuration in 239Pu is lowered by about 3.9 MeV
with respect to the symmetrical barrier, leading to a cal-
culated height EB = 6.3 MeV. The outer-barrier height for
the 5/2 configuration, in the same nucleus, was found to be
EB = 6.6 MeV, corresponding to an even larger reduction
of 4.7 MeV with respect to the left-right-symmetric barrier
height. Important reductions of fission-barrier heights are also
obtained in the 235U case (see Fig. 2). One lowers the K = 1/2
outer barrier by 3.7 MeV and by 5.4 MeV in the K = 7/2
case.
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FIG. 3. Cuts for given values of Q20 in the potential-energy
surface around the top of the outer barrier as a function of the octupole
moment Q30 (given in barns3/2) of the 5/2 blocked configuration of
239Pu. The SkM∗ parametrization has been used.

Associated with this substantial gain in energy upon
releasing the left-right reflection symmetry, one observes also
a very important lowering of the elongation at the outer fission
saddle point, resulting in a reduced barrier width and therefore
in a strong further enhancement of the barrier penetrability.

To generate relevant outer-barrier heights, one has in
principle to project our solutions onto good parity states. In
the absence of such calculations for the odd nuclei under
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FIG. 4. A portion of the deformation-energy curves of the blocked
K = 7/2 configurations in 235U from the fission-isomeric well up to
beyond the top of the outer barrier. The filled symbols refer to the
local minima as a function of Q30 for fixed elongation Q20 while the
unfilled symbols refer to the solutions obtained by imposing a left-
right symmetry. The solid line connects the lowest-energy solutions
when the left-right symmetry is broken.
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FIG. 5. (top) Evolution of the single-particle energies for two
� = 7/2 states near the BCS chemical potential (marked with
crosses) as functions of Q20 obtained in the parity-asymmetric
calculations of 235U. The solid line connects the blocked single-
particle states as a function of deformation. (bottom) Average parity
of the above considered blocked single-particle states as a function
of Q20.

consideration here, one may propose some reasonable esti-
mates taking stock of what we know about the projection of a
neighboring even-even core nucleus. As discussed in Sec. II D,
however, this is only possible whenever the single-particle
wave function of the last (unpaired) nucleon corresponds to
an average value of the parity operator, which is close to 1 in
absolute value. This is not always the case as exemplified in
Fig. 5, corresponding to two low-excitation-energy K = 7/2
configurations in the 235U nucleus. They are followed, as
we have already seen, by continuity from slightly before
the isomeric-fission well to much beyond the outer barrier.
One of these two solutions stemming from a Kπ = 7/2−
configuration at small elongation keeps up to Q20 = 120–
130 b an average parity reasonably close to 1. On the contrary,
the other K = 7/2 solution involves in the outer-barrier region
a large mixing of contributions from both parities. We will
therefore be only able to evaluate the fission barrier of the
former and will not propose any outer fission-barrier height
for the latter.

In the work of Ref. [11] one has described the fission barrier
of 240Pu nucleus within the highly truncated diagonalization
approach, to account for pairing correlations while preserving
the particle-number symmetry. Such solutions have been
projected on good parity states after variation. The parity-
projection calculation had no effect on the total binding energy
at the top of the outer fission barrier, where the value of
Q30 was found to be very large. In contrast, projecting on
a positive-parity state causes a lowering of the total binding
energy in the fission-isomeric well.

Using the notation of Sec. II D, one has obtained in Ref. [11]
for the 240Pu nucleus a positive correcting energy �+

core about
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TABLE II. Expectation value of the parity of the parity operator
for the blocked single-particle state nearest to the Fermi level in both
considered odd nuclei corresponding to a specific K configuration in
the Q20 = 120–130 barn region. The SkM∗ interaction has been used.
Only the lowest-energy solutions have been considered for a given
K value. In the single case K = 7/2 where two solutions stemming
by continuity from states with the same K and opposite π values
were close enough in energy (a couple of MeV), we have reported the
parity expectation value of both, putting in parentheses the solution
with the higher energy.

K 1/2 3/2 5/2 7/2

235U 0.76 −0.53 0.06 0.85(0.10)
239Pu −0.13 0.83 (0.19)

equal to 350 keV for the fission-isomeric state and which
vanishes at the top of the outer barrier.

According to the discussion of Sec. II D, out of all the
configurations considered up to the isomeric state in 235U and
in 239Pu, only the Kπ = 1/2+ and 7/2+ configurations in
235U, and the 7/2+ configuration in 239Pu qualify to allow
us to propose reasonable estimates of the outer fission-barrier
heights (see Table II).

B. Inclusion of rotational energy and sensitivity of
fission-barrier heights to the moment of inertia

Table III displays the inner-barrier height EA, the fission-
isomeric energy EIS, and the outer-barrier height EB , obtained
within the Bohr–Mottelson unified model (therefore including
the rotational energy). Parity symmetric and asymmetric
(when available) outer-barrier heights are both tabulated for
completeness. It should be emphasized that the notation EIS

used here is not synonymous with the usual meaning of
fission-isomeric energy often denoted by EII. The latter refers
to the energy difference between the lowest-energy solutions in
the fission-isomeric and ground-state wells. The corresponding
results will be reported in Sec. IV, while the former is the
energy difference between given Kπ quantum numbers in the
two wells.

