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Adiabatic fission barriers in superheavy nuclei

P. Jachimowicz
Institute of Physics, University of Zielona Góra, Szafrana 4a, 65516 Zielona Góra, Poland
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Using the microscopic-macroscopic model based on the deformed Woods–Saxon single-particle potential
and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy
and superheavy nuclei 98 � Z � 126, including even-even, odd-even, even-odd and odd-odd systems. For
odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations
with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The
parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept
unchanged. A search for saddle points has been performed by the “imaginary water flow” method on a basic
five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of
the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization
over configurations and deformations. We find that the nonaxiality significantly changes first and second fission
saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in
actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those
saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass
asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of
Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical
fission barrier evaluations and with available experimental estimates.
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I. INTRODUCTION

Although fission barrier heights Bf are not directly mea-
surable quantities, i.e., are not quantum observables, they are
very useful in estimating nuclear fission rates. As the activation
energy Ea (per mole) in chemistry gives a rate k of a chemical
reaction at temperature T via the Arrhenius law k = Ae−Ea/RT

(where R is the gas constant and A is the frequency factor)
[1,2], the fission barrier gives the fission rate �f of an
excited (as they usually are in nuclear reactions) nucleus
via: �f ∼ e−Bf /kTeff , where Teff is an effective temperature
derived from the excitation energy, and k is the Boltzmann
constant. For example, knowing fission barriers of possible
fusion products helps to predict a cross section for a production
of a given evaporation residue in a heavy-ion reaction: one
can figure out whether neutron or alpha emission wins a
competition with fission at each stage of the deexcitation of a
compound nucleus. Moreover, one can try to understand the
experimentally established intriguing growth of the total cross
sections around Z = 118; for its correlation with Bf ; see, e.g.,
Fig. 6 and the related discussion in Ref. [3]. On the other hand,
the prediction of the spontaneous or low-energy (i.e., from a
weakly excited state) fission rates, governed by the regime
of the collective quantum tunneling, requires an additional
knowledge of the barrier shape and mass parameters.

A nonobservable status of the fission barrier, again in
analogy to that of the activation energy in chemistry, is
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reflected in its possible dependence on a reaction type and/or
the excitation energy (effective temperature) range. This leads
to some uncertainty in calculations of fission barriers. In
particular, it is not clear whether intrinsic configurations should
be conserved along the level crossings, which increases Bf ,
or the adiabatic state should be followed. This is especially
relevant for odd-A and odd-odd nuclei, in which sharp
crossings of levels occupied by the odd particle exclude the
strictly adiabatic scenario. It is known that, if the projection
of the single-particle angular momentum � on the symmetry
axis of a nucleus is conserved, the diabatic effect on the fission
barrier can be huge; see, e.g., Ref. [4]. As there is no accepted
formula for a barrier correction due to the nonadiabaticity, it
is usually ignored, even in odd-N and/or odd-Z nuclei.

A general idea is that, at the excitation energies close to and
higher than the barrier but still not inducing sizable dissipative
corrections, the adiabatic barrier could be used for calculating
fission rates.

Since calculations of potential-energy surfaces (PESs) for
odd-A and odd-odd nuclei involve a repetition of calculations
for many low-lying quasiparticle states which multiplies the ef-
fort (especially in odd-odd systems), systematic studies of their
fission barriers are rather scarce. Up to now, they were provided
mainly by the Los Alamos microscopic-macroscopic (MM)
model and recently by some self-consistent models [5]. The
current state of theoretical predictions in fission of even-even
nuclei (with Z � 100) has been discussed recently in Ref. [6].

In the present paper we extend our MM model based on
the deformed Woods–Saxon potential, which up to now was
applied mainly to even-even nuclei [7], to odd-A and odd-odd
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superheavy (SH) systems. We study a wide range of isotopes
which, perhaps, may be of some use for astrophysical purposes.
The fission barriers are calculated by using the adiabatic
assumption, i.e., they are the smallest possible. Since the model
has been quite reasonable, in particular in reproducing first [7]
and second [8] fission barriers in actinides, as well as super-
[9] and hyper-deformed [10,11] minima, we prefer to keep its
parameters unchanged. The shell and pairing correction for
an odd-nucleon system is done by blocking the lowest-lying
quasiparticle states. The modification of the macroscopic
energy by including the average pairing energy contribution
which we introduced for nuclear masses in Ref. [12] is
irrelevant for fission barriers.

The other aim of our study is to improve the predictions
for the fission saddles. This requires simultaneously taking
into account a large number of shape variables [8,11] and
relying on an in principle exact method for finding saddles
to escape errors inherent in the mostly used constrained
minimization method; see Refs. [13,14]. As usual, to make
the involved computational effort manageable one has to make
some compromises which will be discussed in detail. The need
for a simultaneous consideration of many shape variables in
PES calculations is common to all nuclear models, including
self-consistent theories based on some effective interactions
[15]. The results for fission saddles obtained up to now in the
SH region clearly show the great importance of triaxial defor-
mation, which is neglected in many published works. A recent
study [16] of fission barriers within both the MM Woods–
Saxon and Skyrme SLy6 Hartree–Fock plus BCS models
shows that triaxiality is even more crucial beyond Z = 126.

A description of our method of calculation is given in
Sec. II. The results, details of the additional calculations, and
comparisons with other calculated barriers are presented and
discussed in Sec. III. Finally, the conclusions are summarized
in Sec. IV.

II. THE METHOD

Multidimensional energy landscapes are calculated within
the MM model based on the deformed Woods–Saxon potential
[17]. The Strutinsky shell and pairing correction [18] is taken
for the microscopic part. For the macroscopic part we used the
Yukawa plus exponential model [19] with parameters specified
in Ref. [20]. Thus, all parameter values are kept exactly the
same as in all recent applications of the model to heavy and
superheavy nuclei.

Of main importance in fission-barrier calculations is their
reliability which, once the model for calculating energy of a
nucleus as a function of deformation is fixed, depends on two
main ingredients: (1) the type and dimension of the admitted
deformation space and (2) a method applied to the search for
saddles.

Mononuclear shapes can be parametrized via spherical
harmonics Yλμ(ϑ,ϕ) (for brevity we just use the symbol Yλμ)
by the following equation of the nuclear surface:

R(ϑ,ϕ) = c({β})R0

⎧⎨
⎩1 +

∞∑
λ=1

+λ∑
μ=−λ

βλμYλμ

⎫⎬
⎭, (1)

where c({β}) is the volume-conservation factor and R0 is
the radius of a spherical nucleus. This parametrization has
its limitations; certainly, it is not suitable for too-elongated
shapes. However, for moderately deformed saddle points
in superheavy nuclei it excellently reproduces all shapes
generated by other parametrizations, e.g., by Ref. [21], as we
checked in numerous tests.

For nuclear ground states it is possible to confine the
analysis to axially symmetric shapes, with the expansion
truncated at β80:

R(ϑ,ϕ) = c({β})R0{1 + β20Y20 + β30Y30 + β40Y40

+β50Y50 + β60Y60 + β70Y70 + β80Y80}. (2)

Thus, a seven-dimensional minimization is performed by
using the gradient method. At least thirty minimizations
with different initial deformations were performed for each
nucleus. Some of the initial conditions were chosen randomly
(within reasonable limits). The lowest minima were verified by
performing additional minimizations with initial deformations
found for neighboring nuclei. Finally, the minima were
checked against the results of minimization over the 5DIM
mesh used for the saddle calculation (see below). For odd sys-
tems, the additional minimizations over configurations were
performed at every step of the gradient procedure. Considered
configurations consist of the odd particle occupying one of
the levels close to the Fermi level and the rest of the particles
forming a paired BCS state on the remaining levels. Ten states
above and ten states below the Fermi level have been blocked
and energy minimized over these configurations.

The main problem in a search for saddle points is that,
since they are neither minima nor maxima, one has to know
energy on a multidimensional grid of deformations (the often
used and much simpler method of minimization with imposed
constraints may produce invalid results, cf. Refs. [8,13–15]).
To find saddles on a grid we used the imaginary water flow
(IWF) technique. This conceptually simple and at the same
time very efficient (from a numerical point of view) method
was widely used and discussed before [8,13,22–25]. The
number of numerically tractable deformation parameters {βλμ}
is practically limited. Girds with more than five dimensions,
keeping in mind a subsequent interpolation, are intractable
in calculations for many (∼1000) nuclei. Including mass
symmetric and axially symmetric deformations (β20, β40, β60,
β80; see Refs. [26–29]) together with both mass asymmetry
(β30, β50, β70) and triaxiality (at least β22) would mean at least
an eight-dimensional mesh and is impossible at present.

Based on our previous results showing that triaxial saddles
are abundant in SH nuclei [7], we consider that quadrupole
triaxial shapes have to be necessarily included. We treated the
effects of mass-asymmetry and nonaxial higher multipoles
as corrections and analyzed them at the second stage of
calculations. A rationale for a lesser importance of mass-
asymmetric saddles is that, while they constitute a second,
more deformed (β20 ≈ 0.7–0.8), prominent barrier peak in
actinides, their heights are much reduced in SH nuclei where
they become irrelevant. In the remaining, less deformed
saddles, the mass asymmetry occurs less frequently. As to the
nonaxial multipoles of higher order, they are less important
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for saddles with small to moderate γ [where γ is the Bohr
quadrupole nonaxiality parameter, cf. Eq. (7)]. They become
important for γ closer to 60◦ where they are needed to produce
oblate shapes having x as the symmetry axis. Thus, they should
be included for nuclei with a large oblate ground-state (g.s.)
deformation and a short triaxial fission path. The additional
studies of the mass asymmetry and higher nonaxial multipoles
are described in the proper sections of the results section.

