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Correlating double-difference of charge radii with quadrupole deformation
and B(E2) in atomic nuclei
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A good linear correlation is found between the double-difference of charge radius δR2p−2n(Z,N ) with that of
quadrupole deformation data in even-even nuclei. This results in a further improved charge radius relation that
holds in a precision of about 5 × 10−3 fm. The new relation can be generalized to the reduced electric quadrupole
transition probability B(E2) between the first 2+ state and the 0+ ground state, and the mean lifetime τ of the first
2+ state. Same correlations are also seen in global nuclear models such as Hartree-Fock-Bogoliubov (HFB-24)
and relativistic mean field (RMF); however, they are not consistent with the experimental data.

DOI: 10.1103/PhysRevC.95.014307

I. INTRODUCTION

Mass, charge radius, lifetime, and electric (magnetic) tran-
sition probability are among the most fundamental observables
[1–4] for the many-body nuclear system. A systematic analysis
of these data have been successful in bringing forth a global
picture of the atomic nuclei [5–8]. For example, it has been
well known that experimental binding energies or charge radii
for neighboring nuclei do not differ much except at several
specified regions like closed shells or onset of shape (see
Refs. [9–11]).

On the other hand, comparing these observables of atomic
nuclei, which differ by one or a few neutrons or protons,
have yielded many empirical relations or filters for special
interaction strengths between the valence nucleons [12–32].
Of them, the Garvey-Kelson relations are probably one of the
best known examples [22,24–32].

The radius of the charge (proton) distribution can be
assumed to be equal to that of the nuclear mass distribution,
considering the nucleus as a liquid drop with the protons
homogeneously distributed over the sphere of the nucleus.
In this scheme, we proposed a set of nuclear charge radius
relations δRip−jn(Z,N ) [11,23,33],

δRip−jn(Z,N ) = R(Z,N ) − R(Z,N − j ) − [R(Z − i,N )

−R(Z − i,N − j )]

� 0, (1)

where R(Z,N ) is the root-mean-square (rms) charge radius
of the nucleus with N neutrons and Z protons. i and j are
integers. The validity of such relation is a consequence of the
smooth transition in the nuclear structure [34] that is often
found when going from a nucleus to its neighboring nuclei.
Equation (1) holds precisely over almost the whole nuclear
chart except at a few regions characterized by shape transition
and shape coexistence at, e.g., N ∼ 60, N ∼ 90, and Z ∼ 80.
These exceptions raise the possibilities that more accurate local
systematics may be developed from the experimental data.
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One simple case connecting only even-even nuclei is

δR2p−2n(Z,N ) = R(Z,N ) − R(Z,N − 2) − [R(Z − 2,N )

−R(Z − 2,N − 2)]

� 0. (2)

The term R(Z,N ) − R(Z,N − 2), similar to the isotope shift,
involves the variation of the charge density distribution when
only two neutrons are added to the system. In this sense,
δR2p−2n(Z,N ) is nothing but the difference of isotope shifts for
neighboring two isotopic chains. Hereafter we simply rewrite
δR2p−2n(Z,N ) as δR(Z,N ).

In this work, we aim to examine and quantify the correlation
between the local charge radius relations δR(Z,N ) and those
of deformation data. The correlation is made from cases
that both charge radius [3] and quadrupole deformation
data [4] are experimentally available. In total there are 149
even-even nuclei from Ne to Cm. This then leads us to
an improved relation by correcting the contribution from
quadrupole deformation effect in atomic nuclei. This new
relation can be naturally extended to the reduced electric
quadrupole transition probability B(E2) between the first 2+
state and the 0+ ground state, and the mean lifetime τ of the first
2+ state. Moreover, the same correlation has been examined
in two widely used nuclear global models.

II. CORRELATING CHARGE RADIUS DATA WITH
QUADRUPOLE DEFORMATION DATA

Let us start with a system of spherical nuclei, for which the
rms charge radii can be empirically described by

R(Z,N ) =
√

3/5r0A
1/3, (3)

where A is the mass number and r0 is fixed to 1.2 fm throughout
this paper. δR(Z,N ) for even-even isotopes is

δR(Z,N ) ≡ δR(Z,N )sph =
√

3/5r0δ(A1/3). (4)

Numerically it is easy to demonstrate that δR(Z,N )sph goes
down to a few times 10−4 fm with increasing mass number
[23].
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For a deformed nucleus, the charge radius can be decom-
posed into the spherical and deformation parts. In particular,
considering the important case of an axially symmetric shape,
the charge radius by neglecting the high-order corrections can
be expressed as

R(Z,N ) = R0(Z,N )

[
1 + 5

8π
β2

2 (Z,N )

]
. (5)

Here β2(Z,N ) is the rms quadrupole deformation for the
nuclide (Z,N ) and is derived experimentally from the reduced
electric quadrupole transition probability B(E2). R0(Z,N )
represents the spherical equivalent radius and is calculated
by Eq. (3). Equation (5) may be generalized to include higher
order multipoles or triaxial shape [35,36].