It can be seen from Table III that the rotational-energy
correction calculated by using the Inglis–Belyaev formula
gives too low an outer fission barrier in some cases, as
compared with the empirical values found to be within the
range of 5.5 to 6.0 MeV (see Table IV presented in the next
section). The increase in the IB moments of inertia by 32%
and 100% as discussed in Sec. II results in an increase, on
the average, of EA and EIS by about 0.27 and 0.35 MeV,
respectively while the parity-symmetric EB increases by about
0.64 MeV.

Among the three different considered energy differences,
EB is found to be the most sensitive one to the variation of
the moment of inertia as expected in view of the well-known
increase of the rotational energy correction with the elongation.

C. Comparison with empirical values and other calculations

Before comparing our fission-barrier heights to other avail-
able data, some corrections should be made. The corrections
considered herein stem from approximations of a different
nature: the so-called Slater approximation to the Coulomb
exchange interaction, the truncation of the harmonic-oscillator
basis, and the effect of triaxiality around the inner-barrier
ignored here.

We shall discuss first the corrections to be made for the
inner-barrier heights. A test study on the impact of basis-
size parameter on the fission-barrier heights is presented in
Appendix B. As discussed therein, the inner-barrier height is
estimated to be lowered by about 300 keV when increasing
the basis-size parameter N0 to a value where this relative
energy may be considered to have converged. Moreover,
the use of Slater approximation was found in Ref. [52] to
underestimate the inner-barrier height of 238U by about also
300 keV. Assuming that a similar correction applies to the two
considered nuclei irrespective of the Kπ quantum numbers,
our inner-barrier height should be increased by the same
magnitude.

Let us consider the impact of breaking the axial symmetry
around the top of the inner barrier. When breaking this
symmetry, K is no longer a good quantum number and
this may pose a problem in the blocking procedure for an

TABLE III. Inner-barrier height EA, fission-isomeric energy EIS (with respect to the ground-state solution), and outer-barrier height EB for
the two considered odd-neutron nuclei. The SkM∗ parametrization has been used. Three values (in MeV) were given in all cases, corresponding
to different prescription for the moments of inertia (see the discussion in Sec. II).

Nucleus Kπ EA EIS EB (symmetric) EB (asymmetric)

IB IB + 32% IB + 100% IB IB + 32% IB + 100% IB IB + 32% IB + 100% IB IB + 32% IB + 100%

235U 1/2+ 6.57 6.83 7.11 2.60 2.94 3.30 8.60 9.23 9.90 5.31 5.83 6.38
3/2+ 6.19 6.43 6.69 1.48 1.81 2.16 8.12 8.72 9.37
5/2+ 5.83 6.09 6.37 1.44 1.78 2.15 9.57 10.17 10.80
5/2− 6.32 6.59 6.87 3.97 4.28 4.62 8.21 8.81 9.46
7/2− 6.97 7.18 7.41 2.70 3.00 3.32 10.25 10.85 11.49
7/2+ 4.75 5.04 5.35 2.21 2.55 2.91 7.29 7.93 8.61 4.03 4.54 5.09

239Pu 1/2+ 7.43 7.71 7.98 1.70 2.05 2.43 7.63 8.24 8.88
5/2+ 6.97 7.25 7.54 0.96 1.30 1.67 8.83 9.40 10.00
7/2− 8.10 8.32 8.56 2.74 3.05 3.37 8.75 9.32 9.93
7/2+ 5.90 6.18 6.48 1.72 2.05 2.40 6.63 7.22 7.86 3.80 4.25 4.72
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TABLE IV. Comparison between various estimates of the inner-barrier height EA and outer-barrier height EB (given in MeV) of the two
considered odd-neutron nuclei. Our calculated fission-barrier heights corresponding to the experimental Kπ quantum numbers, at ground-state
deformation, are listed in the last column, whereby these values have been obtained after taking the various corrections into account.

Nucleus K Refs. [15,16] Ref. [53] Ref. [13] Ref. [54] Ref. [55] Present work

EA EB EA EB EA EB EA EB EA EB EA EB

1/2+ 9.0 8.0 4.20 4.87 5.54 5.80 5.25 6.00 5.9 5.6 5.81 6.18
3/2+ 5.39

235U 5/2+ 5.07
5/2− 5.57
7/2− 8.5 7.2 6.11
7/2+ 4.05 4.89

239Pu 1/2+ 11.0 8.5 5.73 4.65 5.96 5.86 6.20 5.70 6.2 5.5 6.68
5/2+ 11.5 9.0 6.24
7/2− 11.0 8.5 7.26
7/2+ 5.18 4.52

odd-mass nucleus since the single-particle states will contain
to some extent mixtures of K quantum number components.
As a simple ansatz, overlooking these potential difficulties, we
estimate the lowering of the inner barrier of odd-mass nuclei
by using the results obtained in similar triaxial calculations
for even-mass nuclei, taking stock of the results of Ref. [56]
where the same SkM∗ parametrization and seniority residual
interaction have been used. Thus assuming that the effect of
including the triaxiality is the same as in 236U (for 235U) and as
in 240Pu (for 239Pu) for all considered blocked configurations,
we expect a reduction in the inner-barrier height by about
1.3 MeV.

Taking the three above-mentioned corrections into account,
we obtain a total reduction of the inner-barrier height by about
1.3 MeV.

Next, we consider the isomeric energies EIS. We estimate
that the finite-basis-size effect (see Appendix B) results in an
overestimation of this energy by about 0.5 MeV. The exact
Coulomb exchange calculations of Ref. [52] have shown that
the Slater approximation yielded an underestimation of the
isomeric energy of 238U of about 0.3 MeV.