Thus, at the first stage, for all 1305 investigated nuclei the
saddle points were searched in a five-dimensional deformation
space spanned by β20, β22, β40, β60, β80 by using the IWF
technique. The appropriate nuclear radius expansion has the
form

R(ϑ,ϕ) = c({β})R0

{
1 + β20Y20 + β22√

2
[Y22 + Y2−2]

+ β40Y40 + β60Y60 + β80Y80

}
. (3)

The five-dimensional calculations are performed on the fol-
lowing deformation mesh:

β20 = 0.00 (0.05) 0.60,

β22 = 0.00 (0.05) 0.45,

β40 = −0.20 (0.05) 0.20, (4)

β60 = −0.10 (0.05) 0.10,

β80 = −0.10 (0.05) 0.10.

This makes a grid of 29 250 points which was subsequently
interpolated to a fivefold-denser grid of 50 735 286 points
with the step 0.01 in each dimension. On the latter, the
saddle point, or rather several saddle points—if there were
a few of comparable heights within the 0.5 MeV energy
window—were searched for by means of the IWF procedure.
We have checked that every ground-state minimum found by
the minimization corresponds to a minimum on the mesh with
a similar deformation. This latter mesh point was used as the
initial one in the IWF method. For odd or odd-odd nuclei, at
each grid point we were looking for low-lying configurations
by blocking particles on levels from the 10th below to the 10th
above the Fermi level (in neutrons or/and protons).

The fact that searches for ground states and for saddles are
separated—performed using different deformation spaces—
allows saving some number of deformation parameters in
Eq. (3). This is equivalent to assuming that the fission saddles
have mostly prolate deformations large enough to make
nonaxial deformations of multipolarity λ � 3 less important.
One has to check this assumption afterwards and separately
treat nuclei in which the inclusion of nonaxial deformations
with λ � 4 is necessary.

Although, as mentioned before, in SH nuclei the second
barriers at large deformations are usually smaller than the first
one or do not exist at all, for Z = 98–101 the mesh (4) was
extended to β20 = 1.5 and the second saddles were searched
for by the IWF technique. It turned out that they are indeed
mostly lower than the first ones and their heights decrease
with increasing Z. Only in Cf isotopes with N = 134–160
were there some second saddles (at β20 ≈ 0.9) higher than the

first one by at most 0.5 MeV. However, even those saddles were
lowered by at least 1 MeV after including the mass asymmetry.
Therefore, we have reason to believe that the range of β20 in
Eq. (4) is sufficient for determining the height of the fission
barrier in the whole studied region.

III. RESULTS AND DISCUSSION

In the present paper we have systematically calculated
fission barrier heights Bf as the energy difference between
the saddle point and the ground state. The saddle point is
defined as the minimum over possible fission paths of the
maximal energy along the path. Let us emphasize that the
calculations presented here have been performed without
adding any zero-point vibration energy. We included 1305
heavy and superheavy nuclei with proton numbers 98 � Z �
126 and neutron numbers in the range 134 � N � 192, with
the smallest N for a given Z increasing by one with every step
in Z. All obtained barriers have been collected in Table III. On
all PESs presented here, energy is normalized in such a way
that its macroscopic part is set to zero at the spherical shape.

A. Potential-energy surfaces

Some idea about the ground-state deformations, secondary
minima, and saddles may be gained from the PESs. Chosen
examples are shown in figures for 252Lr (Fig. 1), 270Db (Fig. 2),
276Mt (Fig. 3), 280Cn (Fig. 4), and 297119 (Fig. 5). Overall
evolution of ground-state shapes with increasing Z from
prolate to spherical can be seen there. In some nuclei one
can see multiple saddles of which the one defining the fission
barrier should be properly chosen. Sometimes the saddles
between competing minima can be important, therefore the
determination of all saddles on the map is necessarily needed.

The energy landscapes (Figs. 1–5) were obtained by
minimizing energy on the five-dimensional (5D) grid (4)
with respect to β40, β60, and β80. One should be aware

FIG. 1. Energy surface, E − Emac(sphere), for Z = 103 and N =
149.
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FIG. 2. The same as in Fig. 1 but for Z = 105 and N = 165.

of two related circumstances: (1) As the grid (3) does not
include nonaxial deformations λ � 4, the axial deformations
λ = 4, 6, 8 with respect to the x axis cannot be reproduced,
so the landscapes are inexact around the oblate γ = 60◦ axis.
(2) A reduction of an n-dimensional grid of energy values via
the minimization over n − 2 deformations sometimes leads
to an energy surface composed from portions corresponding
to minima which are disconnected in the auxiliary (those
minimized over) dimensions. This can distort the picture of
the barrier (actually, a reduction of multidimensional data to a
two-dimensional map is a general problem).

With these reservations in mind, one can still explore some
of the details shown in the maps. In particular, the prolate g.s.
minimum with strongly nonaxial first saddle point at β20 =
0.41 and β22 = 0.18 is visible in 252Lr. One can notice that
the axially symmetric saddle lies more than 2 MeV higher. A

FIG. 3. The same as in Fig. 1 but for Z = 109 and N = 167.

FIG. 4. The same as in Fig. 1 but for Z = 112 and N = 168.

slightly wider, prolate g.s. minimum and an emerging second
minimum are visible in Fig. 2 for 270Db. The triaxial saddle at
β20 = 0.52 and β22 = 0.13 has a smaller triaxiality γ than the
saddle in 252Lr. A decrease in barrier height due to triaxiality
is ≈2 MeV; see Fig. 2.

In a heavier nucleus 276Mt, a prolate deformation of the
g.s. is clearly smaller than in 252Lr; see Fig. 3. The second
minimum, which was barely outlined in 270Db, is more
pronounced here, giving the fission barrier a double-hump
structure. The deformation β20 ≈ 0.5 of the second saddle is
much smaller than that of the second saddles in actinides.
Thus, a two-peak structure of the barrier in SH nuclei may
be viewed as a result of a division (split) of the first hump,
occurring with growing Z. The higher second axial saddle is
lowered by triaxiality by ≈1.5 MeV, but eventually is still
higher than the first axial saddle.

FIG. 5. The same as in Fig. 1 but for Z = 119 and N = 178.
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For 280Ds, a topology of the PES is even more complicated.
We see several minima: prolate—the g.s. and a superdeformed
one—and a shallow oblate. The map also shows a few saddles.
The axially deformed saddle point at β20 = 0.3 has a similar
height as the nonaxial saddle at β20 = 0.54 and β22 = 0.12. It
follows from the IWF calculation that the second fission saddle
is nonaxial in this case. The axial second saddle is lowered by
≈1 MeV owing to the nonaxiality.

The nucleus Z = 119, N = 178 is spherical in its g.s.; see
Fig. 5. There is a secondary oblate minimum (whose depth
is underestimated in the map due to omission of nonaxial
λ = 4,6 deformations). There is a low triaxial second saddle
at β20 ≈ 0.5 and two “first saddles” with different triaxiality,
of which the one with a larger γ is the fission saddle.

Still another type of PES, typical of nuclei with the
superdeformed oblate g.s., is presented in Fig. 8 in Sec. III.C.

B. Role of mass asymmetry

To study the effect of the reflection (mass) asymmetry on
the fission saddles, a two-step procedure has been performed.
At the first stage, we checked the stability of all the saddles
found on the basic 5D mesh (the first, the second, ..., axially
symmetric or triaxial, of energy within 0.5 MeV of the highest
saddle) against the mass asymmetry. This was done by a three-
dimensional (3D) energy minimization with respect to β30,
β50, and β70 around each saddle. Since most of the saddles
are nonaxial, the most general version of our Woods–Saxon
code had to be used. In this case, when both symmetries (axial
and mass symmetry) are broken simultaneously, the nuclear
shapes are defined by the following equation of the nuclear
surface:

R(ϑ,ϕ) = R0c({β})
{

1 + β20Y20 + β22√
2

[Y22 + Y2−2]

+β30Y30 + β40Y40 + β50Y50

+β60Y60 + β70Y70 + β80Y80

}
. (5)

It turned out that this minimization lowers the energy of
only those saddles in which: (i) there is no triaxiality, and
(ii) deformation β20 ≈ 0.3. This supports an often expressed
conventional “wisdom” that the mass-asymmetry and triaxi-
ality effects on the fission saddle are decoupled. This is why,
at the second step of the procedure, we could carry out a
full IWF analysis on a grid including only axially symmetric
deformations: β20, β30, β40, β50, β60, β70, β80, with β20

restricted to a quite short interval 0.25–0.40:

β20 = 0.25 (0.05) 0.40,

β30 = 0.00 (0.05) 0.25,

β40 = −0.15 (0.05) 0.20,

β50 = 0.00 (0.05) 0.15, (6)

β60 = −0.10 (0.05) 0.10,

β70 = 0.00 (0.05) 0.15,

β80 = −0.10 (0.05) 0.10.

This seven-dimensional grid, composed of 76 800 de-
formations, was subject to the fivefold interpolation in all
directions before it was used in the IWF procedure. This
means that the IWF calculations have been performed on
the grid containing 1 690 730 496(!) points. We have made
such seven-dimensional analysis for more than 100 nuclei, for
which the effect of minimization was greater than 300 keV.
Results for these nuclei are shown in Table I. The rest of 127
cases shown in Table I are the test nuclei, in which the effect
of the minimization was smaller than 0.3 MeV. The results for
these additional nuclei allow us to appreciate whether the (in
principle exact) IWF method could produce a greater effect
that the (inexact) minimization.