Accordingly, δR(Z,N ) can be rewritten as a two-parameter
relation,

δR(Z,N ) = δR(Z,N )sph + δR(Z,N )def

= δR(Z,N )sph + 5

8π
δ
(
R0β

2
2

)
, (6)

where δR(Z,N )sph is defined in Eq. (4) and δR(Z,N )def comes
from the variance of deformation in the relevant nuclei,

δR(Z,N )def ≡ 5

8π
δ
(
R0β

2
2

)

=
√

3

5

5

8π
r0[A1/3β2

2 (Z,N )

+ (A − 4)1/3β2
2 (Z − 2,N − 2)

− (A − 2)1/3β2
2 (Z − 2,N )

− (A − 2)1/3β2
2 (Z,N − 2)]

≈
√

3

5

5

8π
r0A

1/3δβ2
2 . (7)

The approximation of the last term is valid especially for
heavier system. Because of the negligible contribution from
δR(Z,N )sph, the resulting δR(Z,N ) is mostly determined by
the terms relevant to nuclear deformation. Although dynamic
deformations and higher-order multipoles are not included in
this equation, they could be subsumed in principle under the
deformation term in which δβ2

2 is replaced by
∑

i δβ
2
i .

The correlation between the experimental δR(Z,N ) and
δR(Z,N )def is shown in Fig. 1. The majority of data distribute
around δR(Z,N )def = 0 and δR(Z,N ) = 0, due to the rare
experimental data far from the β-stability line. Almost all the
data follow a linear trend within one standard deviation (σ ).
A coefficient of 0.30(5) is determined with a reduced χ2 of
0.7 by considering the uncertainties in both charge radii and
deformation, indicating that experimental data of charge radii
and β2 are in well consistency. Figures 2(a) and 2(b) present
the same correlation data but for two different mass regions.
To see more clearly the centroid values the experimental
uncertainties are not shown. The linear correlations exist
for the two subgroups of data, but there seems to exist two
different coefficients, 0.34(9) for the data with A < 130 and
0.15(5) for A � 130. A close look at the data with A � 130
shows that many data have uncertainties of more than 0.01
fm (see also the data with large error bars around (0,0) in

FIG. 1. δR(Z,N ) as a function of δR(Z,N )(β2
2 ) for all experi-

mentally known cases. The linear fit is indicated by the dashed line.
The relevant point for 98Sr is labeled.

Fig. 1), thus hardly making a reliable fit. To verify the possible
impact of the experimental precision we plot in Fig. 2(c) only
the correlation data which have δR(Z,N ) < 0.007 fm and
δR(Z,N )def < 0.007 fm. The coefficient is determined to be
0.36(6), which is in good agreement with the coefficient of
0.30(5) obtained from the overall experimental data.

Specifically, we plot in Fig. 3 the correlation for the Sr
isotopes. The sudden onset of the shape transition at N = 60
is reflected distinctly by both δR(Z,N )def and δR(Z,N ) (see
also Fig. 1). The deformation parameters for the relevant
four nuclei, 98

38Sr, 96
38Sr, 96

36Kr, and 94
36Kr are 0.40(1), 0.175(6),

0.25(3), and 0.19(1), resulting in δR(Z,N )def of 0.088(14)
fm for 98Sr. Therefore, once considering the deformation
correlation, the large δR(Z,N ) value at N = 60, the well-
known region of phase transitions, can be largely diminished.
Similar correlation has been observed at N ∼ 90 for the Nd
isotopes. Unfortunately, it is not possible yet to test the region
at Z ∼ 80 due to missing deformation data.