As for the outer barrier now, exact Coulomb exchange
calculations have not been performed—due to corresponding
very large computing times—for these very elongated shapes
in this region of nuclei. As discussed in Ref. [52] most of the
correction comes from an error in estimating the Coulomb
exchange contributions in low single-particle level-density
regimes Therefore, as far as EB is concerned, we assume
that this correction depends only on the treatment of the
ground state and therefore should be the same as what was
obtained for EA; namely, an underestimation of 0.3 MeV.
The finite-basis-size effect, as evaluated in a particular case
in Appendix B, corresponds to an overestimation of about
0.5 MeV. The net effect of the corrective terms for the
outer-barrier height is therefore a decrease by about 0.2 MeV.

When including all the above corrections and using the
doubled moment of inertia (IB + 100% scheme), we obtain
inner-barrier heights for the different blocked configurations
ranging from 5.0 to 6.2 MeV for 235U, and from 5.1 to
7.3 MeV for 239Pu. The left-right asymmetric outer-barrier

heights lie within the range of 4.8 to 6.2 MeV for the 235U
nucleus, and 4.5 MeV for 7/2+ configuration in the 239Pu
nucleus.

Some other fission-barrier heights have been also reported
for comparison in Table IV. More precisely, we consider two
sets of calculations, namely the EFA calculations by Robledo
and collaborators [15,16] and the macroscopic-microscopic
calculations by Möller [53]. Three sets of evaluated fission-
barrier heights are also listed: those fit to reproduce the
neutron-induced fission cross sections by Goriely and col-
laborators [13], those coming from the RIPL-3 [14] database
extracted from empirical estimates compiled by Maslov et al.
[54], and the empirical fission-barrier heights of Bjørnholm
and Lynn [55] obtained from the lowest-energy solution at the
saddle points, irrespective of the nuclear angular-momentum
and parity quantum numbers.

Out of these values, only those obtained from Refs. [15,16]
using the Gogny D1S force within the Hartree–Fock–
Bogoliubov-EFA framework are directly comparable with
our results. In these works, axial symmetry is assumed.
The resulting fission-barrier heights are much higher than
our calculated values. This is consistent with the rather
high fission-barrier heights obtained for the even-even 240Pu
nucleus in the earlier work of Ref. [57].

It should be stressed that the rather large differences
existing between our results and those reported in Refs. [15,16]
cannot be ascribed to the treatment of the time-reversal
symmetry breaking. In fact, we have checked that equal-filling

TABLE V. Differences (in keV) between the intrinsic fission-
barrier heights [�Ex = (Ex)EFA − (Ex)SCB with x ≡ A, IS, B] cal-
culated within the EFA and SCB framework for 239Pu with the SkM∗

parametrization.

Kπ �EA �EIS �EB

1/2+ −70 −50 −10
5/2+ −10 −20 0
7/2+ −10 −20 −10
7/2− −10 0 0
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TABLE VI. Specialization energies defined here as the average
of Eqs. (19) and (20) for the four blocked configurations of 239Pu
(in MeV). The Belyaev moments of inertia have been increased by a
factor of two.

Kπ

1/2+ 5/2+ 7/2+ 7/2−

�EA 0.83 0.39 −0.68 1.41
�EB 0.26 1.38 −0.77 1.31

approximation (EFA) calculations (corresponding to a particle
and not quasiparticle blocking, though) affects the total binding
energies by a few hundred keV at most for the parity-
symmetric case. The results of calculations for four different
configurations in 239Pu of EA, EIS, and EB are displayed in
Table V. The effect of time-reversal symmetry-breaking terms
is found to be approximately constant with deformation.

The comparison with the other sets of data in Table IV
is less straightforward. As was mentioned by Schunck et al.
in Ref. [45], due to an uncertainty in the empirical fission-
barrier heights of about 1 MeV, it may be illusory to attempt a
reproduction of empirical values within less than such an error

bar. In our case, the fission-barrier heights calculated with
the SkM∗ parametrization and including the various corrective
terms as discussed above, falls easily within this range.

D. Specialization energies

Originally (see Refs. [58,59]), the concept of specialization
energy has been defined as the difference between fission-
barrier heights of an odd nucleus with respect to those of some
of its even-even neighbors. Namely, one defines, for instance,
the specialization energy for the first (inner) barrier, upon
considering 239Pu as a 238Pu core plus one neutron particle,
as

�E
(p)
A (239Pu,Kπ ) = EA(239Pu,Kπ ) − EA(238Pu,0+), (19)

and similarly when considering 239Pu as a 240Pu core plus one
neutron hole,

�E
(h)
A (239Pu,Kπ ) = EA(239Pu,Kπ ) − EA(240Pu,0+). (20)

For configurations at the ground-state deformation having
a very low or zero excitation energy, due to conservation
of quantum numbers preventing us from following the a
priori lowest-energy configurations at single-particle (s.p.)
level crossings, one expects that these specialization energies
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should be positive quantities. This is of course the case
for experimentally observed spontaneous fission processes.
But this would not hold whenever one would consider
configurations which correspond to a high-enough excitation
energy in the ground-state well, as we show in a specific case
(see Table VI).