As one can see, the adopted procedure allowed us to omit
the problem of searching for a saddle by using the (inexact)
minimization method which is not always reliable [8,13].
For example, for Z = 118 and N = 165, the discussed effect
resulting from the minimization amounts to 0.44 MeV, which,
just in this case, is quite similar to 0.46 MeV obtained from
the IWF technique; however, in Z = 113 and N = 163 one
obtains ≈0.5 MeV difference between saddles obtained by
both methods. In this particular nucleus, the ≈0.77 MeV
barrier lowering by the mass asymmetry is the largest among
all studied nuclei. It should be also noted that, for the isotopes
of Z = 113, the effect of the mass asymmetry is particularly
large; see the the top panel in Fig. 6.

In the bottom panel of Fig. 6, we show the difference
between the results of the both methods—the minimization
(MIN) and imaginary water flow (IWF). One can see that this
difference increases with the neutron number. In particular,
there is practically no effect derived from the mass asymmetry
in 281113 when IWF is used. On the contrary, the approach
based on minimization suggests still a quite substantial (spuri-
ous) effect (0.55 MeV). One might notice that our conclusion
concerning decoupling of the variables describing the axial
and reflection asymmetries is in a delicate contradiction with
the studies [30].

C. Role of triaxiality

The importance of including triaxiality in a calculation
of fission-barrier heights was indicated many times before
[31–40]. In particular, it was shown that the effect of both
quadrupole and a general hexadecapole nonaxiality, when
accounted for within the nonexact method of constrained
minimization (used generally in all self-consistent studies),
may reach 2.5 MeV for some superheavy even-even nuclei;
see Fig. 5 in Ref. [7]. Here, we extend our previous discussion
of its role to the odd and odd-odd nuclei and, at the same time,
improve the treatment by employing the exact IWF method in
potentially most interesting cases.

By using the original 5D mesh (4) we obtained saddles with
quadrupole nonaxiality for about 900 nuclei, what constitutes
more than 70% of all cases. We illustrate this conspicuous
effect in Fig. 7 on the example of two isotopic chains, Z = 103
and 113.

We show the difference between axial and nonaxial barriers
in these nuclei. One can see that, for lighter lawrencium
isotopes the effect of nonaxiality is quite considerable. Starting
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TABLE I. Mass-asymmetry (reflection-asymmetry) effect on the fission saddle from the minimization (MIN) and from the imaginary water
flow method (IWF), in MeV.

N IWF MIN N IWF MIN N IWF MIN

Z = 109 Z = 114 Z = 117

157 0.39 0.81 155 0.28 0.59 157 0.24 0.34
158 0.22 0.42 156 0.14 <0.30 158 0.28 <0.30
159 0.54 0.45 157 0.72 0.83 159 0.24 0.34
160 0.31 0.54 158 0.46 0.46 160 0.12 <0.30

Z = 110 159 0.67 0.68 161 0.26 <0.30

157 0.41 0.69 160 0.45 0.66 165 0.36 0.39
158 0.19 0.31 161 0.53 0.79 166 0.23 <0.30
159 0.52 0.46 162 0.42 0.64 167 0.19 0.50
160 0.50 0.40 163 0.58 0.65 168 0.07 <0.30
161 0.43 0.47 164 0.40 0.63 169 0.05 0.37
162 0.35 0.31 165 0.42 0.65 Z = 118

Z = 111 166 0.38 0.53 163 0.30 0.32

157 0.49 0.97 167 0.11 0.68 164 0.23 <0.30
158 0.36 0.78 168 0.06 0.41 165 0.46 0.44
159 0.61 0.83 Z = 115 166 0.28 0.31

160 0.67 0.85 157 0.28 0.64 167 0.20 0.63
161 0.87 0.89 158 0.25 0.50 168 0.15 0.39
162 0.66 0.80 159 0.34 0.49 Z = 119

163 0.56 0.83 160 0.39 0.38 165 0.46 0.57
164 0.58 0.68 161 0.56 0.58 166 0.33 0.37
166 0.48 0.49 162 0.42 0.39 167 0.34 0.49

Z = 112 163 0.46 0.54 168 0.27 0.32

157 0.57 0.83 164 0.49 0.45 169 0.31 0.57
158 0.32 0.45 165 0.47 0.60 170 0.24 0.38
159 0.58 0.55 166 0.53 0.54 171 0.23 0.32
160 0.60 0.49 167 0.42 0.80 Z = 120

161 0.51 0.60 168 0.20 0.55 165 0.39 0.38
162 0.53 0.48 169 0.13 0.31 166 0.17 <0.30
163 0.56 0.64 170 0.07 0.30 167 0.20 0.49
164 0.44 0.43 Z = 116 168 0.15 <0.30

165 0.33 0.48 155 0.40 0.41 169 0.10 0.46
166 0.34 0.34 156 0.19 <0.30 Z = 121

167 0.20 0.35 157 0.36 0.52 165 0.25 0.40
Z = 113 158 0.26 0.34 166 0.23 <0.30

155 0.14 0.49 159 0.35 0.44 167 0.38 0.52
156 0.24 0.34 160 0.28 0.49 168 0.31 0.34
157 0.80 0.98 161 0.40 0.44 169 0.36 0.60
158 0.50 0.75 162 0.33 0.37 170 0.30 0.43
159 0.56 0.91 163 0.48 0.54 Z = 122

160 0.61 0.88 164 0.40 0.38 164 0.00 <0.30
161 0.72 1.06 165 0.46 0.50 165 0.21 <0.30
162 0.57 0.93 166 0.33 0.40 166 0.12 <0.30
163 0.76 1.25 167 0.30 0.38 167 0.19 0.31
164 0.49 0.89 168 0.11 <0.30 168 0.11 <0.30
165 0.54 0.98 169 0.09 0.32 169 0.10 0.45
166 0.40 0.86 Z = 123

167 0.19 0.78 166 0.06 <0.30
168 0.10 0.55 167 0.08 0.35

Z = 124

165 0.23 0.31
166 0.06 <0.30
167 0.10 0.32
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FIG. 6. (top panel) The fission-saddle lowering by the mass
asymmetry obtained by the (in principle exact) imaginary water
flow method (IWF) and by the (easier, but sometimes misleading)
minimization method (MIN). (bottom panel) The difference between
both methods in MeV (in principle, the error in the saddle energy due
to the minimization method).

with N = 164, it is weakening quickly and finally vanishes for
N � 176. Somewhat different dependence of the effect on the
neutron number occurs in Z = 113 isotopes. The maximum
lowering of the barrier of more than 1.5 MeV occurs for
N ≈ 165, there is a second maximum at N = 179, and the
effect becomes large again at N = 192. For N ≈ 154 and

FIG. 7. Effect of the nonaxiality on the saddle energy (see text
for further explanations).

N ≈ 174, there is no effect at all. Thus, the effect of nonaxiality
has to be studied carefully, indeed.

Another task is to consider the influence of the hexade-
capole nonaxiality; namely, β42, β44 in Eq. (1), on the fission
barriers. The unconstrained inclusion of these shapes would
lead to a seven-dimensional (7D) grid which is too much
for now. To evaluate the effect without increasing the grid
dimension, we constrained β42 and β44 to be functions of the
quadrupole nonaxial deformation β22, or actually γ , and β40, in
a well-known manner [41]. By using the conventional notation

β =
√

β2
20 + β2

22,

γ = arctg
β22

β20
, (7)

the following form of Eq. (1) was used:

R(ϑ,ϕ) = c(β)R0

{
1+β cos (γ )Y20 + β sin (γ )√

2
[Y22 + Y2−2]

+β40
1

6
[5 cos2 (γ ) + 1]Y40

−β40
1

6

√
15

2
sin (2γ )[Y42 + Y4−2]

+β40
1

6

√
35

2
sin2 (γ )[Y44 + Y4−4]

+β60Y60 + β80Y80

}
. (8)

On this 5D grid, the hexadecapole nonaxiality (but not the
β60 and β80 terms) preserves the modulo-60◦ invariance in γ so,
in particular, the parameter β40 describes a deformation which
is axially symmetric around the z axis at γ = 0◦ and around
the x axis at γ = 60◦, which allows us to better approximate
energy at oblate shapes. For this reason, while the original
mesh (3) may be expected more reliable for barriers at small
γ , the one of Eq. (8) is better for saddles closer to γ = 60◦,
like those in nuclei with well- or superdeformed oblate ground
states.

Our method of proceeding is analogous to that used in
the study of the mass asymmetry. The difference is that we
do not have to perform the first step: a minimization with
respect to β42 and β44 at the saddles found from the grid (3).
Such calculations were already done in the previous studies
of the effect of nonaxial deformations of higher multipolarity
on the fission barrier in heaviest nuclei [40,42–44]. We know
that the minimization gave the largest effect in the following
four regions of nuclei, see Fig. 2 in Ref. [44]: (I) Z ≈ 122,
N ≈ 160: up to 1.5 MeV, and a ∼3 times smaller effect for
nuclei with larger N and Z > 120; (II) Z ≈ 110, N ≈ 146:
up to 1 MeV; (III) Z ≈ 114, N ≈ 184: up to 1 MeV; and
(IV) Z ≈ 104, N ≈ 170; up to 0.4 MeV.

By applying the IWF method on the mesh (8) we found the
saddles for a dozen of nuclei from the last three regions, for
which the effect of the minimization was the largest. It turned
out that, compared with saddles found on the original grid (3),
they were lowered by less than 150 keV in region (II), by less
then 100 keV in region (III), and even increased by ∼100 keV
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FIG. 8. Energy surface, E − Emac(sphere), for the nucleus Z =
122, N = 163, resulting from the calculation according to Eq. (8).

in region (IV). On this basis we conclude that the lowering of
the fission saddles found by the minimization in Refs. [7,40]
in these three regions is in a large measure a spurious effect
which mostly vanishes when saddles are fixed by a proper
method.