Five cases at 20
10Ne, 46

20Ca, 46
22Ti, 76

34Se, and 78
36Kr show

deviations from the linear trend by more than 2σ . Of them,
20
10Ne is the lightest nuclide with available charge radius and
deformation. It is known already from the previous work [23]
that the precision of the charge radius formula deteriorates
with decreasing mass number (in particular for A < 60). This
may be understood in the fact that the collective deformation
property is more suitable for heavy nuclei in comparison
with lighter nuclei. Further check on the mass dependence

FIG. 2. Same as Fig. 1 but for the data with A < 130 (a), A �
130 (b), and δR(Z,N ) < 0.007 fm and δR(Z,N )def < 0.007 fm (c).
Experimental uncertainties are not shown. Linear fits to the relevant
experimental data are indicated by dashed lines.
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FIG. 3. Experimentally known δR(Z,N ) (filled circles) and
δR(Z,N )def (open squares) for the Sr isotopic chain.

confirms this argument, where 8 of 10 cases with A < 60 have
deviations from the linear trend by more than 1 σ . It should
be noted nevertheless that 1 σ discussed here is as small as
0.0040 fm.

The few cases with large deviations may be partially related
to the various sources of charge radii and deformation, given
the different methods of systematic errors associated with
different techniques. We noted that a recent analysis [37] of
B(E2) measurements, from which β2 is derived, concluded
that most prevalent methods of measuring B(E2) values are
equivalent. Such comparison is not available yet for charge
radius data across the entire chart of nuclides, and thus a
consistent and equivalent set of nuclear charge radii and B(E2)
data are definitely crucial. A combined analysis of the cases
for 46

20Ca and 46
22Ti shows that increasing the charge radius by

0.3% or decreasing the β2 by about 40% (unlikely) for 44
20Ca

will result in their δR(Z,N ) values in better agreements with
the linear trend. Similar arguments hold also for the cases of
76
34Se and 78

36Kr. Therefore, the correlation identified here may
provide us a very accurate way to investigate the consistency
of charge radius and deformation surface.

In Ref. [23], it was found that Eq. (1) is remarkably
successful even at nuclei with magic neutron and/or proton
numbers. This can be easily understood with the correlation
identified here. These nuclei are mostly in the spherical shape,
i.e., their β2 values are less than 0.1, thus leading to naturally
δR(Z,N ) ≈ δR(Z,N )def ≈ 0. This result is very different
from the counterpart in nuclear masses, the valence proton-
neutron interactions δVpn [38–40], which depend strongly on
the spatial overlap of the valence orbits and present a dramatic
variation when crossing neutron shell closures.

III. DISCUSSION

A. Improved nuclear charge radius relation

The fact that δR(Z,N ) can be quantitatively reproduced
with the δR(Z,N )def for the existing data motivates further an
improved charge radius formula:

δR(Z,N )corr = δR(Z,N ) − cδR(Z,N )def ≈ 0, (8)

where c is 0.30(5) determined from Fig. 1. δR(Z,N ) and
δR(Z,N )def are given in Eqs. (2) and (7), respectively. The
available experimental data are used to the check the accuracy

of the relation with the deformation correction. The weighted
mean value of δR(Z,N )corr amounts to only −8 × 10−4 fm
with the weighted standard deviation of 5 × 10−3 fm. This cor-
responds to about 15% improvement in precision comparing
with that without correction (i.e., δR(Z,N )). The significance
is that Eq. (8) can now be extended to cases even when sudden
variances occur in nuclear shapes [23,33].

Experimentally, the quadrupole deformation values are
derived from the reduced electric quadrupole transition prob-
ability B(E2), between the 0+ ground state and the first 2+
state in even-even nuclides, using the semiempirical approach,

β2 = 4π

3ZR2
0

[
B(E2)

e2

]1/2

. (9)

Here R0 = r0A
1/3 = 1.2A1/3 fm and B(E2) is in units of e2b2.

To get Eq. (9), it is assuming a uniform charge distribution out
to the distance R and zero charge beyond [36,41]. Moreover,
B(E2) is related to the mean lifetime τ of the first 2+ state
through

τ (1 + α) = 40.81 × 1013E−5

[
B(E2)

e2 b2

]−1

, (10)

where E is the excitation energy of the first 2+ state (in units
of keV) and τ is in ps. The total internal conversion coefficient
α for a specific E is needed for correction.

