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4Dipartimento di Fisica e Geologia, Università degli Studi di Perugia and INFN, Sezione di Perugia,
Via Alessandro Pascoli, 06123 Perugia, Italy

(Received 24 June 2016; revised manuscript received 10 October 2016; published 10 January 2017)

Poincaré covariant definitions for the spin-dependent spectral function and for the momentum distributions
within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the
light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction
of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear
interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear
calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive
deep inelastic cross sections with polarized nuclear targets, since remarkably the light-front unpolarized
momentum distribution by definition fulfills both normalization and momentum sum rules. Also shown is a
straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.
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I. INTRODUCTION

In the analysis of the next generation of high-energy
electron-nucleus scattering experiments planned at the Jef-
ferson Laboratory (JLab) upgraded at 12 GeV [1], as well as
at the future Electron-Ion Collider [2], a refined description
of nuclei will play a relevant role [3], with a particular
interest in the polarized 3He target at JLab12. High-precision
experiments, involving both protons and neutrons, are in
fact necessary to clarify the flavor dependence of (i) parton
distribution functions (PDFs), measured in inclusive deep
inelastic scattering (DIS), and (ii) transverse-momentum-
dependent parton distribution (TMDs; see, e.g., Ref. [4] for
a general introduction), accessed through semi-inclusive DIS
(SIDIS). In the next few years, several experiments involving
a 3He nuclear target will be performed at JLab12, with the aim
at extracting information on the parton structure of the neutron.
New DIS measurements are planned [5,6] and, in particular,
the three-dimensional neutron structure in momentum space,
described in terms of quark TMDs, will be probed through
SIDIS off polarized 3He, where a high-energy pion (kaon) is
detected in coincidence with the scattered electron [7,8].

To be able to extract PDFs and TMDs in the neutron
from DIS and SIDIS off 3He, accurate theoretical descriptions
of the structure of 3He and of the scattering process are
also needed. Initial studies of DIS and SIDIS off 3He were
performed in Ref. [9] and in Ref. [10], respectively, where the
plane-wave impulse approximation (PWIA) was adopted to
describe the reaction mechanism; namely, the interaction in the
final state (FSI) was considered only within the two-nucleon
spectator pair which recoils. The 3He structure was treated
nonrelativistically by using the AV18 NN interaction [11].

In a recent paper [12], the spectator SIDIS process off
polarized 3He, where a deuteron in the final state is detected,

was studied by taking into account for the first time the FSI
between the hadronizing quark and the detected deuteron
through a distorted spin-dependent spectral function of 3He.
The study of the standard SIDIS process off transversely
polarized 3He with a fast detected pion including the FSI is
presented in Ref. [13], where the FSI between the observed
pion and the remnant is again taken into account through a
distorted spin-dependent spectral function (preliminary results
can be found in Ref. [14]). However, the description of the
nuclear dynamics in Refs. [13,14], is still nonrelativistic or,
more appropriately, non-Poincaré covariant, while the high
energies involved in the forthcoming SIDIS experiments [7,8]
should require a proper treatment of Poincaré covariance.

Our aim is to obtain a Poincaré covariant description of
nuclear dynamics which considers only the nucleonic degrees
of freedom and takes care of the large amount of knowledge
on the nuclear interaction obtained from the nonrelativistic
description of nuclei. Our approach could be used as a well-
grounded relativistic starting point for further developments
in the analysis of DIS or SIDIS processes, as the inclusion of
other degrees of freedom, necessary for a full comprehension
of these processes once the wavelength of the probe becomes
more and more tiny (see, e.g., Ref. [15] and references therein).
In particular, in this paper, the structure of a spin- 1

2 three-
nucleon system is investigated within a relativistic, Poincaré
covariant framework (see Refs. [16,17] for early studies). Our
approach can be straightforwardly generalized to other spin- 1

2
three-body systems and even to complex nuclei. To develop
a Poincaré covariant framework that allows one to embed our
knowledge of the nuclear interaction, we adopt the relativistic
hamiltonian dynamics (RHD) [18] with a fixed number of on-
mass-shell constituents in its light-front (LF) version [19–22].
Within the LF form of RHD, the Poincaré group has a subgroup
given by the LF boosts, which allows a kinematical separation
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of the intrinsic motion from the global one. Such a property
plays a very important role for the relativistic description of
DIS, SIDIS, and deeply virtual Compton scattering (DVCS)
processes, where the final states can have a fast recoil.
Furthermore, the LF dynamics allows a meaningful Fock
expansion of the interacting system state [23] (with the caveat
of zero modes). Only the valence component of the LF wave
function of the system is considered here. If non-nucleonic
degrees of freedom are needed for an accurate description of
experimental data, as can be the case for a full evaluation of
phenomena such as the European Muon Collaboration (EMC)
effect, then within the LF Hamiltonian dynamics one could
introduce higher Fock components of the LF wave function
and the corresponding spectral functions, as suggested, e.g.,
in Ref. [24], or reconstruct the effects of the higher Fock
states through the introduction of many-body currents by
exploiting the exact LF projection technique proposed in
Ref. [25]. Note that, in a field-theoretical framework, explicitly
covariant, the constituent masses are off shell and the four-
momenta are conserved, but the interaction must be introduced
perturbatively. On the contrary, in a RHD framework (i) the
explicit covariance is lost, (ii) the constituent masses are
on mass shell and only three component of the momenta
are conserved, but (iii) Poincaré covariance fully holds, and
(iv) the interaction can be introduced nonperturbatively
through the Bakamjian–Thomas construction of the Poincaré
generators [26]. This last feature is essential for a realistic
description of nuclei. For the sake of definiteness we consider
the case of the three-nucleon systems, i.e., 3He and 3H.

The key quantity to be considered is the LF spectral
function, depending on (i) spin and intrinsic momentum of
the nucleon and (ii) the removal energy of the two-nucleon
spectator system (for the definition of the nonrelativistic spin-
dependent spectral function see, e.g., Ref. [27]). In general, for
an A-body system the spectral function yields the probability
distribution to find a constituent with a definite value of
spin and momentum, while the (A − 1)-constituent spectator
system has a definite value of its mass. Such a distribution,
properly convoluted with the probe-nucleon elementary cross
section, leads to the description of scattering processes off
nuclei in the impulse approximation. In this case, the motion
of the knocked-out nucleon is free, while the spectator system
is fully interacting. Therefore, one has to relativistically
describe a final state where the cluster separability should be
implemented. As shown in Ref. [19], this can be achieved
by adopting the tensor product of a plane wave for the
knocked-out constituent and a fully interacting intrinsic state
for the spectator system, with given mass, all moving in their
intrinsic reference frame. To build the spin-dependent spectral
function, one needs to evaluate overlaps between the final state,
previously described, and the ground state of the three-nucleon
system. As a consequence, a crucial part of the paper is
devoted to carefully defining interacting and noninteracting
two- and three-body LF states, also providing the detailed
link with the instant form counterparts. Notably, given the
Bakamjian–Thomas (BT) framework we have assumed, the in-
stant form states in turn can be safely approximated by the
corresponding nonrelativistic quantities, as explained in what
follows. It should be pointed out that, in order to describe

the needed states, three reference frames are considered:
(i) the laboratory frame of the fully interacting three-body
system, (ii) the intrinsic LF frame of three free particles, and
(iii) the intrinsic LF frame of a cluster of a free particle and an
interacting two-particle subsystem.

With respect to previous attempts to describe DIS processes
off 3He in a LF framework (see, e.g., the one in Ref. [24]),
in our approach special care is devoted to the definition
of the intrinsic LF variables of the problem, as well as to
the spin degrees of freedom in the definition of the spin-
dependent spectral function. Details of the difference between
our approach and the one of Ref. [24] are given in Sec. IV.
Let us only anticipate here that the essential difference is the
definition of the intrinsic nucleon momentum: in this paper
it is the intrinsic momentum κ of the nucleon in a cluster of
the nucleon and the fully interacting (A − 1)-spectator system
with given mass, needed to implement the cluster separability,
while in Ref. [24]) it is the intrinsic nucleon momentum k for
a system of A free nucleons. The difference between the two
momenta κ and k depends on the energy of the interacting
(A − 1) system and introduces an effect of binding which is
new with respect to previous approaches within LF dynamics.

Our paper is organized as follows: in Sec. II the LF
kinematics is summarized and in Sec. III the LF dynamics
of two- and three-particle systems is briefly described and,
whenever possible, use has been made of appendixes to
collect and discuss in detail the relevant formal results.
Section IV presents the definition of the LF spin-dependent
spectral function in terms of the above-mentioned overlaps, as
well as the LF momentum distributions and their sum rules.
Conclusion and perspectives are discussed in Sec. V.

II. LIGHT-FRONT KINEMATICS

In this section, for the sake of completeness and to establish
the formalism, we briefly review the LF kinematics [19].

A generic LF four-vector is v = (v−,ṽ), with ṽ = (v+,v⊥)
and v± = v0 ± v3; moreover, the scalar product of two vectors
a and b is given by a · b = (a−b+ + a+b−)/2 − a⊥ · b⊥.

Let us consider a system of mass M of n on-mass-shell
interacting particles of mass mi , momenta pi (i = 1, . . . ,n),
and total momentum P in the laboratory frame (P 2 = M2).
The minus components of the momenta are

p−
i = m2

i + |pi⊥|2
p+

i

, (1)

and the following intrinsic variables (invariant under a LF
boost) can be introduced:

ξi = p+
i

P + , ki⊥ = pi⊥ − p+
i

P + P⊥ = pi⊥ − ξiP⊥. (2)

The conserved total LF momentum of the system (a three-
dimensional one!) is given by

P + =
∑
i=1,n

p+
i , P⊥ =

∑
i=1,n

pi⊥, (3)
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and as a consequence one has∑
i

ξi = 1,
∑

i

ki⊥ = 0. (4)

One can complete the intrinsic variables by adding the plus
and minus components of the intrinsic momenta as follows:

k+
i = ξiM0,

k−
i = P +

M0

[
p−

i − 2pi⊥ · P⊥
P + + p+

i

(
P⊥
P +

)2]
= m2

i + |ki⊥|2
k+
i

,

(5)

where M0 is the invariant (for LF boosts) free mass, given by

M2
0 = P +∑

i

m2
i + |pi⊥|2

p+
i

− |P⊥|2 =
∑

i

m2
i + |ki⊥|2

ξi

.

(6)

Then, in a more compact form,

k
μ
i = [B−1

LF (P̃/M0)
]μ
ν
pν

i , (7)

with BLF(P̃/M0) being a LF boost to the intrinsic rest frame of
the system of n free particles of momenta pi . Such a frame is
defined by a total LF momentum P̃intr ≡ {∑i k

+
i = M0,0⊥}.

Notice that k2
i = p2

i = m2
i , since in the light-front Hamil-

tonian dynamics (LFHD) the constituents are put on the
mass shell, as already mentioned. This feature, with the nice
separation of the intrinsic motion from the global one, as shown
in Eqs. (6) and (14) (see below), make straightforward the
analogy with the nonrelativistic case.

Instead of the intrinsic variables ξi , one can introduce an
alternative set of variables; namely,

kiz = 1

2
[k+

i − k−
i ] = M0

2

[
ξi − m2

i + |ki⊥|2
M2

0 ξi

]
, (8)

that fulfill the following constraint [cf. Eqs. (4) and (6)]:∑
i=1,n

kiz = 0. (9)

Then, one can equally well use the LF intrinsic variables,
{k+

i ,ki⊥}, or the Cartesian intrinsic variables, ki , that fulfill∑
i=1,n

ki = 0. (10)

To adopt the variables ki is useful for making evident the
analogy with the nonrelativistic framework, still remaining in
the LFHD approach. In the case of free particles the intrinsic
LF frame, defined by P̃intr ≡ {M0,0⊥}, can be also defined
by P ≡ 0. Let us recall that the bold character indicates a
Cartesian vector, while the added tilde symbols indicates a LF
three-vector.