On the contrary, the substantial effect (up to ≈1 MeV) of
the nonaxial hexadecapole in the region (I), although smaller
than found by the minimization, survives in the exact IWF
treatment. This might be expected because these are very
heavy Z � 119 nuclei with short barriers and oblate (also
superdeformed) ground states, so β42 and β44 are necessary to
reproduce energy in the vicinity of the oblate axis. Therefore, in
the whole region of nuclei with Z � 118 we calculated triaxial
saddles by the IWF method by using the mesh (8) and then
selected the proper fission barriers from two 5D calculations.

Three types of saddles in nuclei from the region (I) are
shown for a very heavy and exotic nucleus 285122 in Fig. 8.
The landscape was created from the 5D mesh Eq. (8).

This nucleus has a global superdeformed oblate (SDO)
minimum with the quadrupole deformation β20 = −0.455
(spheroid with the axis ratio ≈3 : 2). Such ground states
are typical in the neutron-deficient area of superheavy nuclei
according to recent predictions [45]. These intriguing SDO
minima were already reproduced by various self-consistent
models [46,47]. There is a saddle close to the oblate axis,
separating the SDO g.s. from the wide minimum near the
spherical shape—type (a); the axially symmetric saddle is
designated as (b). One fission path may go through the saddles
(a) and (b), the higher of which would define the barrier
along this path. The second fission path goes through a triaxial
saddle of type (c) at β20 ≈ 0.4, γ ≈ 35◦. The fission barrier of
Bf = 3.6 MeV corresponds to saddle (c) as found by using the
grid (8). It turns out that saddles of types (a) and (c) are much
lowered by including β42, β44; the first usually more than the
second.

Table II summarizes the effect of the nonaxial hexade-
capoles on the barriers in the region (I). It contains 75 nuclei

TABLE II. The lowering of the saddle (greater than 0.3 MeV)
by the nonaxial hexadecapole deformation in nuclei Z � 118, in
particular in those with SDO ground states, from the IWF calculations
on the 5D mesh including β42 and β44 according to Eq. (8). Also
reported is the associated change in the saddle type (for a description
of saddle types see text); no entry means that a (c)-type saddle results
from both grids (3) and (8).

N 	Bf Saddle N 	Bf Saddle N 	Bf Saddle

Z = 119 Z = 122 Z = 125

155 0.597 158 0.779 161 1.083
156 0.482 159 0.959 162 0.958
157 0.472 160 0.807 163 1.167
158 0.566 161 0.731 164 0.936
159 0.585 162 0.690 165 0.439 a → c
160 0.508 163 0.469 a → c 166 0.806 b → c
161 0.315 b → c 164 0.364 b → c 167 0.806
162 0.471 a → c 169 0.403 b → c 168 0.800
170 0.343 b → c 170 0.365 169 0.714
172 0.480 b → c Z = 123 170 0.551

173 0.501 159 0.831 Z = 126

174 0.400 160 0.821 162 0.995
Z = 120 161 0.863 163 1.099

156 0.613 162 0.924 164 1.034
157 0.731 163 0.496 a → c 165 0.802
158 0.652 164 0.480 a → c 166 0.912
159 0.778 168 0.357 b → c 167 0.807
160 0.696 169 0.300 b → c 168 0.845
161 0.658 Z = 124 169 0.911

162 0.581 a → c 160 0.819 170 0.735
163 0.323 a → b 161 0.868 171 0.534

Z = 121 162 0.896 172 0.434

157 0.747 163 0.741
158 0.774 164 0.739 a → c
159 0.690 165 0.333 b → c
160 0.830 166 0.334 b → c
161 0.688 167 0.455 b → c
162 0.633 b → c 168 0.519 b → c

169 0.459
170 0.328

in which the barrier lowering is greater than 300 keV. The
most frequent saddle type in region (I), on both grids, is (c),
but there are also more complicated cases in which the saddle
type changes when β42 and β44 are included. The largest effect
of 1.167 MeV occurs in the nucleus Z = 125, N = 163.

Let us remark that the difference between the results of the
constrained minimization and the IWF method for the nonaxial
hexadecapole is the main source of the discrepancy between
the current fission barriers and those published in Ref. [7] for
even-even nuclei.

D. Isotopic dependence

Calculated fission barriers given in Table III are illustrated
along isotopic chains in Figures 9–18. Generally, it can be
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TABLE III. Calculated fission-barrier heights (in MeV).

N A Bf N A Bf N A Bf N A Bf N A Bf

Z = 98 Z = 99 Z = 100 Z = 101 Z = 102

134 232 2.28
135 233 2.74 135 234 2.82
136 234 2.83 136 235 3.30 136 236 2.62
137 235 3.45 137 236 4.18 137 237 3.30 137 238 3.29
138 236 3.62 138 237 4.37 138 238 3.58 138 239 3.33 138 240 2.87
139 237 4.64 139 238 5.32 139 239 4.64 139 240 4.13 139 241 3.81
140 238 4.78 140 239 5.23 140 240 4.61 140 241 4.05 140 242 3.63
141 239 5.86 141 240 6.14 141 241 5.60 141 242 4.94 141 243 4.47
142 240 5.90 142 241 6.01 142 242 5.38 142 243 4.85 142 244 4.42
143 241 6.71 143 242 7.01 143 243 6.23 143 244 5.70 143 245 5.18
144 242 6.61 144 243 6.72 144 244 6.07 144 245 5.59 144 246 5.10
145 243 7.35 145 244 7.72 145 245 7.09 145 246 6.48 145 247 5.90
146 244 6.88 146 245 7.25 146 246 6.61 146 247 6.23 146 248 5.66
147 245 7.41 147 246 7.99 147 247 7.32 147 248 6.94 147 249 6.39
148 246 6.86 148 247 7.50 148 248 6.89 148 249 6.72 148 250 6.14
149 247 7.08 149 248 7.87 149 249 7.40 149 250 7.45 149 251 6.92
150 248 6.79 150 249 7.53 150 250 6.99 150 251 7.09 150 252 6.59
151 249 7.36 151 250 8.06 151 251 7.60 151 252 7.91 151 253 7.42
152 250 6.67 152 251 7.42 152 252 6.98 152 253 7.38 152 254 6.88
153 251 6.26 153 252 6.95 153 253 6.55 153 254 7.03 153 255 6.53
154 252 5.98 154 253 6.66 154 254 6.21 154 255 6.69 154 256 6.23
155 253 5.62 155 254 5.88 155 255 5.71 155 256 6.06 155 257 5.81
156 254 5.19 156 255 5.69 156 256 5.40 156 257 5.82 156 258 5.46
157 255 5.00 157 256 5.32 157 257 5.14 157 258 5.77 157 259 5.59
158 256 4.73 158 257 5.04 158 258 4.82 158 259 5.36 158 260 5.15
159 257 4.99 159 258 5.26 159 259 5.08 159 260 5.30 159 261 5.30
160 258 4.48 160 259 4.63 160 260 4.56 160 261 4.95 160 262 5.02
161 259 5.06 161 260 5.19 161 261 5.17 161 262 5.61 161 263 5.46
162 260 4.60 162 261 4.71 162 262 4.74 162 263 5.23 162 264 4.96
163 261 4.41 163 262 4.58 163 263 4.54 163 264 4.97 163 265 4.71
164 262 4.10 164 263 4.20 164 264 4.14 164 265 4.56 164 266 4.29
165 263 3.97 165 264 3.99 165 265 3.85 165 266 4.15 165 267 3.86
166 264 3.71 166 265 3.78 166 266 3.62 166 267 3.92 166 268 3.69
167 265 3.71 167 266 3.65 167 267 3.51 167 268 3.64 167 269 3.52
168 266 3.62 168 267 3.50 168 268 3.38 168 269 3.55 168 270 3.27
169 267 4.38 169 268 3.78 169 269 3.84 169 270 3.69 169 271 3.51
170 268 3.85 170 269 3.52 170 270 3.43 170 271 3.35 170 272 3.19
171 269 4.81 171 270 4.20 171 271 4.36 171 272 3.92 171 273 3.93
172 270 4.48 172 271 3.79 172 272 3.94 172 273 3.50 172 274 3.46
173 271 5.13 173 272 4.46 173 273 4.62 173 274 4.31 173 275 4.08
174 272 5.13 174 273 4.31 174 274 4.48 174 275 3.99 174 276 3.91
175 273 6.00 175 274 5.18 175 275 5.37 175 276 4.87 175 277 4.72
176 274 5.58 176 275 4.89 176 276 5.01 176 277 4.60 176 278 4.39
177 275 6.63 177 276 6.10 177 277 6.01 177 278 5.56 177 279 5.41
178 276 6.17 178 277 5.41 178 278 5.52 178 279 5.04 178 280 4.86
179 277 6.72 179 278 6.03 179 279 5.99 179 280 5.43 179 281 5.37
180 278 6.49 180 279 5.73 180 280 5.66 180 281 5.10 180 282 5.04
181 279 7.85 181 280 6.50 181 281 6.41 181 282 5.71 181 283 6.22
182 280 6.93 182 281 5.99 182 282 5.96 182 283 5.13 182 284 5.31
183 281 7.65 183 282 6.68 183 283 6.65 183 284 5.95 183 285 6.11
184 282 7.14 184 283 6.19 184 284 6.17 184 285 5.36 184 286 5.48
185 283 5.73 185 284 4.79 185 285 4.70 185 286 4.29 185 287 4.29
186 284 5.43 186 285 4.54 186 286 4.47 186 287 4.02 186 288 3.97
187 285 4.59 187 286 3.76 187 287 3.60 187 288 3.38 187 289 3.20
188 286 4.00 188 287 3.30 188 288 3.09 188 289 3.00 188 290 2.73
189 287 4.13 189 288 3.30 189 289 3.10 189 290 2.88 189 291 2.48
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TABLE III. (Continued.)