Accordingly, δR(Z,N )def can be expressed in terms of
B(E2) and τ ,

δR(Z,N )def = 4.35 × 103δ

(
B(E2)/e2b2

Z2A

)
b1/2

= 1.77 × 1021δ

(
E−5Z−2A−1

τ (1 + α)

)
b1/2, (11)

where all the quantities E,B(E2), Z,A, and α in the δ term
are for the four neighboring even-even nuclei. In the case of
no abrupt shape transition, δR(Z,N )def � 0, and the following
relation involving again four neighboring doubly even nuclei
should hold well,

δ(A1/3β2
2 ) � δ

(
B(E2)

Z2A

)
� δ

(
E−5Z−2A−1

τ (1 + α)

)
� 0. (12)

For heavy nuclear system, where the difference in Z2A can be
safely neglected, we can then get the relation

δB = B(E2)(Z,N ) − B(E2)(Z,N − 2) − B(2)(Z − 2,N )

+B(E2)[Z − 2,N − 2)]

� 0. (13)

The same relation was proposed independently in Ref. [42] and
was explored later in Ref. [43]. Using Eq. (13), B(E2) transi-
tion strengths can be reproduced with an accuracy of ±25%.

Inserting Eq. (11) into Eq. (8), we can get the correlation
between four-point charge radius relation with that of B(E2) or
τ . This new relation, in principle, should be more accurate for
predictions of unknown B(E2) values than Eq. (13), because
possible shape transitional effects can be at least partially
compensated for by the corresponding charge radius data.
When seven quantities out of eight, e.g., four charge radii
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FIG. 4. Same as Fig. 1 but using the predicted δR(Z,N ) and
δR(Z,N )def in the RMF model (a), and using experimental δR(Z,N )
and predicted δR(Z,N )def in the RMF model (b). Error bars are not
shown for experimental data.

and three B(E2) data, are known, then the last B(E2) can be
calculated. Unfortunately, this will give an uncertainty mostly
too large to make meaningful predictions. The uncertainty is
mainly propagated from the charge radius data and is typically
about 1 order of magnitude higher than that from Eq. (13).

It should be noted that the knowledge of both experimental
data on charge radii and deformation are still very limited.
Therefore, it will be very useful if nuclear models can provide
the relevant data either in absolute values or in differential
values at a reasonable precision. For example, when one
experimental deformation parameter is missing, one can resort
to the theoretical predictions in nuclear models. Care should
be taken that quantities like B(E2) refer to the charge (proton)
distribution in the nucleus and that in particular β is the charge
deformation related to this charge distribution. This should
be kept in mind when comparing the experimental results to
nuclear models.

B. Correlation in global nuclear models

Global models such as Hartree-Fock-Bogoliubov (HFB-24)
[44] and the relativistic mean-field (RMF) model [45] can
provide self-consistently charge radius and deformation data.
Taking RMF as an example, a linear correlation is predicted

between δR(Z,N ) and δR(Z,N )def as shown in Fig. 4(a).
The slope is determined to be 0.60, about two times larger
than that of experimental data. The same correlation has also
been found in the HFB-24 but with a different coefficient
parameter (0.85). Such correlations, however, vanish once we
attempt to combine the model predictions with experimental
data. An example is shown in Fig. 4(b), which displays
experimental δR(Z,N ) vs calculated δR(Z,N )def using the
RMF. This indicates that current nuclear models like HFB-24
and RMF are not able yet to reproduce the fine correlation
seen in the experimental data. Dedicated studies are thus
required to provide a consistent description of charge radius
and deformation to reproduce the experimental data.

IV. SUMMARY

To summarize, with the available experimental data we
found a linear correlation between the charge radius relation
δR(Z,N ) and the corresponding quadrupole deformation re-
lation δR(Z,N )def . This correlation can provide a consistence
check or analysis of experimental data on charge radii and
deformation [and accordingly B(E2)]. A linear coefficient of
0.30(5) with no apparent dependence on the precision of exper-
imental data is determined between δR(Z,N ) and δR(Z,N )def .
It will be interesting to see whether this coefficient remains
robust for more exotic nuclei, especially at shape transitional
regions.

One important conclusion of the present work is that the
large deviation of double-differential charge radius relation
δR(Z,N ) from zero at shape transitional regions can be
quantitatively reproduced with the experimental δR(Z,N )def .
This in turn gives an improved charge radius formula and hence
is very useful to make reliable short-range extrapolations of
charge radii over the nuclear chart. The relation can be further
generalized between charge radius and B(E2) or τ . Moreover,
the same correlation has been found in global nuclear models
like HFB-24 and RMF, but so far the two models are not able
to reproduce the experimental data.

Finally, we would like to mention that a consistent descrip-
tion [46–53] of radius and transition probabilities of atomic
nuclei are important to understand their correlations and thus
for a better interpretation of experimental results. A recent
example is shown in 111–129Cd [54], in which the parabolic
behavior of the charge radii is found due to the linear tendency
of the quadruple deformation.
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