Because of the positivity of ξi , one can invert Eq. (8),
obtaining

ξi =
kiz +

√
m2

i + |kiz|2 + |ki⊥|2
M0

= kiz + Ei

M0
, (11)

where Ei = (m2
i + |ki |2)1/2. Then∑

i=1,n

Ei = M0. (12)

Let us stress that the minus component of the total momentum,
P −, is different from the free one [19]:

P − = M2 + P2
⊥

P + �=
∑
i=1,n

p−
i =

∑
i=1,n

m2
i + |pi⊥|2

p+
i

= 1

P +
∑
i=1,n

m2
i + |pi⊥|2

ξi

= P −
free. (13)

In terms of the free mass, one can rewrite P −
free as follows:

P −
free = 1

P +
[
M2

0 + |P⊥|2]. (14)

For a particle of mass m, the LF spin, which has the
three components s

j
LF in the particle rest frame, yields the

Pauli–Lubanski four-vector in the reference where the particle
has LF momentum p̃, by applying a proper LF boost, BLF(p̃/m)
(see, e.g., Ref. [20] for a detailed discussion of the LF spin). On
the other hand, the canonical spin (instant form) si

c is obtained
through a canonical boost B−1

c (p/m) applied to the same
Pauli–Lubanski four-vector. Therefore, the relation between
the two spins is given by

si
c = [B−1

c (p/m)
]i
ν
[BLF(p̃/m)]νj s

j
LF = [R†

M (p̃)]ij s
j
LF, (15)

where RM (p̃), called Melosh rotation [28,29], is the rotation
between the two rest frames reachable through LF and
canonical boosts, respectively [19]. This rotation of spins
implies the following relation between the plane-wave states
of a particle with spin s (notice that the squared spin does not
depend on the chosen RHD form) in the instant form and the
LF one

|p; sσ 〉c =
∑
σ ′

Ds
σ ′σ [RM (p̃)]|p̃; sσ ′〉LF, (16)

where Ds
σ ′σ [RM (p̃)] is the Wigner function for a spin s. Within

SL(2C), the covering set of the four-dimensional Poincaré
group, the representation of the Melosh rotation for s = 1/2,
relevant in what follows, is a 2 × 2 matrix and reads

D
1
2 [RM (k̃)]σσ ′ = χ †

σ

m + k+ − ıσ · (ẑ × k⊥)√
(m + k+)2 + |k⊥|2

χσ ′

= LF〈k̃; sσ |k; sσ ′〉c, (17)

where χσ is a two-dimensional spinor. The main feature of
LF rotations, RLF, is given by the difference between the
corresponding Wigner rotations (that occurs when the state
|k̃; sσ ′〉LF has to be transformed) and the rotations itself,
differently from the case of instant-form rotations RIF (where
RIF coincides with the associated Wigner rotation) [19,20].
This prevents the use of the usual Clebsch–Gordan coefficients
for constructing the spin-spin and orbital-spin couplings within
a LF framework, and therefore one has to exploit the relation
(16) with the canonical spin.
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We adopt the following normalization for the LF states |p̃; sσ 〉LF:

LF〈σ ′s,p̃′|p̃; sσ 〉LF = 2p+(2π )3δ3(p̃′ − p̃)
∑
μ′μ

Ds
σ ′μ′[RM (p̃)]Ds

μσ [R†
M (p̃)]c〈μ′s|sμ〉c

= 2p+(2π )3δ3(p̃′ − p̃)δσ ′σ , (18)

and for the instant form states and spinors,

〈p′|p〉 = 2E(2π )3δ(p′
z − pz)δ(p′

⊥ − p⊥)

ūu = 2m, u†u = 2E, (19)

with E(p) = (m2 + |p|2)1/2 and ∂p+/∂pz = 1 + pz/p0 =
p+/p0.

III. LIGHT-FRONT DYNAMICS FOR TWO- AND
THREE-PARTICLE SYSTEMS

This section presents a resumé of the main features of the
BT construction, which allows one to consistently include the
interaction in the generators of the Poincaré group (see, e.g.,
Ref. [19]). In particular, since for defining the LF spectral
function one needs overlaps between the three-nucleon ground
state and three-nucleon states composed by the tensor product
of a plane wave for one of the particles and a two-body
interacting state for the spectator pair, we will focus on two-
and three-body cases.

A. Dynamics of two interacting particles

In the case of a system of two identical particles, the
LFHD leads to an ansatz for the two-body mass operator able
to naturally embed a description based on the Schrödinger
equation into a Poincaré-covariant framework (see, e.g.,
Refs. [30–32] for an application).

By eliminating the longitudinal LF variable ξ in favor of
the third Cartesian component of the intrinsic momentum

kz = k1z = M0(1,2)
(
ξ − 1

2

)
, (20)

where M2
0 (1,2) is given by

M2
0 (1,2) = m2 + |k⊥|2

ξ (1 − ξ )
= 4[E(k)]2 = 4(m2 + |k|2), (21)

one can show the formal equivalence between a nonrelativistic
description and a LF one. Moreover, one has

k+
1 = ξM0(1,2) = k+,

k+
2 = (1 − ξ )M0(1,2) = M0(1,2) − k+. (22)

The two-body Hamiltonian, with an interaction that de-
pends upon intrinsic variables and fulfills the correct invari-
ance properties under rotations and translations, leads to a
square mass operator suitable for a Bakamjian–Thomas (BT)
construction of the Poincaré generators [26]. This construction
gives a simple way to introduce the interaction in the generators
while satisfying the correct commutation rules. As a matter of
fact, within the BT framework the two-body mass equation

can be written as follows (see, e.g., Refs. [19,21,22]):

〈σ1,σ2; τ1,τ2; k|[M2
0 (1,2) + U (|k|)]|j,jz; εint,α; T Tz〉

= M2〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉,
〈σ1,σ2; τ1,τ2; k|[4m2 + 4|k|2 + U (|k)|]|j,jz; εint,α; T Tz〉

= M2〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉,

〈σ1,σ2; τ1,τ2; k|
[ |k|2

m
+ V (|k|)

]
|j,jz; εint,α; T Tz〉

= εint〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉, (23)

where V = U/(4m) and

εint = M2 − 4m2

4m
. (24)

In the last line of Eq. (23) one formally recovers the
Schrödinger equation for a two-body intrinsic eigenstate (that
does not depend upon the chosen RHD) of angular momentum
(j,jz), the intrinsic energy εint (negative for bound states
and positive for the scattering ones), and isospin (T ,Tz).
The symbol α represents the quantum numbers needed to
completely define the state of the system. For the bound state
(the deuteron in our case) one has M = 2m − B, and then

εint = −B + B2

4m
∼ −B, (25)

given the small binding energy of the deuteron with respect to
its mass. For the scattering states, one has M2 = s, with s being
one of the Mandelstam variables, and asymptotically M2 =
4m2 + 4|t|2 with t being the asymptotic Cartesian momentum
in the intrinsic frame. Then, one can write

εint = M2 − 4m2

4m
= |t|2

m
. (26)

Therefore the intrinsic eigenstates of Eq. (23) (i.e., of a
Poincaré covariant mass operator) can be safely identified
with the usual nonrelativistic two-body eigenstates [31,32]
[only for bound states one disregards terms O(B/(4m))] and
the overlap 〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉, which contains
canonical spins, with its nonrelativistic counterpart.

As discussed in Appendix A, the normalized LF two-body
wave function is

LF〈σ1,σ2; τ1,τ2; k̃,P̃′|P̃; j,jz; εint,α; T Tz〉LF

= 2P +(2π )3δ3(P̃′ − P̃)
√

(2π )3E(k)

×
∑
σ ′

1,σ
′
2

D
1
2 [RM (k̃)]σ1σ

′
1
D

1
2 [RM (−k̃)]σ2σ

′
2

×〈σ ′
1,σ

′
2; τ1,τ2; k|j,jz; εint,α; T Tz〉, (27)
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where we define [cf. Eq. (22)]

− k̃ ≡ ((M0 − k+), − k⊥). (28)

It has to be emphasized that, in the intrinsic two-body wave
function 〈σ ′

1,σ
′
2; τ1,τ2; k|j,jz; εint,α; T Tz〉, the canonical spins

can be composed with the orbital angular momenta by using
the familiar Clebsch–Gordan coefficients. The state |k〉 (with
Cartesian variables) is normalized as follows:

〈k′|k〉 = δ(k′ − k). (29)

Notice the difference with Eq. (19). Furthermore, for the
two-body interacting case the LF completeness reads [see
Eq. (A18)]∫

dP̃
2P +(2π )3

∑
j,jzα

∑
T Tz

∫∑
λ(t)dt |P̃; j,jz; εint,α; T Tz〉LF

× LF〈TzT ; α,εint; jz,j ; P̃| = I, (30)

where the symbol
∫∑

means a sum over the bound states
of the pair (namely the deuteron in the present case) and
an integration over the continuum. Notice the choice of the
Cartesian t momentum to label the intrinsic energy. The
quantity λ(t) is the t density of the two-body states [λ(t) =
1 for the bound states and λ(t) = t2 for the continuum].
Such a completeness follows from the one fulfilled by the
eigensolutions of Eq. (23), i.e.,∑

j,jzα

∑
T Tz

∫∑
λ(t)dt〈k′|j,jz; εint,α; T Tz〉〈TzT ; α,εint; jz,j |k〉

= δ3(k′ − k). (31)

B. Three-interacting-particle systems

To have a Poincaré covariant description of an interacting
system, such as the 3He nucleus, it seems appropriate to adopt
the LFHD framework combined with a Bakamjian–Thomas
(BT) construction [26] of the Poincaré generators. With a
suitable ansatz for the interaction (see, e.g., Refs. [19,22]),
the mass operator is

M(1,2,3) = M0(1,2,3) + V(1,2,3)

=
∑
i=1,3

√
m2

i + |ki |2 + V(ki · kj ), (32)

where ki are the intrinsic momenta defined in Sec. II, and the
interaction V is invariant for rotations and translations. The
ground state can be written as the product of a plane wave de-
scribing the global motion with LF momentum P̃ times eigen-
vectors of the three-body mass operator in Eq. (32). It reads∣∣∣∣P̃; j,jz; ε

3
int,;

1

2
,Tz

〉
LF

, (33)

where ε3
int = M3 − 3m is the energy, j is the total angular

momentum, 1/2 is the isospin of the system, and  is the
parity. From now on, we assume that the three particles have
the same mass.

When applications like DIS or SIDIS processes are con-
cerned, the issue of macrocausality has to be considered, i.e., if

the subsystems which compose a system are brought far apart,
the Poincaré generators of the system have to become the sum
of the Poincaré generators corresponding to the subsystems in
which the system is asymptotically separated. It is important
to notice that the packing operators [19,33], which make it
possible to include the macrocausality, are not considered in
the present approximation for the description of the bound
state. However, we implement macrocausality in the tensor
product of a plane wave for the knocked-out constituent times
a fully interacting intrinsic state for the spectator pair. This
tensor product is needed for the definition of the LF spectral
function, as shown below.