N A Bf N A Bf N A Bf N A Bf N A Bf

190 288 3.52 190 289 2.79 190 290 2.48 190 291 2.42 190 292 2.09
191 289 3.53 191 290 2.69 191 291 2.57 191 292 2.64 191 293 2.24
192 290 3.08 192 291 2.17 192 292 2.05 192 293 2.13 192 294 1.73

Z = 103 Z = 104 Z = 105 Z = 106 Z = 107

139 242 3.13
140 243 3.14 140 244 2.69
141 244 4.01 141 245 3.58 141 246 2.89
142 245 3.92 142 246 3.46 142 247 3.09 142 248 2.66
143 246 4.55 143 247 4.16 143 248 3.77 143 249 3.37 143 250 3.30
144 247 4.66 144 248 4.13 144 249 3.75 144 250 3.35 144 251 3.31
145 248 5.29 145 249 4.95 145 250 4.68 145 251 4.21 145 252 4.17
146 249 5.19 146 250 4.74 146 251 4.56 146 252 4.15 146 253 4.16
147 250 6.10 147 251 5.47 147 252 5.57 147 253 5.01 147 254 5.19
148 251 5.79 148 252 5.36 148 253 5.62 148 254 4.98 148 255 5.08
149 252 6.54 149 253 6.16 149 254 6.77 149 255 5.98 149 256 6.22
150 253 6.28 150 254 5.93 150 255 6.43 150 256 5.76 150 257 5.92
151 254 7.26 151 255 6.93 151 256 7.50 151 257 6.85 151 258 7.17
152 255 6.81 152 256 6.44 152 257 7.04 152 258 6.37 152 259 6.70
153 256 6.62 153 257 6.36 153 258 7.18 153 259 6.58 153 260 6.83
154 257 6.45 154 258 6.11 154 259 6.99 154 260 6.49 154 261 6.70
155 258 6.49 155 259 6.14 155 260 7.18 155 261 6.61 155 262 6.69
156 259 6.30 156 260 5.96 156 261 6.82 156 262 6.30 156 263 6.53
157 260 6.33 157 261 6.01 157 262 6.84 157 263 6.37 157 264 6.74
158 261 6.10 158 262 5.73 158 263 6.56 158 264 6.03 158 265 6.44
159 262 6.15 159 263 5.68 159 264 6.53 159 265 5.97 159 266 6.92
160 263 5.89 160 264 5.45 160 265 6.31 160 266 5.83 160 267 6.72
161 264 6.36 161 265 5.91 161 266 6.83 161 267 6.45 161 268 7.60
162 265 5.83 162 266 5.46 162 267 6.40 162 268 5.95 162 269 7.20
163 266 5.19 163 267 5.14 163 268 5.99 163 269 5.69 163 270 6.95
164 267 4.83 164 268 4.59 164 269 5.37 164 270 5.06 164 271 6.27
165 268 4.17 165 269 4.13 165 270 4.71 165 271 4.50 165 272 5.61
166 269 3.97 166 270 3.85 166 271 4.43 166 272 4.17 166 273 5.30
167 270 3.82 167 271 3.67 167 272 4.00 167 273 3.85 167 274 4.67
168 271 3.41 168 272 3.33 168 273 3.70 168 274 3.54 168 275 4.38
169 272 3.52 169 273 3.44 169 274 3.67 169 275 3.44 169 276 3.93
170 273 3.19 170 274 3.12 170 275 3.37 170 276 3.20 170 277 3.72
171 274 3.68 171 275 3.65 171 276 3.81 171 277 3.56 171 278 4.11
172 275 3.30 172 276 3.20 172 277 3.36 172 278 3.24 172 279 3.70
173 276 4.07 173 277 3.83 173 278 4.08 173 279 3.89 173 280 4.33
174 277 3.67 174 278 3.48 174 279 3.72 174 280 3.55 174 281 4.10
175 278 4.55 175 279 4.55 175 280 4.73 175 281 4.71 175 282 5.15
176 279 4.00 176 280 4.12 176 281 4.10 176 282 4.15 176 283 4.64
177 280 4.97 177 281 5.24 177 282 5.03 177 283 5.29 177 284 5.27
178 281 4.46 178 282 4.77 178 283 4.51 178 284 4.78 178 285 4.65
179 282 5.01 179 283 5.19 179 284 5.23 179 285 5.26 179 286 5.49
180 283 4.68 180 284 4.89 180 285 4.75 180 286 5.06 180 287 4.99
181 284 5.62 181 285 5.69 181 286 5.71 181 287 5.83 181 288 5.84
182 285 5.00 182 286 5.17 182 287 5.13 182 288 5.22 182 289 5.27
183 286 5.91 183 287 5.89 183 288 5.87 183 289 6.01 183 290 6.13
184 287 5.31 184 288 5.36 184 289 5.34 184 290 5.41 184 291 5.52
185 288 4.38 185 289 4.27 185 290 4.32 185 291 4.26 185 292 4.25
186 289 4.17 186 290 4.01 186 291 4.11 186 292 4.11 186 293 4.26
187 290 2.74 187 291 3.05 187 292 3.24 187 293 2.99 187 294 3.19
188 291 2.76 188 292 2.57 188 293 2.83 188 294 2.67 188 295 2.91
189 292 2.44 189 293 2.23 189 294 2.18 189 295 1.88 189 296 1.86
190 293 2.20 190 294 1.81 190 295 1.92 190 296 1.56 190 297 1.61
191 294 2.21 191 295 1.89 191 296 1.73 191 297 1.48 191 298 1.40
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TABLE III. (Continued.)

N A Bf N A Bf N A Bf N A Bf N A Bf

192 295 1.70 192 296 1.44 192 297 1.37 192 298 1.12 192 299 1.06
Z = 108 Z = 109 Z = 110 Z = 111 Z = 112

144 252 2.72
145 253 3.49 145 254 2.72
146 254 3.58 146 255 3.06 146 256 2.47
147 255 4.50 147 256 3.71 147 257 3.29 147 258 2.60
148 256 4.48 148 257 3.70 148 258 3.32 148 259 2.50 148 260 2.21
149 257 5.60 149 258 4.88 149 259 4.26 149 260 3.33 149 261 2.96
150 258 5.29 150 259 4.53 150 260 4.05 150 261 3.27 150 262 2.77
151 259 6.40 151 260 5.53 151 261 5.12 151 262 4.10 151 263 3.92
152 260 5.98 152 261 5.17 152 262 4.68 152 263 3.67 152 264 3.47
153 261 6.13 153 262 5.00 153 263 4.68 153 264 3.73 153 265 3.40
154 262 6.07 154 263 4.97 154 264 4.50 154 265 3.81 154 266 3.34
155 263 6.07 155 264 5.01 155 265 4.50 155 266 3.65 155 267 3.22
156 264 5.93 156 265 4.92 156 266 4.39 156 267 3.74 156 268 3.26
157 265 6.09 157 266 5.29 157 267 4.50 157 268 3.65 157 269 3.21
158 266 5.83 158 267 5.11 158 268 4.38 158 269 3.68 158 270 3.31
159 267 6.19 159 268 5.85 159 269 5.04 159 270 4.52 159 271 3.98
160 268 5.93 160 269 5.65 160 270 4.86 160 271 4.26 160 272 3.78
161 269 6.87 161 270 6.72 161 271 5.91 161 272 5.58 161 273 5.02
162 270 6.46 162 271 6.44 162 272 5.62 162 273 5.30 162 274 4.72
163 271 6.28 163 272 6.48 163 273 5.85 163 274 5.70 163 275 5.00
164 272 5.52 164 273 5.85 164 274 5.22 164 275 5.03 164 276 4.46
165 273 5.00 165 274 5.56 165 275 4.87 165 276 5.05 165 277 4.46
166 274 4.62 166 275 5.14 166 276 4.47 166 277 4.62 166 278 4.01
167 275 4.16 167 276 4.90 167 277 4.16 167 278 4.61 167 279 3.99
168 276 3.80 168 277 4.45 168 278 3.73 168 279 4.13 168 280 3.78
169 277 3.40 169 278 4.14 169 279 3.44 169 280 4.35 169 281 3.88
170 278 3.20 170 279 3.84 170 280 3.29 170 281 4.19 170 282 3.74
171 279 3.80 171 280 4.09 171 281 3.95 171 282 4.74 171 283 4.58
172 280 3.31 172 281 3.87 172 282 3.72 172 283 4.67 172 284 4.34
173 281 4.20 173 282 4.55 173 283 4.68 173 284 5.32 173 285 5.26
174 282 3.88 174 283 4.22 174 284 4.40 174 285 5.07 174 286 5.03
175 283 5.00 175 284 5.37 175 285 5.51 175 286 5.83 175 287 6.04
176 284 4.50 176 285 4.91 176 286 5.04 176 287 5.37 176 288 5.60
177 285 5.43 177 286 5.74 177 287 5.86 177 288 6.39 177 289 6.29
178 286 4.93 178 287 5.17 178 288 5.33 178 289 5.93 178 290 5.87
179 287 5.61 179 288 6.03 179 289 5.96 179 290 6.60 179 291 6.32
180 288 5.29 180 289 5.66 180 290 5.61 180 291 6.23 180 292 5.94
181 289 6.06 181 290 6.19 181 291 6.12 181 292 6.59 181 293 6.29
182 290 5.47 182 291 5.70 182 292 5.63 182 293 6.18 182 294 5.89
183 291 6.05 183 292 6.46 183 293 6.20 183 294 6.75 183 295 6.48
184 292 5.61 184 293 5.95 184 294 5.68 184 295 6.20 184 296 5.91
185 293 4.20 185 294 4.51 185 295 4.38 185 296 4.79 185 297 4.54
186 294 4.23 186 295 4.68 186 296 4.50 186 297 5.04 186 298 4.74
187 295 3.04 187 296 3.09 187 297 3.07 187 298 3.73 187 299 3.39
188 296 2.83 188 297 3.11 188 298 3.01 188 299 3.76 188 300 3.44
189 297 1.75 189 298 1.80 189 299 1.79 189 300 2.20 189 301 1.92
190 298 1.44 190 299 1.74 190 300 1.58 190 301 2.28 190 302 2.02
191 299 1.30 191 300 1.21 191 301 1.28 191 302 1.05 191 303 1.07
192 300 0.75 192 301 0.74 192 302 0.76 192 303 0.99 192 304 0.76