To illustrate this concept, Fig. 6 and Table VI present
the deformation-energy curves and the fission-barrier heights,
respectively, with a conserved parity symmetry evaluated
within the BM unified model for the four blocked Kπ

configurations of 239Pu with respect to those of the neighboring
even-even nuclei.

We see that the inner- and outer-barrier heights for some
blocked configurations—the 7/2− configuration being an
excellent example—are higher than that of the two neighboring
even-even nuclei as a consequence of fixing Kπ quantum
numbers along the fission path. In contrast, the 7/2+ blocked
configuration happens to yield lower fission-barrier heights as
compared with the two neighboring even-even nuclei. This
is so, as above discussed, because the 7/2+ configuration is
found at a much higher excitation energy in the ground-state
deformation well [31] but with a low excitation energy
at the saddle points as compared with the other blocked
configurations. This results in negative specialization energies,
as shown in Table VI.

By way of conclusion, one can state that the fission-barrier
profiles (heights and widths) are very much dependent on the
Kπ quantum numbers.

E. Effect of neglected time-odd terms

To probe the effect of the neglected time-odd densities
we calculated the total binding energy as a function of
deformation with parity symmetry within the so-called full
time-odd scheme, from the normal-deformed ground-state
well up to the fission-isomeric well. For this study, we also
considered another commonly used Skyrme parameters set;
namely, the SIII parametrization [46], partly because there,
the coupling constants B14 and B18 driving the terms involving
the spin-current tensor density J

μν
q and the Laplacian of the

spin density, respectively, are exactly zero. In the full time-odd
scheme, the B14, B15, B18, and B19 coupling constants are
not set to zero but are allowed to take the values resulting
from their expression in terms of the Skyrme parameters
(see Appendix A and Table IX for the definition of the
Bi parameters). The contributions to the inner-barrier height
EA and the fission-isomeric energy EIS stemming from the
kinetic energy, the Coulomb energy, the pairing energy, as
well as the various coupling-constant terms appearing in the
Skyrme Hamiltonian density are calculated self-consistently
in the minimal and full time-odd schemes from our converged
solutions.

More specifically, we denote by �E′
Bi

the difference

between the Bi contribution to the inner-barrier heights �E
(full)
Bi

and �E
(min)
Bi

in the full time-odd and the minimal time-odd
schemes, respectively,

�E′
Bi

= �E
(full)
Bi

− �E
(min)
B1

. (21)

Similarly, we denote by �E
(full)
kin and �E

(min)
kin the kinetic-

energy contribution to the inner-barrier height in both time-odd
schemes. In the same spirit the abbreviated indices C and
pair are used for the corresponding Coulomb and pairing
contributions, respectively. The sum of the double energy
differences coming from the kinetic, Coulomb, pairing, and Bi

contributions with i ranging from 1 to 13 is denoted �E′
min:

�E′
min = �E′

kin +
13∑
i=1

�E′
Bi

+ �E′
pair + �E′

C. (22)

The difference of inner-barrier heights in the two time-odd
schemes is therefore given by

�E′
A = �E′

min + �E′
B14

+ �E′
B15

+ �E′
B18

+ �E′
B19

. (23)

Similar notations are used for the fission-isomeric energy.
In Figs. 7 and 8, the various energy differences defined

above, are represented as histograms for the SkM∗ and SIII
parametrizations, respectively. We find that the inner-barrier
heights, in general, decrease when going from a minimal to a
full time-odd scheme in all considered blocked configurations.
This is reflected by the negative values of �E′

A. The difference
in the inner-barrier heights between both time-odd schemes is
overall a competition between �E′

min and �E′
B14

or �E′
B15

,
while the �E′

B18
and �E′

B19
terms have a negligible effect.

More precisely, the �E′
B14

term involves the combination of
←→
J 2 − s · T local densities and is found to be dominated by

the
←→
J 2 component. When the �E′

min and �E′
B14

or �E′
B15

contributions are of the same magnitude but with opposite
signs, then we do not have a change in the inner-barrier height,
as is the case for the 7/2+ blocked configuration with the SkM∗

parametrization.
The effect of the time-odd scheme on fission-isomeric

energy EIS is less clear-cut. However, we could still observe
that the B18 and B19 contributions remain negligible. More-
over, the time-odd scheme generally has less impact on the
fission-isomeric energy than on the inner-barrier height. A
notable exception is found for the 1/2+ configuration.

This study shows that the terms proportional to coupling
constants which are not constrained in the original fits of
the Skyrme force can impact the fission-barrier heights in a
nonsystematic and nonuniform manner. This suggests that one
cannot absorb this effect into an adjustment procedure.

IV. SPECTROSCOPIC PROPERTIES IN THE
FISSION-ISOMERIC WELL

In this section, we discuss the results obtained in the fission-
isomeric well for the 235U and 239Pu nuclei. We compare here
the results obtained with three Skyrme force parametrizations
(SkM∗, SIII, and SLy5*). In the vicinity of the isomeric state,
we make the approximation that the parity mixing is indeed
very small, such that (with the notation of Sec. II D)

ε ≈ 1, (24)

and similarly for an odd-nucleon state stemming from a
positive-parity s.p. configuration

η ≈ 1, h+
odd ≈ eodd, h−

odd ≈ 0, (25)
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FIG. 7. Energy differences between various contributions [see Eqs. (21) to (23) for definitions] to the inner-barrier height and isomeric
energy obtained in the default minimal time-odd scheme and the full time-odd scheme for several blocked configurations in 239Pu with the
SkM∗ parametrization. The difference in the inner-barrier heights �E

′
A and fission-isomeric energy �E

′
IS between the two schemes are also

given for each blocked configuration.

while for an odd-nucleon state stemming from a negative-
parity s.p. configuration

η ≈ 0, h−
odd ≈ eodd, h+

odd ≈ 0. (26)

As a result for a positive-parity nuclear configuration,
the projected energy of the fission-isomeric state will be
approximated by

E(K+) ≈ Eint(K
+) + �E+

core, (27)

while in the negative-parity case we have

E(K−) ≈ Eint(K
−) + �E+

core, (28)

where the intrinsic energies Eint(K+) and Eint(K−) are the
energies of our microscopic blocked HF + BCS calculations.