In a given frame, the LF three-body wave function can
be expressed in terms of the intrinsic wave function, with
canonical spins. Therefore, as in the two-body case, one can
approximate such an intrinsic wave function by the corre-
sponding nonrelativistic wave function, after checking that the
nonrelativistic Schrödinger operator can be properly identified
with a BT mass operator. Then the key point for actual
calculations is the approximation M(1,2,3) ∼ MNR(1,2,3),
which is based on an appropriate definition of the interaction
V . This approximation is allowed since

MNR(1,2,3) = 3m +
∑
i=1,3

k2
i /2m + V NR

12

+V NR
23 + V NR

31 + V NR
123 (34)

fulfills rotational and translational invariance; namely, the
general properties for making a mass operator acceptable as a
BT mass operator. As a matter of fact, these properties are just
those satisfied by the nonrelativistic nuclear interactions that
give an accurate description of two- and three-nucleon data
(see, e.g., Refs. [11,34]). An early investigation of the elec-
tromagnetic trinucleon systems, within the above-illustrated
approach and using the refined nonrelativistic ground states of
Ref. [35], can be found in Ref. [36].

1. Nonsymmetric intrinsic variables

To define the LF spectral function one needs the overlaps
between the ground state of the three-body system and the
states composed of the tensor product of a free nucleon and a
fully interacting two-body system. Therefore, proper variables
suited to describe these states have to be introduced. Instead
of the symmetric intrinsic variables k̃i (i = 1,2,3) that refer
to the three particles moving in the three-body intrinsic frame,
it is more suitable to introduce nonsymmetric variables. Let
us consider the intrinsic variable k̃j for particle j and the
intrinsic variables for the internal motion of the spectator pair.
For the sake of concreteness, let us take j = 1 and focus on the
kinematics of the (2,3) pair, which globally moves in the three-
body intrinsic frame with total LF momentum (K+

23,K23⊥). A
set of intrinsic variables for the internal motion of the (2,3)
pair can be defined as follows:

η = k+
2

k+
2 + k+

3

= ξ2

(ξ2 + ξ3)
= ξ2

1 − ξ1
= p+

2

p+
2 + p+

3

,

k23⊥ = k2⊥ − η(k2⊥ + k3⊥) = k2⊥ + ηk1⊥,

k+
23 = ηM23, k23z = M23

(
η − 1

2

)
, (35)
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where k+
i = (m2 + |ki |2)1/2 + kiz and M23 is the free mass for

the (2,3) pair, defined as in Eq. (21),

M2
23 = m2 + |k23⊥|2

η(1 − η)
= [2

√
m2 + |k23|2]2. (36)

Furthermore, the total LF momentum of the free (2,3) pair
in the laboratory frame is

P +
23 = p+

2 + p+
3 , P23⊥ = p2⊥ + p3⊥, (37)

while in the intrinsic three-body frame the total LF momentum
is

K+
23 = k+

2 + k+
3 , K23⊥ = k2⊥ + k3⊥ = −k1⊥. (38)

In terms of the nonsymmetric intrinsic variables, the free
mass of the three-particle system can be written as follows:

M0(1,2,3) =
∑
i=1,3

√
m2 + |ki |2

=
√

m2 + |k1|2 +
√

M2
23 + |k1|2

= m2 + |k1⊥|2
k+

1

+ M2
23 + |k1⊥|2

K+
23

. (39)

Then one has

m2 + |k2⊥|2
k+

2

+ m2 + |k3⊥|2
k+

3

= 1

k+
2 + k+

3

[
M2

23 + |k2⊥ + k3⊥|2], (40)

and therefore

M2
23 = m2 + |k2⊥|2

η
+ m2 + |k3⊥|2

(1 − η)
− |k1⊥|2. (41)

2. Three-body light-front wave function with nonsymmetric
intrinsic variables

For the fully interacting case, i.e., V(1,2,3) �= 0, the three-
body LF wave function can be expressed through (i) the
nonsymmetric intrinsic variables {k̃1,k̃23} introduced in the
previous section, instead of using the three-body standard
Jacobi coordinates (defined through k̃1,k̃2,k̃3), and (ii) canon-
ical spins in the reference frame where P + = M0(1,2,3).
Therefore, by repeating analogous steps as in the two-body
case [cf. Eq. (27)], one has

LF

〈
σ1,σ2,σ3; τ1,τ2,τ3; k̃1,k̃23,P̃′

∣∣∣∣P̃; j,jz; ε
3
int,;

1

2
,Tz

〉
LF

= 2P +(2π )3δ3(P̃′ − P̃)
∑
σ ′

1

∑
σ ′

2

∑
σ ′

3

D
1
2 [RM (k̃1)]σ1σ

′
1
D

1
2 [RM (k̃2)]σ2σ

′
2
D

1
2 [RM (k̃3)]σ3σ

′
3

×
√

(2π )62E1E23M23

2M0(1,2,3)

〈
σ ′

1,σ
′
2,σ

′
3; τ1,τ2,τ3; k1,k23

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉
, (42)

where E23 = (M2
23 + |k1|2)1/2 and M23 = [m2 + |k23⊥|2 +

(k+
23)2]/k+

23. The LF variables k̃2 and k̃3 can be easily
obtained from k̃1 and k̃23. Indeed one has (i) η = k+

23/M23,
(ii) k2⊥ = k23⊥ − ηk1⊥, (iii) k3⊥ = −k1⊥ − k2⊥, (iv) k+

2 +
k+

3 = M0(1,2,3) − k+
1 [cf. Eq. (39)], (v) k+

2 = η(k+
2 + k+

3 ),
and (vi) k+

3 = M0(1,2,3) − k+
1 − k+

2 .
In Eq. (42), the intrinsic wave function with canonical spins

〈σ ′
1,σ

′
2,σ

′
3; τ1,τ2,τ3; k1,k23|j,jz; ε3

int,; 1
2Tz〉 is the eigensolu-

tion of the mass operator M(1,2,3) of Eq. (32), which in actual
calculation can be approximated by the nonrelativistic Hamil-
tonian operator (since, we repeat, the symmetry requirements
are the same). As shown in Appendix B [see Eq. (B19)], the
factors in Eq. (42) allow one to recover the normalization for
the intrinsic part of the three-body bound state according to

∑
τ1,τ2,τ3

∑
σ1,σ2,σ3

∫
dk1

∫
dk23

×
∣∣∣∣
〈
σ1,σ2,σ3; τ1,τ2,τ3; k1,k23

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2

= 1,

(43)

as in the nonrelativistic case.

3. Free-mass and intrinsic reference frame for the (1,23) cluster

Because of our interest in constructing the overlap between
the three-nucleon ground state and a state where only the
pair (2,3) is interacting, while the third nucleon is free, in
what follows we investigate the corresponding mass operator,
whose eigenstates are the tensor product that we have already
mentioned.

By using the intrinsic variables {ξ1,k1⊥}, one can introduce
the squared free mass M2

0(1,23) for the cluster (1,23), when
the mass eigenvalue of the interacting (2,3) pair is MS

M2
0(1,23) = m2 + |k1⊥|2

ξ1
+ M2

S + |k1⊥|2
(1 − ξ1)

. (44)

The intrinsic frame of the cluster (1,23) is defined by
P̃int(1,23) ≡ {M0,0⊥}. In this frame, the LF momentum of
the nucleon 1 is given by

κ+
1 = ξ1M0(1,23),

κ1⊥ = p1⊥ − ξ1P⊥ = k1⊥, (45)

014001-6



LIGHT-FRONT SPIN-DEPENDENT SPECTRAL FUNCTION . . . PHYSICAL REVIEW C 95, 014001 (2017)

while the z Cartesian component reads [see Eq. (8)]

κ1z = 1

2
[κ+

1 − κ−
1 ] = M0(1,23)

2

[
ξ1 − m2

1 + |κ1⊥|2
M0(1,23)2ξ1

]
.

(46)

As a consequence one has

M0(1,23) = E(κ1) + ES, (47)

with E(κ1) = (m2 + |κ1|2)1/2 and ES = (M2
S + |κ1|2)1/2.

The total momentum of the (2,3) pair in the same frame is

K+
S = (1 − ξ1)M0(1,23),

KS⊥ = −κ1⊥ = −k1⊥ = k2⊥ + k3⊥,

KSz = −κ1z,

K−
Son = M2

S + |k1⊥|2
K+

S

. (48)

Summarizing the pair (2,3), with internal variables {η,k23⊥}
and mass eigenvalue MS [cf. Eqs. (23) and (35)], is moving
with LF momentum K̃S in the intrinsic frame of the three-
particle cluster (1,23).

It should be pointed out that the intrinsic frame for the three-
body system (1,2,3) and the intrinsic frame of the (1,23) cluster
are related by a proper longitudinal LF boost that makes the
change P +

int(1,23) = M0(1,23) → P +
int(1,2,3) = M0(1,2,3).

4. Nonsymmetric basis for three-interacting-particle systems

In the 1 + (23) cluster only the interaction U23 between
particles 2 and 3 is active; then one can introduce a three-body
state given by the tensor product of an eigenstate of the total
LF momentum P̃ times the intrinsic state of the cluster with a
given mass for the interacting pair. In turn, such an intrinsic
state, which fulfills macrocausality [19], is given by the tensor

product of a plane wave for particle 1 with LF momentum κ̃1,
times the fully interacting state of the pair corresponding to
the given energy eigenvalue. Therefore, one can write

|P̃; κ̃1σ1τ1; j23j23zε23,α; T23,τ23〉LF, (49)

which is an eigenstate of the mass operator

M ′(1,23) = E(κ1) +
√

M2
23(|k23|) + U23 + |κ̃1|2

= E(κ1) +
√

M
∗2
23(|k23|) + |κ̃1|2, (50)

with eigenvalue M0(1,23) = E(κ1) + ES [ES =
(M2

S + |κ1|2)1/2]. The operator M
∗2
23(|k23|) = M2

23(|k23|) +
U23(|k23|) is the square of the intrinsic mass operator of the
interacting (2,3) pair, with eigenvalue M2

S = 4(m2 + mε23)
[see Eq. (23)].

The set of eigenstates (49) is complete with the following
completeness relation:

I =
∫

dP̃
2P +(2π )3

∑
T23τ23

∫∑
λ(t)dt

∑
j23j23zα

∑
σ1τ1

∫
dκ̃1

2κ+
1 (2π )3

×|P̃; κ̃1σ1τ1; j23,j23z; ε23,α; T23,τ23〉LF

× LF〈T23,τ23; α,ε23; j23z,j23; τ1σ1κ̃1; P̃|. (51)

Since it will play a relevant role for a proper definition of the
LF spectral function, let us consider the overlap between the
eigenstates (49) and the product of plane waves for (i) the total
LF momentum P ′ for a system of three free particles, (ii) the
LF momentum of particle 1, k̃′

1, in the intrinsic frame of the
three free particles, and (iii) the LF momentum k̃′

23 for the
intrinsic motion of the free subsystem (2,3). One has

LF〈σ ′
1,σ

′
2,σ

′
3; τ ′

1,τ
′
2,τ

′
3; P̃′,k̃′

1,k̃
′
23|P̃; κ̃1σ1τ1; j23,j23z; ε23,α; T23,τ23〉LF

= 2P +(2π )3δ3(P̃′ − P̃)δτ1τ
′
1 LF〈σ ′

1k̃′
1|κ̃1σ1〉LF LF〈σ ′

2,σ
′
3; τ ′

2,τ
′
3; k̃′

23|j23,j23z; ε23,α; T23,τ23〉LF

= 2P +(2π )3δ3(P̃′ − P̃)δτ1τ
′
1
δσ1σ

′
1
(2π )32k′+

1 δ3
(
k̃′

1 − k̃(a)
1

)√κ+
1 E′

23

k′+
1 ES

√
(2π )3

E′
23M

′
23

2M ′
0(1,2,3)

×
∑
σ2

∑
σ3

D
1
2 [RM (k̃′

23)]σ ′
2σ2D

1
2 [RM (−k̃

′
23)]σ ′

3σ3〈σ2,σ3; τ ′
2,τ

′
3; k′

23|j23,j23z; ε23,α; T23,τ23〉, (52)

where E′
23 = (M ′2

23 + k′2
1 )1/2, M ′

23 = [m2 + |k′
23⊥|2 + (k′+

23 )2]/k′+
23 ,

M ′
0(1,2,3) =

√
m2 + |k′

1|2 +
√

M ′2
23 + |k′

1|2, (53)

and −k̃′
23 ≡ ((M ′

23 − k′+
23 ), − k′

23⊥).
The right-hand side of Eq. (52) reflects (i) the normalization properties of |k̃′

1〉LF and |κ̃1〉LF, (ii) the expression for the intrinsic
wave function of the interacting pair (2,3), (iii) the proper overall normalization factors.