Z = 113 Z = 114 Z = 115 Z = 116 Z = 117

149 262 2.02
150 263 2.02 150 264 1.72
151 264 2.95 151 265 2.75 151 266 1.54
152 265 2.44 152 266 2.27 152 267 1.17 152 268 1.08
153 266 2.33 153 267 2.15 153 268 0.90 153 269 0.96 153 270 0.76
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TABLE III. (Continued.)

N A Bf N A Bf N A Bf N A Bf N A Bf

154 267 2.25 154 268 2.14 154 269 1.34 154 270 1.01 154 271 0.87
155 268 2.44 155 269 2.13 155 270 2.14 155 271 1.39 155 272 1.93
156 269 2.34 156 270 2.27 156 271 2.29 156 272 1.72 156 273 1.99
157 270 2.55 157 271 2.36 157 272 2.81 157 273 2.24 157 274 2.58
158 271 2.66 158 272 2.50 158 273 2.89 158 274 2.37 158 275 2.91
159 272 3.65 159 273 3.25 159 274 3.67 159 275 3.13 159 276 3.33
160 273 3.45 160 274 3.39 160 275 3.81 160 276 3.27 160 277 3.69
161 274 4.58 161 275 4.53 161 276 4.88 161 277 4.45 161 278 4.74
162 275 4.41 162 276 4.35 162 277 4.68 162 278 4.18 162 279 4.35
163 276 4.88 163 277 4.75 163 278 5.30 163 279 4.77 163 280 5.10
164 277 4.44 164 278 4.32 164 279 4.79 164 280 4.34 164 281 4.66
165 278 4.58 165 279 4.29 165 280 4.87 165 281 4.36 165 282 4.47
166 279 4.23 166 280 3.99 166 281 4.56 166 282 4.16 166 283 4.53
167 280 4.67 167 281 4.37 167 282 4.96 167 283 4.52 167 284 4.77
168 281 4.34 168 282 4.05 168 283 4.81 168 284 4.48 168 285 4.69
169 282 4.89 169 283 4.52 169 284 5.29 169 285 4.83 169 286 5.23
170 283 4.46 170 284 4.48 170 285 4.98 170 286 4.70 170 287 5.30
171 284 5.19 171 285 5.16 171 286 5.70 171 287 5.76 171 288 6.21
172 285 4.98 172 286 4.83 172 287 5.56 172 288 5.45 172 289 5.95
173 286 5.74 173 287 5.76 173 288 6.21 173 289 6.18 173 290 6.81
174 287 5.54 174 288 5.52 174 289 6.02 174 290 5.93 174 291 6.46
175 288 6.43 175 289 6.43 175 290 6.68 175 291 6.67 175 292 7.04
176 289 6.28 176 290 6.04 176 291 6.55 176 292 6.31 176 293 6.56
177 290 6.95 177 291 6.67 177 292 7.46 177 293 6.82 177 294 7.31
178 291 6.61 178 292 6.58 178 293 6.80 178 294 6.37 178 295 6.64
179 292 7.26 179 293 6.75 179 294 7.08 179 295 6.64 179 296 6.88
180 293 6.82 180 294 6.45 180 295 6.69 180 296 6.25 180 297 6.32
181 294 6.93 181 295 6.64 181 296 7.00 181 297 6.51 181 298 6.70
182 295 6.71 182 296 6.29 182 297 6.48 182 298 6.10 182 299 6.12
183 296 7.13 183 297 6.58 183 298 6.75 183 299 6.35 183 300 6.32
184 297 6.63 184 298 6.10 184 299 6.23 184 300 5.84 184 301 5.81
185 298 5.36 185 299 4.72 185 300 4.97 185 301 4.39 185 302 4.27
186 299 5.43 186 300 4.92 186 301 5.01 186 302 4.64 186 303 4.61
187 300 4.11 187 301 3.52 187 302 3.85 187 303 3.27 187 304 3.32
188 301 4.14 188 302 3.66 188 303 3.74 188 304 3.40 188 305 3.34
189 302 2.67 189 303 2.26 189 304 2.53 189 305 2.04 189 306 2.28
190 303 2.70 190 304 2.36 190 305 2.34 190 306 2.16 190 307 2.07
191 304 1.30 191 305 0.78 191 306 1.53 191 307 0.90 191 308 1.25
192 305 1.28 192 306 0.91 192 307 1.23 192 308 0.75 192 309 1.18

Z = 118 Z = 119 Z = 120 Z = 121 Z = 122

154 272 0.66
155 273 1.39 155 274 1.82
156 274 1.41 156 275 1.83 156 276 1.38
157 275 2.30 157 276 2.26 157 277 1.79 157 278 1.96
158 276 2.25 158 277 2.25 158 278 1.88 158 279 2.11 158 280 1.47
159 277 3.06 159 278 2.78 159 279 2.39 159 280 2.72 159 281 1.94
160 278 3.15 160 279 2.79 160 280 2.44 160 281 2.75 160 282 2.15
161 279 4.30 161 280 3.49 161 281 3.23 161 282 3.66 161 283 3.07
162 280 3.94 162 281 3.27 162 282 3.07 162 283 3.50 162 284 2.94
163 281 4.32 163 282 3.96 163 283 3.89 163 284 4.56 163 285 3.88
164 282 4.13 164 283 3.68 164 284 3.57 164 285 4.16 164 286 3.61
165 283 3.79 165 284 3.87 165 285 3.65 165 286 4.67 165 287 4.46
166 284 3.64 166 285 3.67 166 286 3.43 166 287 4.36 166 288 3.91
167 285 4.09 167 286 4.43 167 287 4.08 167 288 4.40 167 289 4.06
168 286 4.01 168 287 4.45 168 288 4.21 168 289 4.37 168 290 4.01
169 287 5.03 169 288 5.21 169 289 5.01 169 290 5.35 169 291 4.83
170 288 5.05 170 289 5.23 170 290 5.01 170 291 5.41 170 292 4.80
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TABLE III. (Continued.)

N A Bf N A Bf N A Bf N A Bf N A Bf

171 289 6.03 171 290 6.26 171 291 6.08 171 292 6.56 171 293 5.96
172 290 5.75 172 291 5.75 172 292 5.48 172 293 5.90 172 294 5.36
173 291 6.40 173 292 6.55 173 293 6.06 173 294 6.15 173 295 5.54
174 292 6.09 174 293 6.21 174 294 5.62 174 295 5.89 174 296 5.28
175 293 6.62 175 294 6.95 175 295 6.28 175 296 6.00 175 297 5.48
176 294 6.09 176 295 6.32 176 296 5.79 176 297 5.69 176 298 5.10
177 295 6.64 177 296 6.71 177 297 6.02 177 298 5.90 177 299 5.36
178 296 6.12 178 297 6.20 178 298 5.56 178 299 5.38 178 300 4.86
179 297 6.21 179 298 6.20 179 299 5.57 179 300 5.38 179 301 4.75
180 298 5.79 180 299 5.72 180 300 5.08 180 301 4.82 180 302 4.26
181 299 6.02 181 300 5.88 181 301 5.24 181 302 4.99 181 303 4.43
182 300 5.52 182 301 5.38 182 302 4.71 182 303 4.37 182 304 3.78
183 301 5.71 183 302 5.50 183 303 4.81 183 304 4.27 183 305 3.70
184 302 5.20 184 303 4.98 184 304 4.30 184 305 3.64 184 306 3.16
185 303 3.93 185 304 3.82 185 305 3.02 185 306 2.96 185 307 2.27
186 304 4.03 186 305 3.85 186 306 3.14 186 307 2.60 186 308 2.08
187 305 2.80 187 306 2.78 187 307 2.17 187 308 2.15 187 309 1.66
188 306 2.78 188 307 2.63 188 308 1.95 188 309 1.84 188 310 1.50
189 307 1.78 189 308 2.03 189 309 1.51 189 310 1.50 189 311 1.31
190 308 1.57 190 309 1.97 190 310 1.39 190 311 1.45 190 312 1.15
191 309 0.79 191 310 1.67 191 311 1.05 191 312 1.20 191 313 0.68
192 310 0.80 192 311 1.63 192 312 1.05 192 313 1.28 192 314 0.80