A. Static quadrupole moment

Before discussing relative energy quantities in the fission-
isomeric well, we assess the quality of deformation properties
of our solutions in this well by calculating the intrinsic
quadrupole moments for some relevant Kπ configurations in
the fission-isomeric well. The obtained values are listed in
Table VII. To the best of our knowledge, experimental values
are available for 239Pu only [60,61]. In this nucleus, our values
calculated for the 5/2+ configuration with the three considered
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FIG. 8. Same as Fig. 7 for the SIII parametrization.

Skyrme force parametrizations are all found to agree with
experiment within the quoted error bars.

TABLE VII. Calculated intrinsic charge quadrupole moments in
the isomeric well for the two lowest-energy states in 235U and the
two states corresponding to the experimentally known [60,61] Kπ

configuration in 239Pu. In addition, the values obtained for the 11/2+

state in 239Pu are also reported.

Nucleus Kπ SkM∗ SIII SLy5∗ Expt.

235U 5/2+ 32.9 31.8 33.4
11/2+ 32.5 31.8 32.3

239Pu 5/2+ 34.1 33.2 34.8 36 ± 4
9/2− 34.1 33.2 34.5

11/2+ 34.5 33.9 34.3

B. Fission-isomeric energy, band heads, and rotational bands

Above the lowest-energy solution at the fission-isomeric
well there are several bandhead states within 1 MeV. This
has been displayed in Figs. 9 and 10 for the 239Pu and 235U
nuclei, respectively. These results have been obtained with the
inclusion of rotational energy with the approximate Thouless–
Valatin corrective term in the moment of inertia (assuming a
32% increase above the IB value).

Let us first discuss the energy spectra for the 239Pu
nucleus for which a comparison with the experimental data of
Refs. [62,63] is possible. As shown in Fig. 9, the experimental
ground-state quantum numbers in the normal-deformed well
are 1/2+ while in the fission-isomeric well they are 5/2+. Our
calculated results with the SkM∗ and the SIII parametrizations
reproduce these data.
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FIG. 9. Bandhead energy spectra of 239Pu calculated with the SLy5*, SkM∗, and SIII parametrizations in the isomeric well with the inclusion
of the rotational correction. The standard Thouless–Valatin correction of Ref. [34] beyond the Belyaev result has been taken into account for
the moments of inertia of each band. The rotational spectra built upon the lowest-energy 5/2+ state (rot band) are also shown in the second
column of each Skyrme force. The experimental data are taken from Refs. [62,63]. The fission-isomeric energy defined as the energy difference
between the lowest-energy solution in the ground state and the fission-isomeric well is denoted by EII.

On the contrary, the calculations with the SLy5∗ parameter
set fail to do it because they yield a 5/2+ ground state in
the normal-deformed well located 160 keV below the 1/2+
state and a 1/2+ lowest-energy state in the fission-isomeric
well. Moreover, the Kπ = 9/2− state calculated with SLy5∗

appears at a too-high excitation energy of more than 500
keV as compared with the experimental value of about
200 keV.

In contrast, the excitation energy of this 9/2− state is
found to be in much better agreement with data for SkM∗

and SIII (139 and 127 keV, respectively). The agreement
of these values with the data is expected to be favorably
improved when including the effect of Coriolis coupling,
as suggested from the work of Ref. [12]. In addition, an
11/2+ excited state is predicted at 151, 129, and 299 keV
with the SLy5∗, the SkM∗, and the SIII parametrizations,
respectively. This state was also predicted (at 44 keV ex-
citation energy) in the Hartree–Fock–Bogoliubov calcula-
tions with the Gogny force by Iglesia and collaborators
[16].

The rotational band built on the 5/2+ bandhead state
can also be compared with experimental data: the calculated
energies for the first two excited states are found to be rather

similar within the three considered Skyrme parametrizations
in use, and to compare very well with data.

Let us now move the discussion to the results for the 235U
nucleus displayed in Fig. 10. To the best of our knowledge,
there are no experimental data available for comparison with
our calculated values in the superdeformed well of this nucleus.
There are, however, some calculations performed with the
Gogny force in the work of Ref. [15] which predict a 5/2+
ground state with a first 11/2+ excited state at 120 keV in
the fission-isomeric well. The same level sequence is also
obtained in our calculations with the SkM∗ and the SLy5∗

Skyrme parametrizations, although the 11/2+ state is located
at a much higher energy in the latter parametrization. The
calculations with SIII yields the opposite level sequence, with
a 5/2+ state 66 keV above the 11/2+ ground state.