In Appendix C the correctness of the normalization factors in Eq. (52) is checked.
To obtain the last step in Eq. (52), one has to notice that the states |k̃1σ1〉LF and |κ̃1σ1〉LF are immediately related to the same

LF state |ξ1,κ1⊥ = k1⊥,σ1〉, since ξ1 = κ+
1 /M0(1,23) = k+

1 /M0(1,2,3). The two states differ for their normalization, i.e.,

LF〈k̃′
1|k̃1〉LF = (2π )32k+

1 δ3(k̃′
1 − k̃1), (54)
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and

LF〈κ̃ ′
1|κ̃1〉LF = (2π )32κ+

1 δ3(κ̃ ′
1 − κ̃1). (55)

In Eq. (52), k
+(a)
1 is obtained by transforming κ+

1 from the frame where P + = M0(1,23) to the frame where P + = M0(1,2,3)
through a longitudinal LF boost, while k(a)

1⊥ remains unchanged, i.e., one has k(a)
1⊥ = κ̃1⊥ [see Eq. (45)].

To determine k
+(a)
1 one can first evaluate M0(1,23) from Eq. (47):

M0(1,23) = (κ+
1 )2 + (m2 + k2

1⊥
)

2κ+
1

+
⎧⎨
⎩
[

(κ+
1 )2 + (m2 + k2

1⊥
)

2κ+
1

]2

+ M2
S − m2

⎫⎬
⎭

1/2

. (56)

Then one can obtain ξ1,

ξ1 = κ+
1

M0(1,23)
, (57)

the three-body system free mass M0(1,2,3),

M2
0 (1,2,3) = m2 + k2

1⊥
ξ1

+ M ′2
23 + k2

1⊥
1 − ξ1

, (58)

and

k
+(a)
1 = ξ1M0(1,2,3). (59)

5. Overlaps between cluster states and bound state of three-particle system

The overlap between a state of the cluster 1 + (23) and the bound state of the three-particle system is the quantity needed for
defining the LF spin-dependent spectral function. As a matter of fact, from Eqs. (33) and (49), one has

LF
〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1; P̃′∣∣P̃; j,jz; ε

3
int,; 1

2Tz

〉
= 2P +(2π )3δ3(P̃′ − P̃)LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1

∣∣j,jz; ε
3
int,; 1

2Tz

〉
. (60)

As shown in Appendix C 2, after inserting in the intrinsic part of the overlap (60) (i) the completeness operator expressed through
plane waves, i.e. [cf. Eq. (B10)],

∫
dk̃′

23

k′+
23 (2π )3

|k̃′
23〉〈k̃′

23|
∫

M ′
0(1,2,3)dk̃′

1

2k′+
1 E′

23(2π )3
|k̃′

1〉〈k̃′
1| = I, (61)

and (ii) Eqs. (42) and (52), one gets

LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑
τ2τ3

∫
dk23

∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ1σ

′
1

√
(2π )32E

(
k(a)

1

)√ κ+
1 E23

k
+(a)
1 ES

∑
σ ′′

2 ,σ ′′
3

∑
σ ′

2,σ
′
3

Dσ ′′
2 ,σ ′

2
(k̃23,k̃2)Dσ ′′

3 ,σ ′
3
(−k̃23,k̃3)

×〈T23,τ23; α,ε23; j23j23z|k23,σ
′′
2 ,σ ′′

3 ; τ2,τ3〉
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉
, (62)

where the unitary matrices Dσ ′′
i ,σ ′

i
are defined by the equation

Dσ ′′
i ,σ ′

i
(±k̃23,k̃i) =

∑
σi

D
1
2 [R†

M (±k̃23)]σ ′′
i σi

D
1
2 [RM (k̃i)]σiσ

′
i
, (63)

with the + sign corresponding to i = 2 and the − sign corresponding to i = 3.
Then the overlap of Eq. (60) can be evaluated by approximating 〈T23,τ23; α,ε23; j23j23z|k23,σ

′′
2 ,σ ′′

3 ; τ2,τ3〉 and
〈σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k1|j,jz; ε3

int,; 1
2Tz〉 with the corresponding nonrelativistic quantities. It should be recalled that the

spins involved are canonical spins.
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The normalization for the intrinsic LF overlap in Eq. (60) follows immediately from the completeness relation (51)

∑
T23τ23τ1

∫
dκ̃1

2κ+
1 (2π )3

∫∑
λ(t)dt

∑
σ1

∑
j23j23zα

∣∣∣∣
LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1,κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2

=
∣∣∣∣j,jz; ε

3
int,;

1

2
Tz

〉∣∣∣∣
2

= 1.

(64)

As shown in Appendix C 3, this normalization can be recovered
by using the explicit expression for the overlaps given in
Eq. (62).

IV. LIGHT-FRONT SPIN-DEPENDENT
SPECTRAL FUNCTION

The nonrelativistic spin-dependent spectral function
P̂τ
M( �p,E) for a nucleus of mass number A is a 2 × 2 matrix

whose elements are

P τ
σ,σ ′,M( �p,E) =

∑
f(A−1)

〈 �p,στ ; ψf(A−1)
|ψJM〉

× 〈ψJM|ψf(A−1) ; �p,σ ′τ 〉δ(E−Ef(A−1) + EA),

(65)

where |ψJM〉 is the ground state of the nucleus with energy
EA and polarized along �S, |ψf(A−1)〉 is an eigenstate of the
(A − 1)-nucleon system with energy Ef(A−1) interacting with
the same interaction of the nucleus, and | �p,στ 〉 is the plane
wave for the nucleon τ = ±1/2, with momentum �p in the
nucleus rest frame and spin along the z axis equal to σ [37–39].
The state |ψJM〉 polarized along �S can be expressed through
the states |ψJm〉z polarized along the z axis [38,40] as follows:

|ψJM〉�S =
∑
m

|ψJm〉zDJ
m,M(α,β,γ ), (66)

where α, β, and γ are the Euler angles describing the proper
rotation from the z axis to the polarization vector �S. Let us re-
call that the rotations involved act on the three-nucleon bound
system as a whole and therefore are interaction free.

In a more compact form, for J = 1/2, the 2 × 2 matrix
P̂τ
M( �p,E) is given by

P̂τ
M( �p,E) = 1

2

[
Bτ

0,M(| �p|,E) + �σ · �f τ
M( �p,E)

]
, (67)

where the function Bτ
0,M(| �p|,E) is the trace of P̂τ

M( �p,E) and
yields the usual unpolarized spectral function P τ(| �p|,E). It
should be noticed that the matrix P̂τ

M( �p,E) and the pseudovec-
tor �f τ

M( �p,E) depend on the direction of the polarization vector
�S. Since �f τ

M( �p,E) is a pseudovector, it is a linear combination
of the pseudovectors at our disposal, viz. �S and p̂(p̂ · �S), and
therefore it can be put in the following form, where any angular
dependence is explicitly given:

�f τ
M( �p,E) = �SBτ

1,M(| �p|,E) + p̂(p̂ · �S)Bτ
2,M(| �p|,E). (68)

Let us focus on the A = 3 case. To obtain a Poincaré
covariant definition of the spin-dependent spectral function
for a three-particle system within the LF dynamics, one
replaces the nonrelativistic overlaps 〈 �p,στ ; ψf(A−1)

|ψJM〉,
which define the nonrelativistic spectral function with their
LF counterparts LF〈τS,TS ; α,ε; JzJ ; τσ,κ̃ |�0; S,Tz〉, depen-
dent upon the energy ε of the two-body system and upon
the intrinsic momentum κ̃ of the third particle in the intrinsic
reference frame of the cluster 1 + (23) (cf. Sec. III B 5).
The LF overlaps LF〈τS,TS ; α,ε; JzJ ; τσ,κ̃ |�0; S,Tz〉 can be
easily obtained from the overlaps of Eq. (62), writing through
Eq. (66) the ground state |�0; S,Tz〉 of the three-body system,
polarized along �S, in terms of the states |j,jz; ε3

int,; 1
2Tz〉,

polarized along the z axis.
Then, within the LFHD one can define the spin-dependent

nucleon spectral function for the three-nucleon system (3He
or 3H) in the bound state |�0; S,Tz〉, as follows:

Pτ
σ ′σ (κ+,κ⊥,κ−,S)

=
∫∑

dερ(ε)δ

(
κ− − M3 + M2

S + |κ⊥|2
(1 − ξ )M3

)∑
JJzα

∑
TSτS

LF〈τS,TS,α,ε; JJz; τσ ′,κ̃ |�0; S,Tz〉〈S,Tz; �0|κ̃,σ τ ; JJz; ε,α,TS,τS〉LF

= 1∣∣ ∂κ−
∂ε

∣∣ρ(ε)
∑
JJzα

∑
TSτS

LF〈τS,TS ; α,ε; JJz; τσ ′,κ̃ |�0; S,Tz〉〈S,Tz; �0|κ̃,σ τ ; JJz; ε,α; TS,τS〉LF =
∣∣∣∣ ∂ε

∂κ−

∣∣∣∣Pτ
σ ′σ (κ̃,ε,S), (69)

where

ε = (M3 − κ−)(1 − ξ )M3 − |κ⊥|2
4m

− m (70)

is the intrinsic energy of the fully interacting two-nucleon eigenstate, ρ(ε) is the density of the two-body states [ρ(ε) = tm/2
for the two-body continuum states and ρ(ε) = 1 for the deuteron bound state], M3 is the nucleus mass, ξ = κ+/M0(1,23) [cf.
Eqs. (45) and (56)], and ∣∣∣∣ ∂ε

∂κ−

∣∣∣∣ = (1 − ξ )M3

4m
. (71)
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Let us notice that the variable κ− is the minus component
of the momentum of an off-mass-shell nucleon, as is clear
from the δ function in Eq. (69). In Eq. (69), τ = ±1/2, J, Jz

is the spin, TS, τS is the isospin, α is the set of quantum numbers
needed to completely specify the two-body eigenstate, and
M2

S = 4(m2 + mε).
The overlap LF〈τS,TS ; α,ε; JzJ ; τσ,κ̃ |�0; S,Tz〉 is the one

defined by Eqs. (66) and (62). In the special case where �S is
along the z axis, one obtains

Pτ
σ ′σ (κ̃,ε,S)

= ρ(ε)
∑
JJzα

∑
TSτS

LF

〈
τS,TS ; α,ε; JJz; τσ ′,κ̃

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

×
〈

1

2
Tz; ,ε3

int; j,jz;

∣∣∣∣κ̃,σ τ ; JJz; ε,α; TS,τS

〉
LF

,

(72)

and the LF spectral function can be evaluated
through the explicit expression (62) for the overlap
LF〈τS,TS ; α,ε; JJz; τσ,κ̃ |j,jz; ε3

int,; 1
2Tz〉 in terms of

canonical two- and three-body wave functions. In turn,
these wave functions can be replaced by the nonrelativistic
wave functions. We emphasize once more that the two- and
three-body nonrelativistic wave functions have all the needed
properties with respect to rotations and translations of the
corresponding canonical wave functions.