Z = 123 Z = 124 Z = 125 Z = 126

159 282 2.14
160 283 2.25 160 284 1.78
161 284 3.01 161 285 2.51 161 286 2.47
162 285 2.87 162 286 2.44 162 287 2.44 162 288 1.89
163 286 4.03 163 287 3.46 163 288 3.18 163 289 2.64
164 287 3.69 164 288 3.24 164 289 3.18 164 290 2.58
165 288 4.75 165 289 4.43 165 290 4.43 165 291 3.85
166 289 4.15 166 290 3.78 166 291 3.76 166 292 3.24
167 290 4.43 167 291 4.08 167 292 4.14 167 293 3.69
168 291 4.08 168 292 3.54 168 293 3.64 168 294 3.15
169 292 5.10 169 293 4.44 169 294 4.34 169 295 3.48
170 293 4.94 170 294 4.38 170 295 4.35 170 296 3.49
171 294 5.96 171 295 5.44 171 296 5.47 171 297 4.62
172 295 5.52 172 296 5.01 172 297 5.06 172 298 4.20
173 296 5.52 173 297 5.10 173 298 5.30 173 299 4.84
174 297 5.23 174 298 4.81 174 299 5.02 174 300 4.52
175 298 5.16 175 299 4.82 175 300 5.13 175 301 4.65
176 299 4.82 176 300 4.51 176 301 4.76 176 302 4.37
177 300 5.26 177 301 4.92 177 302 5.14 177 303 4.75
178 301 4.75 178 302 4.48 178 303 4.66 178 304 4.28
179 302 4.83 179 303 4.55 179 304 4.68 179 305 4.33
180 303 4.07 180 304 3.84 180 305 4.03 180 306 3.66
181 304 3.90 181 305 3.39 181 306 3.45 181 307 2.96
182 305 3.39 182 306 2.95 182 307 3.17 182 308 2.79
183 306 3.54 183 307 2.78 183 308 3.02 183 309 2.21
184 307 2.91 184 308 2.25 184 309 2.53 184 310 2.08
185 308 2.20 185 309 2.07 185 310 2.40 185 311 2.05
186 309 2.01 186 310 1.96 186 311 2.37 186 312 1.90
187 310 1.89 187 311 1.69 187 312 1.90 187 313 1.39
188 311 1.85 188 312 1.62 188 313 1.76 188 314 1.26
189 312 1.47 189 313 1.16 189 314 1.36 189 315 0.90
190 313 1.31 190 314 0.98 190 315 1.10 190 316 0.80
191 314 0.90 191 315 0.68 191 316 0.91 191 317 0.81
192 315 0.76 192 316 0.62 192 317 0.84 192 318 0.70
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FIG. 9. Isotopic dependance of fission barriers for Z = 98, 99
and Z = 100.

seen that: (i) in the whole region Z = 98–126 the fission
barrier heights are limited by: Bf � 8.06 MeV; (ii) there
are characteristic maxima of fission barriers at Z ≈ 100,
N ≈ 150, near Z = 108, N = 162 (deformed magic shells)
and Z = 114, N = 178 (not 184); high barriers occur also
at the border of the studied region, for Z = 98, N ≈ 183;
(iii) over intervals of N where Bf (N ) increase or are on average
constant, the fission barriers in a neighboring system Neven + 1
are higher than Bf (Neven); it may be the opposite over intervals
where Bf (N ) strongly decrease; the same behavior can be
seen when comparing barriers for isotones; see Fig. 20. This
quite pronounced odd-even staggering in barriers is related to a
decrease in the pairing gap due to blocking as will be discussed
in the next section.

In the isotopic dependence of the fission barriers for Cf, Es,
and Fm nuclei, shown in Fig. 9, there are two peaks of a similar
size, at N = 152 and N = 184. The minima of Bf (N ) occur at
N ≈ 170. Odd-even staggering in Bf for Es is stronger around
N = 152, while for Cf it is stronger near N = 184.

FIG. 10. The same as in Fig. 9 but for Z = 101, 102 and Z = 103.

FIG. 11. The same as in Fig. 9 but for Z = 104, 105 and Z = 106.

For Md, No, and Lr isotopes (Fig. 10), the second maximum
around N = 184 becomes lower. A maximum associated with
the semimagic deformed shell at N = 162 appears. As before,
the minima of Bf (N ) are located at N ≈ 170. For Rf, Db,
Sg, Bh, and Hs nuclei (Fig. 11 and 12), previously distinct
maximum at N = 152 becomes more flat, and a kind of plateau
forms between N = 152 and 162. For Mt isotopes this plateau
changes into a local minimum in the isotopic dependence
Bf (N ), located around N = 155. The highest barriers in Bh,
Hs, and Mt isotopic sets occur at N ≈ 162.

For Ds, Rg, and Cn nuclei (Fig. 13), with increasing
proton number, the N = 184 spherical shell starts to dominate.
However, not-much-lower barriers are obtained near the
deformed gap N = 162.

For nuclei Z = Nh, Fl, Mc (Fig. 14), one can see one region
with high barriers, around N = 180. One can notice that the
maxima in Bf (N ) are already shifted toward N < 184. Slight
residues of the formerly observed shells at N = 152 and N =
162 can be spotted.

FIG. 12. The same as in Fig. 9 but for Z = 107, 108 and Z = 109.
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FIG. 13. The same as in Fig. 9 but for Z = 110, 111 and Z = 112.

For nuclei Z = Lv, Ts, Og (Fig. 15), the main maximum in
Bf shifts further towards smaller N , reaching finally N ≈ 175.
The minima in Bf (N ), observed before at N = 172, gradually
disappear. For nuclei Z = 119, Z = 120, Z = 121 (Fig. 16),
the situation is similar to that described above. Barriers
in nuclei Z = 122, 123, 124 (Fig. 17), compared with the
previous set, are clearly lower. The maximum is even more
shifted towards smaller N . For nuclei Z = 125, 126 (Fig. 18)
the fission barriers are still lower. Their maxima occur at
N = 171 and 173.

All calculated fission-barrier heights are collected and
shown as a map Bf (Z,N ) in Fig. 19. One can see three areas
with clearly raised barriers: around N ≈ 152, N = 162, and
N ≈ 180, and the region of low barriers around N = 170, as
discussed above. The effect of the odd particle, i.e., an often
(but not always) higher barrier in a neighboring odd-particle
system can also be seen in Fig. 19.

FIG. 14. The same as in Fig. 9 but for Z = 113, 114 and Z = 115.

FIG. 15. The same as in Fig. 9 but for Z = 116, 117 and Z = 118.

E. Role of the pairing interaction and the odd-even
barrier staggering

It is known that the blocking procedure often causes an
excessive reduction of the pairing gap in systems with an
odd particle number. This effect is much more pronounced
in the g.s. than in the fission saddle, because the pairing
gap is never small in the latter. One device to avoid an
excessive even-odd staggering in nuclear binding was to
assume a stronger (typically by ∼5%) pairing interaction for
odd-particle-number systems; see Refs. [48–51]. Here, instead
of performing another grid calculation with modified pairing
strengths, we tested the magnitude of their effect on fission
barriers by increasing them by 5% and 10% for odd particle
numbers (neutrons or protons) at previously found ground
states and saddle points. The results of this test are presented
in Fig. 20 for the N = 169 isotones and in Fig. 21 for the
Z = 109 isotopic chain.

Both the isotopic and isotonic dependence show that
increasing the intensity of pairing leads to a reduction of

FIG. 16. The same as in Fig. 9 but for Z = 119, 120 and Z = 121.
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FIG. 17. The same as in Fig. 9 but for Z = 122, 123 and Z = 124.

the fission barrier by a variable amount. When the pairing
strengths are increased by 5% for odd particle numbers, the
fission barriers decrease in odd-even, even-odd, and odd-odd
systems by up to 0.5 MeV; the 10% increase in the pairing
strengths can decrease the barriers at most by about 1 MeV.
The same pairing change leads to the suppression, and then
the inversion of the staggering effect.

The even-odd barrier staggering related to pairing is
convoluted with the isotopic or isotonic dependence re-
lated to the mean field. With the original pairing, when
one separates a linear part of the latter by calculating:
Bf (Zodd,N ) − 1/2[Bf (Zodd + 1,N ) + Bf (Zodd − 1,N )], and
an analogous quantity for odd neutron numbers, one obtains
numbers between 1.053 and −0.947 MeV, with the average
of ≈0.22 MeV for protons and ≈0.26 MeV for neutrons. As
shown by black points in Fig. 20 and 21, the effect is indeed
irregular and, when present, typically at the level of several
hundred keV.

FIG. 18. The same as in Fig. 9 but for Z = 125 and Z = 126.

The 5% increase in pairing for odd particle numbers reduces
the staggering in N = 169 isotones and nearly cancels it
in Z = 109 isotopes (red points in Figs. 20 and 21). The
important point is that the 10% increase in pairing for an odd
number of particles inverts the staggering, at least locally: near
Z = 120 in N = 169 isotones and near N = 153, N = 162,
and N = 180 in Mt isotopes (green points in Figs. 20 and 21).

Although the spontaneous fission rates of odd-particle
number nuclei are smaller by 3–5 orders of magnitude than
those of their even neighbors, the experimental fission barriers
in actinides show only a moderate odd-even staggering, cf.
Refs. [23,52]. Still, it is inconceivable that the fission barriers
in odd-Z or odd-N systems should be on average smaller than
in their even neighbors. This indicates that the 10% increase
in pairing strengths in odd-N or odd-Z systems would be too
large. A qualitative argument which follows is that, even if
the blocking method overestimates the pairing decrease, the
fission barriers of odd-Z or/and odd-N nuclei should fall in
a strip between the black and red points in Figs. 20 and 21.
Thus, the test of the pairing influence on barriers indicates
that a possible overestimate of barriers in odd-A and odd-odd
nuclei, induced by the blocking, should not be much larger than
0.5 MeV. One may add in this context that the barriers from
the finite-range liquid drop model (FRLDM) do not show any
even-odd staggering due to the way the pairing was included
there.