C. Fission-isomeric energies

Let us discuss now the fission-isomeric energy EII.
Table VIII displays the fission isomeric energies EII defined
as the difference between the energies of the solutions lowest
in energy in both the ground-state and fission-isomeric wells
(irrespective of their Kπ quantum numbers); namely, with an
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FIG. 10. Same as Fig. 9 but for 235U.

obvious notation,

EII = EIS
0 − EGS

0 . (29)

As seen in Table VIII (see also Figs. 9 and 10), when using
the standard Thouless–Valatin correction of 32% over the IB
estimate, the Skyrme SIII interaction yields values of EII which
are much too high. This is not very surprising in view of
the well-known defect of its surface-tension property. On the
contrary, the too-low value obtained with the SkM∗ interaction
which provides very good liquid drop model barrier heights
must be explained by some inadequate account of relevant
shell-effect energies. The last interaction (SLy5∗) provides
reasonable EII values (yet slightly too weak).

Now, as discussed before, rotational energy corrections
calculated by using the Belyaev moment of inertia were
found to be too large, resulting in an underestimation of
the fission-barrier heights. This is partly due to the resulting

overestimation of the rotational correction. As a rough cure for
this, one may increase the IB moments of inertia by a factor
of two. The resulting EII values are listed in Table VIII.

It has been checked that the bandhead energy spectra in the
fission-isomeric well are then only affected by some tens of
keV from the values shown in Figs. 9 and 10. The Kπ quantum
numbers of the lowest-energy solutions in all cases remain
unchanged except for 235U with the SkM∗ interaction. In this
case, we have a change in the level ordering of the ground
and first excited states, where the quoted value of EII = 2.20
MeV involves the Kπ = 11/2+ blocked configuration in the
fission-isomeric well.

V. CONCLUDING REMARKS

From the above calculations of fission barriers in odd-mass
nuclei within a self-consistent blocking approach we can draw
the following conclusions:

TABLE VIII. Fission-isomeric energy EII for three different prescriptions for the moment of inertia. The Kπ quantum numbers of the
ground-state solution in the fission-isomeric well are those displayed in Figs. 9 and 10, except for 235U with the SkM∗ parametrization and
when increasing the Belyaev result by a factor of two (column labeled IB + 100%), for which the Kπ = 11/2+ blocked configuration has been
considered.

Nucleus SLy5∗ SkM∗ SIII Expt.

IB IB + 32% IB + 100% IB IB + 32% IB + 100% IB IB + 32% IB + 100%

235U 2.36 2.73 3.11 1.46 1.83 2.20 3.62 3.97 4.35
239Pu 2.30 2.69 3.10 1.08 1.43 1.80 3.42 3.84 4.30 3.1
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FIG. 11. Example of calculated transition states at the top of the inner barrier of 239Pu.

First, barrier heights and fission isomeric energies depend
on the time-odd scheme in a nonsystematic way. Indeed, they
are found to vary with the nucleus and with the quantum
numbers in a given nucleus between zero and almost 0.8
MeV in the studied nuclei. This effect cannot be absorbed
in the adjustment of the Skyrme parameters. In particular the
calculated specialization energies strongly vary with the K
and π quantum numbers and can be negative when the blocked
configuration lies rather high in energy in the ground-state well
and rather low at the saddle point.

Moreover, the equal-filling approximation, defined in our
work as an equal occupation of the block single-particle
state and its time-reversed state as opposed to the definition
of Ref. [18] based on one-quasiparticle states, is found to
have no significant effect on deformation and is a fairly
good approximation to calculate relative energies, such as the
fission-barrier heights and fission-isomeric energies.

Regarding spectroscopic properties in the ground-state and
fission-isomeric wells, we have found overall a fair agreement
with available data. This gives us some confidence in the
deformation properties of the fissioning nuclei, especially in
the barrier profiles as functions of the Kπ quantum numbers.

In this context, we recall that we have imposed axial
symmetry throughout the whole potential-energy curve so
that the K quantum number remains meaningful. As already
discussed, this may be deemed as a reasonable assumption
in view of dynamical calculations performed for 240Pu and
heavier nuclei, showing that the least-action path is closer to
an axial path than the triaxial static one around the top of the

inner and outer barriers [25,27,28]. Moreover, as far as class-I
states are concerned, it has been established from γ decay of
even-even and odd-odd rare-earth nuclei formed by neutron
capture, that the K quantum number is reasonably conserved
even at energies resulting from neutron capture in the thermal
and resonance energy domains (see, e.g., Ref. [64]).

Regardless of the validity of the axial-symmetry assump-
tion, our calculations of fission barriers with fixed K values
allow us to expect that the penetrabilities of inner and
outer fission barriers will strongly vary with the blocked
configurations, resulting in a widespread distribution of
fission-transmission coefficients as a function of K and π
for a fixed J quantum number. This can a priori impact
the fission cross section computed in the optical model for
fission with the full K mixing approximation (see, for instance,
Refs. [65,66]).

As a matter of fact, fission cross-section calculations
require in principle the knowledge of penetrabilities for
each discrete transition state; that is, the barrier profile and
inertia parameters for each discrete state at barrier tops. In
Fig. 11 we show such transition states as rotational bands
built on various low-lying blocked configurations. They are
calculated in the above-discussed Bohr–Mottelson approach
by using Skyrme-Hartree–Fock-BCS intrinsic solutions with
self-consistent blocking. This kind of results can provide
microscopic input to the discrete contribution to the fission
transmission coefficients, along the lines of Ref. [13]. Note
that, in this work, odd-mass nuclei were not considered in
a time-reversal symmetry-breaking approach and that the

014315-17



KOH, BONNEAU, QUENTIN, HAO, AND WAGIRAN PHYSICAL REVIEW C 95, 014315 (2017)

TABLE IX. Definition of the coupling constants Bi entering the expression of Hamiltonian densities in terms of usual Skyrme force
parameters.