Let us now illustrate the differences between our LF spectral
function and the one proposed in Ref. [24]. There are two
main differences: The first difference is in the definition of
the intrinsic momentum of the nucleon to be used in the
overlaps LF〈τS,TS ; α,ε; JJz; τσ,κ̃ |j,jz; ε3

int,; 1
2Tz〉 needed in

the definition of the spectral function. As explained in the
previous sections, in our case the momentum κ is the intrinsic
momentum of particle 1 in the intrinsic reference frame of
the cluster 1 + (23). At variance, in Ref. [24], the spectral
function is defined in terms of the intrinsic nucleon momentum
k1 in the intrinsic reference frame of three free nucleons. As
a consequence, the states (49) used for the definition of the
spectral function fulfill the macrocausality, whereas this is not
the case for the states 〈T23,τ23; α,ε23; j23j23z; σ1,τ1,k1|. The
use of the variable κ in the spectral function is new with respect

to previous LF approaches for DIS and introduces a new
dependence upon the energy of the (2 − 3) fully interacting
state and therefore opens the possibility to obtain different,
better results in the description of experimental data for DIS
(see Ref. [41]).

The second difference with Ref. [24] is in the Melosh
rotations to be used in the definition of the overlaps (62). It
is again a consequence of the use of the momentum κ , which
implies a more elaborate treatment of the Melosh rotations with
respect to Ref. [24]: in our case when the spectral function is
evaluated the Melosh rotations for particles 2 and 3 cannot be
eliminated by the sum on the angular momentum J, Jz of the
pair (23).

According to the completeness relation (51), the normal-
ization of the spectral function reads [see also Eq. (64) and
Appendix C]∫∑

dε

∫
dκ

2E(κ)(2π )3

∑
τ

T rPτ (κ̃,ε,S) = 1. (73)

However, in applications one can normalize the spectral
function Pτ (κ̃,ε,S) for each isospin channel, i.e.,∫∑

dε

∫
dκ

2E(κ)(2π )3
T rPτ (κ̃,ε,S) = 1. (74)

As it occurs for the nonrelativistic spectral function [see
Eqs. (67) and (68)], the LF nucleon spin-dependent spectral
function can be expressed by means of three scalar functions,
Bτ

0,S(|κ |,ε), Bτ
1,S(|κ |,ε), and Bτ

2,S(|κ |,ε):

Pτ
σ ′σ (κ̃,ε,S) = 1

2

[Bτ
0,S(|κ |,ε) + σ · fτ

S (κ,ε)
]
σ ′σ , (75)

where

fτ
S (κ,ε) = SBτ

1,S(|κ |,ε) + κ̂(κ̂ · S)Bτ
2,S(|κ |,ε). (76)

The function Bτ
0,S(|κ |,ε) is the trace of Pτ

σ ′σ (κ̃,ε,S) and yields
the unpolarized spectral function.

A. The light-front nucleon momentum distributions and
momentum sum rule

Within the LFHD, one can define the LF spin-independent
nucleon momentum distribution, averaged on the spin direc-
tions, through the spectral function Pτ

σ ′σ (κ̃,ε,S) as follows:

nτ (ξ,k⊥) =
∫∑

dε
1

2κ+(2π )3

∂κ+

∂ξ
T rPτ (κ̃,ε,S)

=
∫∑

dε
1

2(2π )3

ES

(1 − ξ )κ+ ρ(ε)
∑

σ

∑
JJzα

∑
TSτS

LF〈τS,TS ; α,ε; JzJ ; τσ,κ̃ |�0; STz〉〈S,Tz; �0|κ̃,σ τ ; JJz; ε,α; TS,τS〉LF,

(77)

where Eq. (B17) has been used. From the completeness relation (51), one gets immediately the normalization of the nucleon
momentum distribution: ∫

dξ

∫
dk⊥nτ (ξ,k⊥) = 1. (78)

An explicit expression for the spin-averaged momentum distribution can be obtained by inserting in Eq. (77) the LF spectral
function as written in Eq. (72) and in turn the expression for the overlaps given in Eq. (62).
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Then, by using again the two-body completeness of Eq. (31) and the unitarity of the D and D1/2 matrices, one obtains

nτ (ξ,k⊥) = 1

1 − ξ

∑
σ

∑
τ ′

2τ
′
3

∑
σ ′

2,σ
′
3

∫
dk23

E(k1)E23

k+
1

∣∣∣∣
〈
σ ′

3,σ
′
2,σ ; τ ′

3,τ
′
2,τ ; k23,k1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

, (79)

where k1⊥ = k⊥ and k+
1 = ξM0(1,2,3) [see Eq. (59)]. Combining Eqs. (B11) and (B14), the normalization of the LF nucleon

momentum distribution (78) can be rewritten as follows:

∫
dξ

∫
dk⊥nτ (ξ,k⊥) =

∫
dk⊥

∑
σ

∑
τ2τ3

∑
σ2,σ3

∫
dk23

∫
∂ξ

∂kz

dkz

∂kz

∂k+
E23

(1 − ξ )

∣∣∣∣
〈
σ3,σ2,σ ; τ3,τ2,τ ; k23,k

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

=
∫

dk⊥
∑

σ

∑
τ2τ3

∑
σ2,σ3

∫
dk23

∫
dkz

∣∣∣∣
〈
σ3,σ2,σ ; τ3,τ2,τ ; k23,k

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

=
∫

dk⊥
∫

dkzf
τ (kz,k⊥) = 1, (80)

where f τ (kz,k⊥) is the instant form momentum distribution in terms of the intrinsic nucleon momentum k = k1, defined by
Eqs. (2) and (8) of Sec. II,

f τ (kz,k⊥) =
∑

σ

∑
τ2τ3

∑
σ2,σ3

∫
dk23

∣∣∣∣
〈
σ3,σ2,σ ; τ3,τ2,τ ; k23,k

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

. (81)

Let us show that the momentum sum rule ∫
ξdξ

∫
dk⊥nτ (ξ,k⊥) = 1

3
(82)

is satisfied by the LF momentum distribution nτ (ξ,k⊥). Indeed, because of the symmetry of the three-body bound state, one has

∫
ξdξ

∫
dk⊥nτ (ξ,k⊥) =

∑
τ2τ3

∑
σ1σ2,σ3

∫
dk1

∫
dk23

k+
1

M0(1,2,3)

∣∣∣∣
〈
σ3,σ2,σ1; τ3,τ2,τ ; k23,k1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

=
∑
τ2τ3

∑
σ1σ2,σ3

∫
dk2

∫
dk31

k+
2

M0(1,2,3)

∣∣∣∣
〈
σ3,σ2,σ1; τ3,τ2,τ ; k31,k2

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

=
∑
τ2τ3

∑
σ1σ2,σ3

∫
dk3

∫
dk12

k+
3

M0(1,2,3)

∣∣∣∣
〈
σ3,σ2,σ1; τ3,τ2,τ ; k12,k3

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

= 1

3

∑
τ2τ3

∑
σ1σ2,σ3

∫
dk1

∫
dk23

(k+
1 + k+

2 + k+
3 )

M0(1,2,3)

∣∣∣∣
〈
σ3,σ2,σ1; τ3,τ2,τ ; k23,k1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉 ∣∣∣∣
2

= 1

3
, (83)

since [see Eqs. (B13) and (42)] [
∂(k1,k23)

∂(k2,k31)

]
= M23E1E23

M31E2E31
,

[
∂(k1,k23)

∂(k3,k12)

]
= M23E1E23

M12E3E12
, (84)

√
E1E23M23|k1,k23〉 =

√
E2E31M31|k2,k31〉 =

√
E3E12M12|k3,k12〉, (85)

and k+
1 + k+

2 + k+
3 = M0(1,2,3). The momentum sum rule (82) has also been successfully checked by calculating numerically

Eq. (83) in an actual case using the three-body wave function of Ref. [35] with the nuclear interaction of Ref. [11]. In the
case of the proton (with accuracy produced by the normalization of the nonrelativistic wave function) we obtain 0.9989 for the
normalization and 0.3324 for the sum rule, while for the neutron we have 0.9981 and 0.3336, respectively (see also Ref. [41]).

Within the BT framework one can obtain LF momentum distributions dependent upon the spin directions, nτ
σ ′σ (ξ,k⊥; �S), for

any direction of the polarization vector �S of the three-body system, by using Eq. (66) and the expression for the LF spin-dependent
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spectral function given by Eq. (72),

nτ
σ ′σ (ξ,k⊥; �S) = 1

(1 − ξ )

∑
τ2τ3

∫
dk23

∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ ′σ ′

1
E
(
k(a)

1

) E23

k
+(a)
1

×
∑
σ ′

2,σ
′
3

∑
m

D
j
m,M(α,β,γ )

〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ ; k23,k

(a)
1

∣∣∣∣j,jz = m; ε3
int,;

1

2
Tz

〉

×
∑
σ̄ ′

1

D
1
2 ∗[RM

(
k̃(a)

1

)]
σ σ̄ ′

1

∑
m′

[
D

j
m′,M(α,β,γ )

]∗〈
σ ′

3,σ
′
2,σ̄

′
1; τ3,τ2,τ ; k23,k

(a)
1

∣∣∣∣j,jz = m′; ε3
int,;

1

2
Tz

〉∗
. (86)

Recall that α, β, and γ are the Euler angles describing the
rotation from the z axis to the polarization vector �S. In Eq. (86)
the explicit expression (62) for the overlaps is used, as well as
the two-body completeness and once again the unitarity of the
D and D1/2 matrices.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, within the BT approach for the Poincaré
generators, a LF spin-dependent spectral function and LF
spin-dependent momentum distributions have been defined by
starting from the LF wave function for a three-body system,
having in mind the 3He and the 3H nuclei. The spectral function
is defined through the overlaps between the ground-state wave
function of the three-body system and the tensor product of a

plane wave for one of the nucleons in the intrinsic reference
frame of the cluster (1,23) and the state which describes the
intrinsic motion of the fully interacting two-nucleon spectator
subsystem. In the present approach the packing operators,
which are needed to implement the macrocausality, are not
considered in the description of the ground state of the
three-body system, but the macrocausality is fully considered
in the mentioned tensor product.

A generalization to A-nucleon nuclei is straightforward:
one has only to generalize the definition of the intrinsic
momentum κ as the momentum of one of the nucleons in the
intrinsic reference frame of the cluster composed by this free
nucleon and by the fully interacting system of the remaining
A − 1 nucleons. Then the LF spin-dependent spectral function
for the A-nucleon nucleus is

Pτ
σ ′σ (κ+,κ⊥,κ−,S,A)=

∫∑
dεA−1ρ(εA−1)A−1δ

(
κ− − MA + M2

A−1 + |κ⊥|2
(1 − ξ )MA

)

×
∑
JJzα

∑
TA−1τA−1

LF 〈τA−1,TA−1,α,εA−1; JJz; τσ ′,κ̃ |A,�0; S,Tz〉〈S,Tz; �0,A|κ̃,σ τ ; JJz; εA−1,α,TA−1,τA−1〉LF,

(87)

where |A,�0; S,Tz〉 is the ground-state of the A-nucleon
nucleus, while MA−1 and εA−1 are the mass and the intrinsic
energy, ρ(εA−1)A−1 is the density, J, Jz is the spin, TA−1, τA−1

is the isospin of the (A − 1)-nucleon system, and α is the set
of quantum numbers needed to fully specify this system.