F. Comparison with other theoretical calculations
and some empirical data

Let us discuss the results in Table III in relation to available
empirical data and to the other theoretical estimates.

As an empirical check of our model, one can use the barriers
in the actinide region. We have reported quite a spectacular
agreement of the calculated first [7] and second [8] fission
barriers in even-even actinides with the data [23,52], with root
mean square deviation 0.5 and 0.7 MeV, respectively.

The heaviest nucleus in which the fission barrier height
has been measured recently is 254No. The value Bf =
6.0 ± 0.5 MeV at spin 15�, giving by extrapolation Bf =
6.6 ± 0.9 MeV at the spin 0�, has been deduced from the
measured distribution of entry points in the excitation energy
vs angular-momentum plane [53]. This result perfectly agrees
with our evaluation: Bf = 6.88 MeV (at spin 0�) and with
the MM model [54] which gives: Bf = 6.76 MeV. The
self-consistent calculations, mainly based on the Skyrme
interaction, overestimate this barrier significantly [37,55,56]
(9.6 and 8.6 or 12.5 MeV, respectively). There are experimental
estimates of barriers in a few SH nuclei, based on observed
ER production probabilities [57], which again agree well with
our barriers; see Ref. [7]. Apart from those, fission barriers in
the SH region are generally unknown.

As a supplementary insight, one can cross-check barriers
evaluated within various models. Quite recently we noted
a dramatic divergence in calculated fission barriers [58].
Since, as discussed previously, the inclusion of triaxiality
is absolutely necessary in the SH region, we have chosen
only models which take this into account. In fact, there
is only one systematic calculation including triaxiality and
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FIG. 19. Calculated fission-barrier heights Bf for superheavy nuclei.

odd-particle-number nuclei: the finite-range liquid drop model
[13,54,59] (FRLDM) developed by the Los Alamos group. It
can be noted though, that the inner fission barrier is fixed there
in only three-dimensional deformation space, what is certainly
not enough.

The first conclusion from the comparison between our
results and those of the FRLDM is that a conspicuous barrier
staggering between odd- and even-particle-number nuclei is
obtained in the Woods–Saxon model. As mentioned before,
this results from the blocking treatment of pairing. At present
it is not certain how large this staggering should be.

One can include more models for comparison if one
confines it to even-even nuclei. Here we take the covariant
density functional model [60] with the nonlinear meson-
nucleon coupling, represented by the NL3∗ parametrization
of the relativistic mean-field (RMF) Lagrangian and the

FIG. 20. Effect of pairing-strength increase (while keeping fixed
the g.s. and saddle deformations) in N = 169 isotones: standard Gn

and Gp (black points), red (green) points show Gn and Gp increased
by 5% (10%) for odd-Z and odd-N nuclei.

Hartree–Fock–Bogoliubov (HFB) approach with the SkM∗

Skyrme energy density functional [61].
As can be seen in Fig. 22, fission barriers in Hassium nuclei

are quite similar in all models. The values of Bf differ up to
2 MeV, but never more. Regarded as a function of N , they show
a maximum close to the semimagic number N = 162 while the
second maximum is related with the N = 184 spherical gap.
In the FRLDM, this maximum is barely outlined and slightly
shifted to the neutron-deficient side. The minimum in barriers
is obtained in both MM models at the similar place (N = 170),
while the RMF gives the smallest barriers at Z = 174.

As one can see in Fig. 23, for flerovium isotopes the
barriers calculated here are in agreement with the experimental
(empirical) estimates [57] and with the self-consistent calcu-
lations [61] based on the SkM∗ interaction. The FRLDM [54]
overestimates these quasi-empirical barriers [57] significantly.
Although only the lower limit for the barrier height has been

FIG. 21. Effect of the pairing-strength increase (while keeping
fixed the g.s. and saddle deformations) in Z = 109 isotopes: standard
Gn and Gp (black points), red (green) points show Gn and Gp

increased by 5% (10%) for odd-Z and odd-N nuclei.
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FIG. 22. Fission barriers predicted by various models for Has-
sium isotopes: WS model (black), FRLDM (green) [54], SkM∗ (blue)
[61], RMF with NL3 parametrization (red) [60]. Experimental data
taken from Ref. [57]. (For interpretation of the references to color in
this figure legend, the reader is referred to the online version of this
article.)

estimated in Ref. [57], which would reproduce the known
cross sections on the picobarn level, such a high barrier seems
problematic, see discussion in Refs. [62,63]. On the other
hand, with extremely small barriers obtained within the RMF
model one cannot explain experimentally known millisecond
fission half-life in 284Fl. One should note, however, that a slight
tuning of the RMF model [64] gives higher barriers, closer to
ours, especially in Cn and Fl isotopes; see details in Fig. 5 of
Ref. [64] and in the discussion included there.

For Z = 120 our results, shown in Fig. 24, are very close to
those obtained within the RMF model. The results of Ref. [54]
are systematically higher by ≈1 MeV. This is in an evident
contrast to the Skyrme SkM∗ prediction [61] of the highest
barriers for Z = 120 [61] related to the proton magic gap.

FIG. 23. The same as in Fig. 22 but for Z = 114.

FIG. 24. The same as in Fig. 22 but for Z = 120.

Three models: FRLDM, RMF, and ours converge at N =
182–184 to Bf 	 5 MeV. The nucleus 302120 is particularly
interesting, because two unsuccessful attempts to produce it
have already taken place in GSI, providing a cross-section
limit of 560 fb [65] or 90 fb in Ref. [66], and in Dubna [67],
providing the limit of 400 fb. The cross-section estimates [68]
do not support a possibility of an easy production of this SH
isotope in the laboratory. It seems that, with the barrier of the
order of 10 MeV, as obtained in the frame of the self-consistent
theory, producing superheavy Z = 120 nuclei should not pose
any difficulties.

In the case of Z = 126, shown in Fig. 25, both MM
models give significantly smaller barriers than the model based
on the SkM∗ force. For example, the barrier Bf ≈ 9 MeV
for 310126, calculated with this Skyrme interaction, is still
impressively large. This might induce thoughts on the ways of
synthesis of such superheavy systems, but one has to remember
that the predicted half-lives with respect to the α decay are

FIG. 25. The same as in Fig. 22 but for Z = 126.
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below the present-day 10−5 s time limit for the experimental
identification. On the contrary, Bf ≈ 2 MeV obtained in the
MM approach does not induce any hopes; it only points to a
quite striking disagreement between models.

IV. CONCLUSIONS

We have determined fission barriers for 1305 heavy and
superheavy nuclei, including odd-A and odd-odd systems,
within the macroscopic-microscopic method by following
the adiabatic configuration in each nucleus. The applied
Woods–Saxon model was widely used for heavy nuclei and
well reproduces experimental fission barriers in actinides. For
odd-Z or/and odd-N nuclei, pairing was included within the
blocking procedure. Triaxial and mass-asymmetric deforma-
tions were included and the IWF method used for finding
the saddles which allowed us to escape errors inherent in the
constrained minimization approach. To find saddles, energy
for each nucleus was calculated on a 5D deformation grid
and then fivefold interpolated in each dimension for the IWF
search. Two additional energy grids, a second 5D and another
7D, were calculated in order to include nonaxial hexadecapole
and mass-asymmetry effects on fission saddles. The following
conclusions can be drawn from our investigation:

(i) Global calculations confirm the existence of two
physically important areas in the Z-N plane with
prominent barriers: one located around the semimagic
quantum numbers Z = 100–108 and N = 150–162
(connected with deformed closed shells), and the
second of nearly spherical nuclei around Z = 114 and
N = 176–180. The highest fission barrier among the
studied nuclei occurs in very exotic 280Es.

(ii) The well-known effect of the mass asymmetry on the
second barrier in actinides is not very relevant for the
heaviest nuclei since the heights of very deformed
saddles at β20 ≈ 0.8 decrease with increasing Z
and fission barriers are fixed by the less deformed
saddles. However, in some nuclei with Z � 109 the

mass-asymmetry (reflection-asymmetry) effect lowers
the first saddles which are sometimes split into
two humps. It seems that this concerns only axi-
ally symmetric saddles. The largest barrier lowering
(by 0.8 MeV) has been observed for Z = 113 and
N = 157.

(iii) It has been demonstrated that the inclusion of triaxial
shapes significantly reduces the fission barriers by up
to 2.5 MeV; about 70% of the found fission barriers
correspond to triaxial saddles. Besides the quadrupole
nonaxiality we checked also the effect of hexadecapole
nonaxiality, which significantly lowers the fission
barrier in Z � 119 nuclei, especially neutron-deficient
ones.

(iv) Rather strong, irregular odd-even Z or N barrier
staggering effect resulted from the blocking formalism
used for pairing. The barrier of an odd nucleus
Zeven + 1 or Neven + 1 is typically by several hundred
keV higher than that of its even neighbor.

(v) The existing theoretical evaluations of fission barriers
differ significantly. Even the results of the two mod-
els based on the microscopic-macroscopic approach
differ dramatically for some nuclei. Our calculations
indicate, in contrast to the self-consistent mean-field
studies, that fission barriers, still quite substantial for
some Z = 118 nuclei, become lower than 5.5 MeV
for Z = 126.
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[33] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and

W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).
[34] R. A. Gherghescu, J. Skalski, Z. Patyk, and A. Sobiczewski,

Nucl. Phys. A 651, 237 (1999).
[35] A. K. Dutta, J. M. Pearson, and F. Tondeur, Phys. Rev. C 61,

054303 (2000).
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