B1 = t0
2 (1 + x0

2 ) B2 = − t0
2 ( 1

2 + x0) B3 = 1
4 [t1(1 + x1

2 ) + t2(1 + x2
2 )]

B4 = − 1
4 [t1( 1

2 + x1) − t2( 1
2 + x2)] B5 = − 1

16 [3t1(1 + x1
2 ) − t2(1 + x2

2 )] B6 = 1
16 [3t1( 1

2 + x1) + t2( 1
2 + x2)]

B7 = t3
12 (1 + x3

2 ) B8 = − t3
12 ( 1

2 + x3) B9 = −W0
2

B10 = 1
4 t0x0 B11 = − 1

4 t0 B12 = 1
24 t3x3

B13 = − t3
24 B14 = − 1

8 (t1x1 + t2x2) B15 = 1
8 (t1 − t2)

B18 = − 1
32 (3t1x1 − t2x2) B19 = 1

32 (3t1 + t2)

inertia parameters were calculated within a hydrodynamical
model. A natural extension, requiring very long comput-
ing times, is to compute these parameters from a micro-
scopic model as in the nonperturbative ATDHFB approach
[29], consistently with the barrier profiles for each blocked
configuration.

Finally, note that, in such dynamical calculations, and
even in static calculations, the phenomenological quality of
the pairing interaction is of paramount importance. In our
case, its intensities have been determined by a fit based
on explicit calculations of odd-even mass differences in the
actinide region. However, such approaches suffer a priori
from the deficiencies inherent to a nonconserving particle-
number theoretical framework, particularly so if strong pairing
fluctuations are to be considered. To cure that in an explicit and
manageable fashion, we intend to perform similar calculations

as those presented here, using the so-called highly truncated
diagonalization approach of Ref. [48].
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APPENDIX A: SKYRME ENERGY DENSITY FUNCTIONAL

As well known, when using an effective internucleon interaction of the Skyrme type, the total energy of a normalized Slater
determinant |�HF〉 can be written as an integral of a Hamiltonian density H such that

E = 〈
�HF

∣∣Ĥ ∣∣�HF
〉 =

∫
H(r)dr =

∫
[Hkin(r) + Hc(r) + HDD(r) + Hs.o(r) + HCoul(r)]dr, (A1)

where the various Hamiltonian densities Hkin, Hc, HDD , Hs.o and HCoul(r) are given [67,68] by (see Table IX for the definition
of the coefficients Bi as function of the usual ti , xi , and W0 parameters of the Skyrme interaction in use)

Hkin(r) =
(

1 − 1

A

)
�

2

2m
τ, (A2)

Hc(r) = B1ρ
2 + B10s2 + B3(ρτ − j2) + B14(

←→
J

2 − s · T) + B5ρ�ρ + B18s · �s

+
∑

q

{
B2ρ

2
q + B11s2

q + B4
(
ρqτq − j2

q

) + B15(
←→
J q

2 − sq · Tq)
} + B6ρq�ρq + B19sq · �sq, (A3)

HDD(r) = ρα

[
B7ρ

2 + B12s2 +
∑

q

(
B8ρ

2
q + B13s2

q

)]
, (A4)

Hs.o(r) = B9

[
ρ∇ · J + j · ∇ × s +

∑
q

(
ρq∇ · Jq + jq · ∇ × sq

)]
, (A5)

HCoul(r) ≈ 1

2
ρp(r)VCD(r) − 3

4
e2

(
3

π

) 1
3

ρ
4
3
p (r). (A6)

The factor (1 − 1
A

) appearing in the kinetic-energy density is a corrective term introduced to approximately eliminate the
center-of-mass motion spuriously introduced by the breaking of the translational invariance inherent to the mean-field approach.
Such an approach has been noted to overestimate the contribution from the center-of-mass correction [69]. Nevertheless, the
approximate treatment of the correction term is consistent with the manner in which the adopted Skyrme parametrizations were
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fit. For a study on the various approximations of the center-of-mass correction in the mean-field approach and also its effects on
nuclear properties, such as deformation energy surface, we refer to Ref. [70].

The direct part of the Coulomb mean field VCD is readily calculated from the proton density (see for the numerical method in
use, e.g., Refs. [71–73]). The exchange part given by the second term of Eq. (A6) has been approximated here as is usually done,
with a Slater approximation [50]. The effect of using such an approximation as opposed to performing rather time-consuming
exact Coulomb exchange calculations have been previously investigated (see Refs. [52,74,75]). It has been found that the
appropriateness of the Slater approximation is directly related with the proton single-particle level density near the Fermi level,
being less good for a spherical (closed shell) nucleus as compared with a well-deformed nucleus. Consequently, the lowering of
the total energy is less at the top of the barrier due to a higher single-particle level density when the Slater approximation is more
appropriate as compared with the ground-state solution. This translates into an underestimation of the fission-barrier heights
when calculations of the Coulomb exchange term are performed by using the Slater approximation.