Notably within the LF Hamiltonian dynamics, both normal-
ization and the momentum sum rule can be exactly satisfied at
the same time. With respect to previous attempts to describe
DIS processes off 3He in a LF framework (see, e.g., the one
in Ref. [24]), in our approach for the spin-dependent spectral
function special care is devoted to the definition of the intrinsic
LF variables of the problem, as well as to the spin degrees
of freedom through the Melosh rotations. Let us stress once
again that the definition of the nucleon momentum κ in the
intrinsic reference frame of the cluster (1,23) and the use for
the calculation of the LF spectral function of the tensor product
of a plane wave of momentum κ times the state which describes
the intrinsic motion of the fully interacting spectator subsystem
allows one on one hand to take care of macrocausality and on
the other one to introduce a new effect of binding in the spectral
function.

Our approach allows one to embed in a Poincaré covariant
framework the large amount of knowledge on the nuclear

interaction obtained from the nonrelativistic description of
nuclei, since we adopt the LF version of the relativistic
Hamiltonian dynamics with a fixed number of on-mass-
shell constituents. The LF form of RHD has a subgroup
composed by the LF boosts, which allows a separation of
the intrinsic motion from the global one, very important for
the description of DIS, SIDIS and deeply virtual Compton
scattering processes, since it is possible to unambiguously
identify the effects due to the inner dynamics.

Therefore, our LF spectral functions can be useful in many
problems that require both a proper relativistic treatment and
at the same time a good description of the internal structure
of the system. A calculation of DIS processes based on our
spectral function will indicate which is the gap with respect to
the experimental data to be filled by effects of non-nucleonic
degrees of freedom or by modifications of nucleon structure
in nuclei.

As a first example of forthcoming applications, we can
mention the study of the role played by relativity in the EMC
effect on 3He, for which JLab data have been taken at 6 GeV
[42] in the standard inclusive DIS sector. Encouraging results
of the new effects of binding introduced by the definition
of the momentum κ , obtained including an exact treatment
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of the deuteron channel and an approximated treatment for
the continuum of the LF spectral function can be found in
Ref. [41]. We plan to complete this study by using the full LF
spectral function, as defined in Eq. (69).

A second example for an application of the LF approach
proposed in this paper is the study of the effect of relativity
in the evaluation of SIDIS cross section off 3He, taking into
account both the relativity and the interaction in the final state
between the observed pion and the remnant. In Refs. [13,14],
by adopting a nonrelativistic spectral function evaluated from
the 3He wave function of Ref. [35], a distorted spin-dependent
spectral function was obtained by using a generalized eikonal
approximation to deal with the final-state interaction, and it
was shown that, within this framework, it is actually possible
to get reliable information on the quark TMDs in the neutron
from SIDIS experiments off 3He. By considering the new LF
spin-dependent spectral function, we plan to evaluate SIDIS
cross sections off 3He through a LF distorted spin-dependent
spectral function obtained by applying again the generalized
eikonal approximation for the description of the final-state
interaction. Preliminary results can be found in Ref. [17].

In view of the large efforts in the determination of the
TMDs to study the three-dimensional structure of the nucleon,
the same concepts and definitions that are used in this paper to
build up the LF spin-dependent spectral function for a three-
nucleon system could tentatively be applied to a system of
three valence quarks to define a nucleon spectral function in
the valence approximation and then to describe the nucleon
TMDs in terms of a valence wave function for the nucleon.

It will be also interesting to study in detail the relation
between the LF spin-dependent spectral function and the
correlator, �(k,P,S), of a nucleon of momentum k in a
nucleus of momentum P and spin polarization S, defined

in terms of the nucleon fields, in analogy with the quark
correlator in a nucleon, defined in terms of the quark fields
[4]. In Refs. [16,17], preliminary results were presented and
it was shown that, in the valence approximation, a simple
relation between the correlator and the LF spin-dependent
spectral function naturally emerges and that only three of
the six time-reversal even TMDs at the leading twist [4]
are independent. The relations among these TMDs could
be experimentally checked to test our LF description of the
spin-dependent spectral function.

APPENDIX A: TWO-BODY LIGHT-FRONT
WAVE FUNCTION

In this Appendix, some details are given on the two-body
light-front wave function that are useful for the general
discussion presented in Sec. III.

1. Completeness of two-body free states

Let P̃ be the total LF momentum for a two-particle system,

P̃ = p̃1 + p̃2. (A1)

The Jacobian from {p̃1,p̃2} to {P̃,ξ,k⊥} is[
∂(p̃1,p̃2)

∂(P̃,ξ,k⊥)

]
= P +, (A2)

and the Jacobian from {p̃1,p̃2} to {P̃,k+,k⊥} is given by[
∂(p̃1,p̃2)

∂(P̃,k+,k⊥)

]
= 2(1 − ξ )

M0(1,2)
P + = 2ξ (1 − ξ )

k+ P +, (A3)

with M0(1,2) defined by Eq. (21), since

∂k+

∂ξ
= M0(1,2) − ξ

1

2M0(1,2)

m2 + |k⊥|2
ξ 2(1 − ξ )2

(1 − 2ξ ) = M0(1,2)

2(1 − ξ )
= k+

2ξ (1 − ξ )
. (A4)

Furthermore, the Jacobian from {p̃1,p̃2} to {P̃,kz,k⊥} is given by[
∂(p̃1,p̃2)

∂(P̃,kz,k⊥)

]
= 2ξ (1 − ξ )

E(k)
P +, (A5)

since [cf. Eq. (8)]

∂kz

∂ξ
= M0(1,2) −

(
ξ − 1

2

)
1

2M0(1,2)

m2 + |k⊥|2
ξ 2(1 − ξ )2

(1 − 2ξ ) = E(k)

2ξ (1 − ξ )
. (A6)

From Eqs. (A4) and (A6) one has

∂k+

∂kz

= ∂k+

∂ξ

∂ξ

∂kz

= k+

E(k)
. (A7)

Keeping separate the global motion from the intrinsic one, the completeness reads

I =
∫

dp̃1

2p+
1 (2π )3

dp̃2

2p+
2 (2π )3

|p̃1〉|p̃2〉〈p̃1|〈p̃2| = 2
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dξ

(2π )34ξ (1 − ξ )

∫
dk⊥|k̃〉〈k̃|

= 2
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dk̃
2k+(2π )3

|k̃〉〈k̃| = 2
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dk
(2π )32E(k)

|k̃〉〈k̃|. (A8)

Notice in the last step the hybrid notation in the intrinsic part. It will be used in what follows.

014001-13
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The normalization of the free state |P̃〉|k̃〉 = |p̃1〉|p̃2〉 is

〈p̃′
2|p̃2〉〈p̃′

1|p̃1〉 = 2p+
1 (2π )3δ3(p̃′

1 − p̃1)2p+
2 (2π )3δ3(p̃′

2 − p̃2)

=
[
∂(P̃,k+,k⊥)

∂(p̃1,p̃2)

]
2p+

1 (2π )32p+
2 (2π )3δ3(P̃′ − P̃)δ3(k̃′ − k̃)

= 2P +(2π )3δ3(P̃′ − P̃)k+(2π )3δ3(k̃′ − k̃) = 〈P̃′|P̃〉〈k̃′|k̃〉. (A9)

It should be pointed out that 〈k̃′|k̃〉 = k+(2π )3δ3(k̃′ − k̃), i.e., without a factor of two, since it refers to a two-body intrinsic state.
The overlap between the free two-body intrinsic states |k̃; σ2,σ1〉LF and the corresponding states with canonical spin and

Cartesian coordinates is relevant for the following discussion. Let us recall that δ(k′+ − k+) = δ(k′
z − kz)/(∂k+/∂kz). Then by

using Eq. (16), one has

c〈σ ′
1,σ

′
2; k′|k̃; σ2,σ1〉LF =

√
(2π )3k+ ∂kz

∂k+ δ(k′ − k)D
1
2 ∗[RM (k̃)]σ1σ

′
1
D

1
2 ∗[RM (−k̃)]σ2σ

′
2
, (A10)

where the normalization and the completeness of the plane waves with Cartesian variables, |k〉, are

〈k′|k〉 = δ(k′ − k),
∫

dk|k〉〈k| = I, (A11)

and

−k̃ ≡ ((M0 − k+), − k⊥). (A12)

2. Light-front wave function for a system of two interacting particles

By using the subgroup properties of the LF boosts, the LF wave function for an interacting two-body system, in a given frame,
can be expressed through the intrinsic variables as follows [see Eq. (A10)]:

LF〈σ1,σ2; τ1,τ2; k̃,P̃′|P̃; j,jz; εint,α; T Tz〉LF

= 2P +(2π )3δ3(P̃′ − P̃)
√

(2π )3k+∂kz/∂k+
∑
σ ′

1,σ
′
2

D
1
2 [RM (k̃)]σ1σ

′
1
D

1
2 [RM (−k̃)]σ2σ

′
2
〈σ ′

1,σ
′
2; τ1,τ2; k|j,jz; εint,α; T Tz〉, (A13)

where a canonical completeness has been inserted for obtaining the final step.
Notice that the intrinsic two-body wave function 〈σ ′

1,σ
′
2; τ1,τ2; k|j,jz; εint,α; T Tz〉 contains canonical spins and therefore it

can be composed by using the Clebsch–Gordan coefficients. Moreover, j is the total angular momentum of the pair, T is the
isospin, α is the set of the parity and quantum numbers that label the coupled waves, and εint is the eigenvalue of the mass operator
[see Eqs. (23)–(25)].

The normalization of the intrinsic part of a LF bound state follows from the normalization fulfilled by
〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉. Indeed, if we adopt the following normalization, suitable for bound states,

∑
τ1,τ2

∑
σ1,σ2

∫
dk|〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉|2 = 1, (A14)

from Eq. (A13), one has for the intrinsic part of the two-body LF wave function,

∑
τ1,τ2

∑
σ1,σ2

∫
dk+dk⊥
k+(2π )3

|LF〈σ1,σ2; τ1,τ2; k̃|j,jz; εint,α; T Tz〉|2

=
∑
τ1,τ2

∑
σ1,σ2

∫
dk

E(k)(2π )3
|LF〈σ1,σ2; τ1,τ2; k̃|j,jz; εint,α; T Tz〉|2

=
∑
τ1,τ2

∑
σ1,σ2

∫
dk

E(k)
E(k)

∣∣∣∣∣∣
∑
σ ′

1,σ
′
2

D
1
2 [RM (k̃)]σ1σ

′
1
D

1
2 [RM (−k̃)]σ2σ

′
2
〈σ ′

1,σ
′
2; τ1,τ2; k|j,jz; εint,α; T Tz〉

∣∣∣∣∣∣
2

=
∑
τ1,τ2

∑
σ1,σ2

∫
dk|〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉|2 = 1. (A15)

In the last step of (A15) the unitarity of the D1/2 matrices has been used.
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The normalization for the LF scattering states follows from (i) the orthogonality condition adopted for the canonical scattering
wave function 〈σ1,σ2; τ1,τ2; k|j,jz; εint,α; T Tz〉 given by [see also Eq. (A19) below for the completeness of the canonical states]

∑
σ ′′

1 ,σ ′′
2

∑
τ ′′

1 ,τ ′′
2

∫
dk〈T ′

zT
′; α′ε′

int; j
′
zj

′|k; τ ′′
2 ,τ ′′

1 ; σ ′′
2 ,σ ′′

1 〉〈σ ′′
1 ,σ ′′

2 ; τ ′′
1 ,τ ′′

2 ; k|j,jz; εint,α; T Tz〉 = δT ′,T δT ′
z ,Tz

δα′,αδj ′,j δj ′
z,jz

δ(t ′ − t)

t2
,

(A16)

where t = √
mεint, and (ii) the orthogonality adopted for the LF scattering states, which reads [see also the completeness of the

free states for a two-body system |P̃〉|k̃〉 in Eq. (A8)]