All the above Hamiltonian densities are time-even functionals of the local densities that are further categorized into time-even
and time-odd densities with respect to the action of the time-reversal operator. The time-even densities are the particle density
ρ(r), the kinetic-energy density τ (r), and the spin-current density Jμν(r) whose explicit definition can be found in Refs. [67,68].

For each of the time-even densities, there exists a time-odd counterpart; namely, the spin density s(r), the spin kinetic density
Tμ(r), and the current density j(r) (see Refs. [67,68]).

The Hartree–Fock equations obtained by varying the total energy given in equation (A1) with respect to the single-particle
spinor wave functions φk of charge state q, yield the following one-body Hamiltonian ĥHF [67,68]:

〈r|ĥ(q)
HF|φk〉 = −∇ ·

(
�

2

2m∗
q(r)

∇[φk](r)

)
+ [Uq(r) + δqpUCoul(r)][φk](r) + iWq(r) · [σ × ∇[φk](r)]

− i
∑
μ,ν

{[
W (J )

q,μν(r)σν∇μ[φk](r)
] + ∇μ

[
W (J )

q,μν(r)σν[φk](r)
]} − i

2
{Aq(r) · ∇[φk](r) + ∇ · [Aq[φk](r)]}

+ Sq(r) · σ [φk](r) − ∇ · {[Cq(r) · σ ]∇[φk](r)}. (A7)

The fields m∗, Uq , UCoul, Wq , and W (J )
q,μν are time-even operators whereas the fields Sq , Aq , and Cq are time-odd operators.

They are given as follows [67,68] in terms of the various densities, omitting the �r-dependence for brevity:
�

2

2m∗
q

= �
2

2mq

+ B3ρ + B4ρq, (A8)

Uq = 2(B1ρ + B2ρn) + B3τ + B4τq + 2(B5�ρ + B6�ρq) + (2 + α)B7ρ
1+α

+ B8
[
αρ(α−1)

(
ρ2

n + ρ2
p

) + 2ραρq

] + B9
(∇ · J + ∇ · Jq

) + αρα−1
[
B12s2 + B13

(
sn + s2

p

)]
, (A9)

UCoul = VCD − e2

(
3

π
ρp

)1/3

, (A10)

Wq = − B9
(∇ρ + ∇ρq

)
, (A11)

Wq,μν = B14Jμν + B15Jq,μν, (A12)

Sq = 2(B10 + B12ρ
α)s + 2(B11 + B13ρ

α)sq − B9∇(j + jq) − B14T − B15Tq + 2(B18�s + B19�sq), (A13)

Aq = − 2(B3 j + B4 jq) + B9∇ × (s + sq), (A14)

Cq = − (B14 s + B15 sq). (A15)

APPENDIX B: EFFECT OF BASIS SIZE ON
FISSION-BARRIER HEIGHTS

The single-particle states of the canonical basis are ex-
panded on deformed harmonic-oscillator basis states truncated
according to the deformation-dependent truncation scheme of
Ref. [49]. From the oscillator frequencies ω⊥, ωz one defines
a spherical frequency ω0 by ω3

0 = ωzω
2
⊥. The corresponding

basis parameters b = √
mω0/� and q = ω⊥/ωz are optimized

to yield the minimal energy given a basis size N0. For reasons
of computational time, the calculations are performed with
a basis size defined by N0 = 14 corresponding to 15 major

shells in the spherical case. The b and q parameters for
the calculations involving the SIII and SkM∗ interactions in
odd-mass nuclei are deduced as an average of the optimized
basis of its neighboring even-even isotopes at each deformation
points. It was furthermore checked that the optimal parameter
values obtained for the SkM∗ interaction were applicable for
the SLy5∗ parameters sets up to a very good approximation
(of the order of tens of keV).

In this appendix we assess the basis-size effect on fission-
barrier heights by using the notation of Sec. II E. In practice
we performed such a study for the 239Pu and 240Pu nuclei,
assuming axial and parity symmetry along the whole fission
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TABLE X. Inner-barrier EA, fission-isomeric energy (EII for
even-even nucleus and EIS for odd-mass nucleus), and outer-barrier
EB heights of 239Pu and 240Pu assuming axial and intrinsic parity
symmetries for different harmonic-oscillator basis sizes calculated
with the SkM∗ interaction. All energies are given in MeV.

Nucleus N0 EA EIS /EII EB

239Pu (5/2+) 14 8.14 2.42 11.25
16 7.97 2.22 10.83
18 7.93 2.12 10.80

240Pu 14 8.18 2.53 10.18
16 8.00 2.31 9.76
18 7.96 2.22 9.71

path. Calculations were performed with the SkM∗ interaction
for three basis sizes (N0 = 14, 16, 18). It would be a priori

desirable to optimize the b and q parameters for each basis size.
However, the work of Ref. [43] comparing solutions which has
been optimized in their respective basis size has shown that
the impact of the optimization process on the barrier heights
is rather small in determining the considered basis-size effect.
Thus, the same b and q parameters obtained in the optimization
process in N0 = 14 have been used for other N0 values. The
locations of the saddle points as well as the ground states
and second minima in the deformation-energy surface were
obtained by using the modified Broyden method [76].

The fission-barrier heights obtained for the various basis
sizes are shown in Table X. The truncation effect are shown
to increase with deformation. As a result we have crudely
estimated for all considered nuclei (even-even or odd) that
the calculations performed with a basis defined by N0 = 14
overestimate on the average the inner-barrier height by about
300 keV and the isomeric energy as well as the outer-barrier
height by about 500 keV.
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