LF〈T ′
zT

′; α′ε′
intj

′
zj

′; P̃′|P̃; j,jz; εint,α; T Tz〉LF

=
∑
σ ′′

1 ,σ ′′
2

∑
τ ′′

1 ,τ ′′
2

∫
dP̃′′

2P ′′+(2π )3

∫
dk

E(k)(2π )3 LF〈T ′
zT

′; α′ε′
int; j

′
zj

′; P̃′|P̃′′,k̃; τ ′′
2 ,τ ′′

1 ; σ ′′
2 ,σ ′′

1 〉LF

×LF〈σ ′′
1 ,σ ′′

2 ; τ ′′
1 ,τ ′′

2 ; k̃,P̃′′|P̃; j,jz; εint,α; T Tz〉LF

= 2P +(2π )3δ3(P̃′ − P̃)
∑
σ ′′

1 ,σ ′′
2

∑
τ ′′

1 ,τ ′′
2

∫
dk〈T ′

zT
′; α′ε′

int; j
′
zj

′|k; τ ′′
2 ,τ ′′

1 ; σ ′′
2 ,σ ′′

1 〉〈σ ′′
1 ,σ ′′

2 ; τ ′′
1 ,τ ′′

2 ; k|j,jz; εint,α; T Tz〉

= 2P +(2π )3δ3(P̃′ − P̃)δT ′,T δT ′
z ,Tz

δα′,αδj ′,j δj ′
z,jz

δ(t ′ − t)

t2
. (A17)

Then for the two-body interacting case the LF completeness reads∫
dP̃

2P +(2π )3

∑
j,jzα

∑
T Tz

∫∑
λ(t)dtLF〈σ1,σ2; τ1,τ2; k̃,P̃′|P̃; j,jz; εint,α; T Tz〉LF LF〈TzT ; α,εint; jz,j ; P̃|P̃′′,k̃′; τ ′

2,τ
′
1; σ ′

2,σ
′
1〉LF

= 2P ′+(2π )3δ3(P̃′ − P̃′′)
∑
j,jzα

∑
T Tz

∫∑
λ(t)dt

√
(2π )3E(k)

∑
σ̄1,σ̄2

D
1
2 [RM (k̃)]σ1σ̄1D

1
2 [RM (−k̃)]σ2σ̄2〈σ̄1,σ̄2; τ1,τ2; k|j,jz; εint,α; T Tz〉

×
√

(2π )3E(k′)
∑
σ̄ ′

1,σ̄
′
2

D
1
2 †[RM (k̃′)]σ̄ ′

1σ
′
1
D

1
2 †[RM (−k̃′)]σ̄ ′

2σ
′
2
〈j,jz; εint,α; T Tz|σ̄ ′

1,σ̄
′
2; τ ′

1,τ
′
2; k′〉

= 2P ′+(2π )3δ3(P̃′ − P̃′′)δτ ′
1,τ1δτ ′

2,τ2δσ ′
1,σ1δσ ′

2,σ2δ
3(k̃′ − k̃)(2π )3k+, (A18)

where the symbol
∫∑

means a sum over the bound states of the pair (namely the deuteron in the present case) and the integration
over the continuum. The quantity λ(t) is the t density of the two-body states [λ(t) = 1 for the bound states and λ(t) = t2 for the
continuum]. To obtain Eq. (A18), one has to use (i) the expression (A13) for the LF wave function, (ii) the unitarity of the D1/2

matrices, (iii) the completeness for the eigensolutions of Eq. (23), i.e.,∑
j,jzα

∑
T Tz

∫∑
λ(t)dt〈k′|j,jz; εint,α; T Tz〉〈TzT ; α,εint; jz,j |k〉 = δ3(k′ − k), (A19)

and (iv) Eq. (A7).

APPENDIX B: THREE-BODY STATES

In this Appendix, the three-body free and interacting states are analyzed in analogy to the two-body case.

1. Completeness of three-body free states with symmetric intrinsic variables

Let P̃ be the total LF momentum for a three-particle system

P̃ = p̃1 + p̃2 + p̃3 (B1)

of free mass M0(1,2,3):

M2
0 (1,2,3) = m2 + |k1⊥|2

ξ1
+ m2 + |k2⊥|2

ξ2
+ m2 + |k3⊥|2

ξ3
= (E1 + E2 + E3)2, (B2)

where Ei = (m2 + |ki |2)1/2 and
∑

i ki = 0.
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The completeness for the different set of variables, {p̃i} → {ξi,ki⊥} → ki , is given by

I =
∫

dp̃1

2p+
1 (2π )3

dp̃2

2p+
2 (2π )3

dp̃3

2p+
3 (2π )3

|p̃3〉|p̃2〉|p̃1〉〈p̃1|〈p̃2|〈p̃3|

=
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dξ1

2ξ1(2π )3
dk1⊥|ξ1k1⊥〉〈k1⊥ξ1|

∫
dξ2

2ξ2(2π )3
dk2⊥

1

ξ3
|ξ2k2⊥〉〈k2⊥ξ2|

=
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dk1

2E1(2π )3

∫
dk2

2E2(2π )3

M0(1,2,3)

E3
|k̃1〉|k̃2〉〈k̃2|〈k̃1|, (B3)

where |p̃3〉|p̃2〉|p̃1〉 = |P̃〉|k̃1〉|k̃2〉 = |P̃〉|ξ1,k1⊥〉|ξ2,k2⊥〉 and the Jacobians[
∂(p̃1,p̃2,p̃3)

∂(P̃,ξ1,k1⊥,ξ2,k2⊥)

]
= (P +)2, (B4)

[
∂(p̃1,p̃2,p̃3)

∂(P̃,k1,k2)

]
= p+

1 p+
2 p+

3 M0(1,2,3)

P +E1E2E3
(B5)

have been used.

2. Completeness of three-body free states with nonsymmetric intrinsic variables

Instead of the symmetric intrinsic variables in the three-body frame, one can introduce nonsymmetric intrinsic variables,
corresponding to the intrinsic frame of the (2,3) pair, i.e., {p̃2,p̃3} → {P̃23,η,k23⊥} [see Eqs. (35) and (37)].

The completeness ∫
dp̃1

2p+
1 (2π )3

dp̃2

2p+
2 (2π )3

dp̃3

2p+
3 (2π )3

|p̃1〉|p̃2〉|p̃3〉〈p̃3|〈p̃2|〈p̃1| = I (B6)

can be arranged in different ways, depending upon the the choice of variables one needs. In particular:

(1) For the variables p̃1, P̃23, and k̃23 one can exploit Eq. (A8), obtaining

I =
∫

dp̃1

2p+
1 (2π )3

|p̃1〉〈p̃1|
∫

dP̃23

2P +
23(2π )3

∣∣P̃23
〉〈

P̃23

∣∣ ∫ dk̃23

k+
23(2π )3

|k̃23〉〈k̃23|. (B7)

(2) For the variables P̃, {ξ1,k1⊥}, and {η,k23⊥} one has from Eq. (B3)

I =
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dξ1dk1⊥
2ξ1(1 − ξ1)(2π )3

|ξ1k1⊥〉〈k1⊥ξ1|
∫

dηdk23⊥
2η(1 − η)(2π )3

|ηk23⊥〉〈k23⊥η|, (B8)

after recalling Eq. (35) that yields

dξ2

ξ2ξ3
= dη

η(1 − η)(1 − ξ1)
and dk2⊥ = dk23⊥. (B9)

(3) For the variables P̃, k̃1, and k̃23 one has

I =
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

dk̃23

k+
23(2π )3

|k̃23〉〈k̃23|
∫

M0(1,2,3)dk̃1

2k+
1 E23(2π )3

|k̃1〉〈k̃1|, (B10)

where the following relations have been used (recall that k+
1 = ξ1M0(1,2,3) and k+

23 = ηM23):

∂k+
1

∂ξ1
= M0(1,2,3) + ξ1

∂M0(1,2,3)

∂ξ1
= M0(1,2,3) + ξ1

2M0(1,2,3)

∂M2
0 (1,2,3)

∂ξ1

= 1

2M0(1,2,3)

[
M2

0 (1,2,3) + M2
23 + |k1⊥|2
(1 − ξ1)2

]

= 1

2(1 − ξ1)

[
M0(1,2,3)(1 − ξ1) + M2

23 + |k1⊥|2
K+

23

]

= 1

2(1 − ξ1)
[K+

23 + K−
23on] = E23

(1 − ξ1)
(B11)

014001-16



LIGHT-FRONT SPIN-DEPENDENT SPECTRAL FUNCTION . . . PHYSICAL REVIEW C 95, 014001 (2017)

∂k+
23

∂η
= M23 − η

1

2M23

m2 + |k1⊥|2
η2(1 − η)2

(1 − 2η)

= M23

2(1 − η)
[2(1 − η) − 1 + 2η)] = M23

2(1 − η)
= k+

23

2η(1 − η)
, (B12)

with K23 being the total momentum of the free (2,3) pair in the intrinsic frame of the three particles, i.e., K+
23 =

M0(1,2,3)(1 − ξ1), K23⊥ = k2⊥ + k3⊥ = −k1⊥, K−
23on = (M2

23 + |k1⊥|2)/K+
23, and E23 = (M2

23 + |k1|2)1/2.
(4) For the variables P̃, k1, and k23 one has

I =
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

2dk23

M23(2π )3
|k̃23〉〈k̃23|

∫
M0(1,2,3)dk1

2E1E23(2π )3
|k̃1〉〈k̃1|. (B13)

To obtain the above results, the following properties have been used:

∂k1z

∂k+
1

= 1

2

[
1 + m2 + |k1⊥|2

k+2
1

]
= E(k1)

k+
1

= E(k1)

M0(1,2,3)ξ1
, (B14)

∂k23z

∂η
= M23 −

(
η − 1

2

)
1

2M23

m2 + |k1⊥|2
η2(1 − η)2

(1 − 2η)

= M23

4η(1 − η)
[4η(1 − η) + (2η − 1))2] = M23

4η(1 − η)
. (B15)

(5) For the variables P̃, k̃1, and k23 one has

I =
∫

dP̃
2P +(2π )3

|P̃〉〈P̃|
∫

2dk23

M23(2π )3
|k̃23〉〈k̃23|

∫
M0(1,2,3)dk̃1

2k+
1 E23(2π )3

|k̃1〉〈k̃1|. (B16)

3. Useful derivatives involving nonsymmetric intrinsic variables

Let us evaluate the derivatives ∂κ+
1 /∂ξ1 and ∂κ1z/∂κ+

1 :

∂κ+
1

∂ξ1
= M0(1,23) + ξ1

∂M0(1,23)

∂ξ1
= M0(1,23) + ξ1

2M0(1,23)

∂M0(1,23)2

∂ξ1

= 1

2M0(1,23)

[
M0(1,23)2 + M2

S + |k1⊥|2
(1 − ξ1)2

]
= 1

2(1 − ξ1)

[
M0(1,23)(1 − ξ1) + M2

S + |k1⊥|2
P +

S

]

= 1

2(1 − ξ1)
[P +

S + P −
Son] = ES

(1 − ξ1)
, (B17)

∂κ1z

∂κ+
1

= 1

2

[
1 + m2 + |k1⊥|2

κ+2
1

]
= E(κ1)

κ+
1

= E(κ1)

M0(1,23)ξ1
. (B18)

4. Normalization of the light-front wave function

Let us check that the factors in the expression of the intrinsic part of the LF wave function given by the second and the third
lines of Eq. (42), which allow one to obtain the normalization of the bound state |j,jz; ε3

int,; 1
2 ,Tz〉. Indeed, by using Eqs. (B10)

and (B13), one has〈
Tz

1

2
; ,ε3

int; jz,j

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑

τ1,τ2,τ3

∑
σ1,σ2,σ3

∫
dk̃1

2k+
1 (2π )3

∫
M0(1,2,3)dk̃23

k+
23E23(2π )3

∣∣∣∣LF

〈
σ1,σ2,σ3; τ1,τ2,τ3; k̃1,k̃23

∣∣∣∣j,jz; ε
3
int,;

1

2
,Tz

〉 ∣∣∣∣
2

=
∑

τ1,τ2,τ3

∑
σ1σ2σ3

∫
dk1

E1(2π )3

∫
dk23

E23

M0(1,2,3)

(2π )3M23

∣∣∣∣LF

〈
σ1,σ2,σ3; τ1,τ2,τ3; k̃1,k̃23

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2

=
∑

τ1,τ2,τ3

∑
σ1,σ2,σ3

∫
dk1

E1(2π )3

∫
M0(1,2,3)dk23

M23E23(2π )3

2E1M23E23(2π )6

2M0(1,2,3)

014001-17
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×
∣∣∣∣∣∣
∑
σ ′

1

∑
σ ′

2

∑
σ ′

3

D
1
2 [RM (k̃1)]σ1σ

′
1
D

1
2 [RM (k̃2)]σ2σ

′
2
D

1
2 [RM (k̃3)]σ3σ

′
3

〈
σ ′

1,σ
′
2,σ

′
3; τ1,τ2,τ3; k1,k23

∣∣∣∣j,jz; ε
3
int,;

1

2
,Tz

〉∣∣∣∣∣∣
2

=
∑

τ1,τ2,τ3

∑
σ1,σ2,σ3

∫
dk1

∫
dk23

∣∣∣∣
〈
σ1,σ2,σ3; τ1,τ2,τ3; k1,k23

∣∣∣∣j,jz; ε
3
int,;

1

2
,Tz

〉∣∣∣∣
2

= 1, (B19)

given the unitarity of the Melosh rotations and the normalization of the canonical wave function (43).

APPENDIX C: PROPERTIES OF THE BASIS STATES OF THE CLUSTER {1,(23)}
In this Appendix, the general formalism, suitable for describing the cluster {1,(23)} is presented. Recall that the final goal is to

construct states where the interaction is acting only between the particles 2 and 3; namely, the three-body states we are interested
in are the tensor product of free one-body states and interacting two-body states.

1. Completeness relation for the nonsymmetric basis states and orthogonality properties of three-body free states

The correctness of the normalization factors in Eq. (52) can be checked as follows:
Indeed, let us consider the product of two three-body free states

A = LF〈σ ′
1,σ

′
2,σ

′
3; τ ′

1,τ
′
2,τ

′
3; P̃′,k̃′

1,k̃
′
23|k̃′′

23,k̃
′′
1,P̃

′′; τ ′′
1 ,τ ′′

2 ,τ ′′
3 ; σ ′′

1 ,σ ′′
2 ,σ ′′

3 〉LF. (C1)

Then, let us insert in Eq. (C1) the completeness relation (51) for the nonsymmetric basis states (49):

A =
∫

dP̃
2P +(2π )3

∑
σ1τ1

∫
dκ̃1

2κ+
1 (2π )3

∑
T23τ23

∫∑
λ(t)dt

×
∑

j23j23zα

LF〈σ ′
1,σ

′
2,σ

′
3; τ ′

1,τ
′
2,τ

′
3; P̃′,k̃′

1,k̃
′
23|P̃; κ̃1σ1τ1; j23,j23z; ε23,α; T23,τ23〉LF

×LF〈T23,τ23; α,ε23; j23z,j23; τ1σ1κ̃1; P̃|k̃′′
23,k̃

′′
1,P̃

′′; τ ′′
1 ,τ ′′

2 ,τ ′′
3 ; σ ′′

1 ,σ ′′
2 ,σ ′′

3 〉LF. (C2)

With the help of the overlap in Eq. (52), the above equation reads

A = 2P ′+(2π )3δ3(P̃′′ − P̃′)δτ ′
1τ

′′
1

∑
σ1

∫
dκ̃1

2κ+
1 (2π )3

∑
T23τ23

∫∑
λ(t)dt

∑
j23j23zα

δσ ′
1σ1 (2π )32k′+

1 δ3
(
k̃′

1 − k̃(a)
1

)√κ+
1 E′

23

k′+
1 ES

√
(2π )3

E′
23M

′
23

2M ′
0(1,2,3)

×
∑
σ2

∑
σ3

D
1
2 [RM (k̃′

23)]σ ′
2σ2D

1
2 [RM (−k̃′

23)]σ ′
3σ3〈σ2,σ3; τ ′

2,τ
′
3; k′

23|j23,j23z; ε23,α; T23,τ23〉

×δσ1σ
′′
1
(2π )32k′′+

1 δ3
(
k̃′′

1 − k̃′′(a)
1

)√κ+
1 E′′

23

k′′+
1 ES

√
(2π )3

E′′
23M

′′
23

2M ′′
0 (1,2,3)

×
∑
σ̄2

∑
σ̄3

D
1
2 ∗[RM (k̃′′

23)]σ ′′
2 σ̄2D

1
2 ∗[RM (−k̃′′

23)]σ ′′
3 σ̄3〈σ̄2,σ̄3; τ ′′

2 ,τ ′′
3 ; k′′

23|j23,j23z; ε23,α; T23,τ23〉∗

= 2P ′+(2π )3δ3(P̃′′ − P̃′)δτ ′
1τ

′′
1
δσ ′

1σ
′′
1

∫
dk1⊥

∫
dξ1

(1 − ξ1)

×(2π )3k′+
1 δ3

(
k̃′

1 − k̃(a)
1

)√E′
23

k′+
1

√
E′

23M
′
23

M ′
0(1,2,3)

∑
σ2

∑
σ3

D
1
2 [RM (k̃′

23)]σ ′
2σ2D

1
2 [RM (−k̃′

23)]σ ′
3σ3

×(2π )3k′′+
1 δ3(k̃′′

1 − k̃′′(a)
1 )

√
E′′

23

k′′+
1

√
E′′

23M
′′
23

M ′′
0 (1,2,3)

∑
σ̄2

∑
σ̄3

D
1
2 ∗[RM (k̃′′

23)]σ ′′
2 σ̄2D

1
2 ∗[RM (−k̃′′

23)]σ ′′
3 σ̄3

∑
j23j23zα

∑
T23τ23

∫∑
λ(t)dt

×〈σ2,σ3; τ ′
2,τ

′
3; k′

23|j23,j23z; ε23,α; T23,τ23〉〈σ̄2,σ̄3; τ ′′
2 ,τ ′′

3 ; k′′
23|j23,j23z; ε23,α; T23,τ23〉∗, (C3)
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where the integration-variable change dκ+
1 = dξ1ES/(1 − ξ1) was performed [see Eq. (B17)]. In Eq. (C3) k′′(a)

1⊥ = κ̃1⊥ and
k′′+(a) = ξ1M̄0(1,2,3) with

M̄2
0 (1,2,3) = m2 + k2

1⊥
ξ1

+ M ′′2
23 + k2

1⊥
1 − ξ1

. (C4)

Then, taking into account the completeness for the two-body intrinsic states 〈σ2,σ3; τ ′
2,τ

′
3; k′

23|j23,j23z; ε23,α; T23,τ23〉 for the
(2,3) pair [see Eqs. (31) and (A19)], one obtains

A = 2P ′+(2π )3δ3(P̃′′ − P̃′)δτ ′
1τ

′′
1
δσ ′

1σ
′′
1

∫
dk1⊥

∫
dξ1

(1 − ξ1)

× (2π )3k′+
1 δ3

(
k̃′

1 − k̃(a)
1

)√E′
23

k′+
1

√
E′

23M
′
23

M ′
0(1,2,3)

∑
σ2

∑
σ3

D
1
2
[RM

(
k̃′

23

)]
σ ′

2σ2
D

1
2
[RM

(−k̃′
23

)]
σ ′

3σ3
(2π )3k′′+

1 δ3
(
k̃′′

1 − k̃′′(a)
1

)

×
√

E′′
23

k′′+
1

√
E′′

23M
′′
23

M ′′
0 (1,2,3)

∑
σ̄2

∑
σ̄3

D
1
2 ∗[RM (k̃′′

23)]σ ′′
2 σ̄2D

1
2 ∗[RM (−k̃′′

23)]σ ′′
3 σ̄3δτ ′

2,τ
′′
2
δτ ′

3,τ
′′
3
δσ2,σ̄2δσ3,σ̄3δ

3(k′
23 − k′′

23). (C5)

Therefore, using the unitarity of the D
1
2 matrices and changing the integration variable from dξ11/(1 − ξ1) to 1/E′

23dk
+(a)
1

[see Eq. (B11)], one obtains

A = δσ ′
1,σ

′′
1
δσ ′

2,σ
′′
2
δσ ′

3,σ
′′
3
δτ ′

1,τ
′′
1
δτ ′

2,τ
′′
2
δτ ′

3,τ
′′
3
2P ′+(2π )9δ3(P̃′′ − P̃′)k′+

1 δ3(k̃′′
1 − k̃′

1)
E′

23M
′
23

M ′
0(1,2,3)

δ3(k′′
23 − k′

23)

= δσ ′
1,σ

′′
1
δσ ′

2,σ
′′
2
δσ ′

3,σ
′′
3
δτ ′

1,τ
′′
1
δτ ′

2,τ
′′
2
δτ ′

3,τ
′′
3
2P ′+(2π )9δ3(P̃′′ − P̃′)2k′+

1 δ3(k̃′′
1 − k̃′

1)
E′

23k
′+
23

M ′
0(1,2,3)

δ3(k̃′′
23 − k̃′

23)

= δσ ′
1,σ

′′
1
δσ ′

2,σ
′′
2
δσ ′

3,σ
′′
3
δτ ′

1,τ
′′
1
δτ ′

2,τ
′′
2
δτ ′

3,τ
′′
3
2P ′+(2π )9δ3(P̃′′ − P̃′)E(k′

1)δ3(k′′
1 − k′

1)
E′

23M
′
23

M ′
0(1,2,3)

δ3(k′′
23 − k′

23). (C6)

The above expressions are the proper orthogonality relations for the free case, to be related to the completeness relations of
Eqs. (B16), (B10), and (B13), respectively.

2. Product of the nonsymmetric basis states and the bound state of the three-particle system

Let us express the overlaps between the states of the nonsymmetric basis (49) and the bound state of the three-particle system
in terms of the canonical wave functions for the two-body and the three-body systems. To this end, the plane-wave completeness
operator (61) is inserted in the intrinsic part of the overlap (60), viz.

LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑
τ2τ3

∑
σ2σ3

∫
dk̃′

23

k′+
23 (2π )3

∑
σ ′

1

∫
M ′

0(1,2,3)dk̃′
1

2k′+
1 E′

23(2π )3 LF〈T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1|k̃′
23,τ2τ3,σ2σ3; k̃′

1σ
′
1τ1〉LF

× LF

〈
σ2σ3,τ2τ3,k̃′

23; τ1σ
′
1k̃′

1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉
. (C7)

We can notice that the LF spin states do not change for LF boosts. Therefore the spin states |σ2σ3〉LF in the intrinsic reference
frame of the pair (23) or in the intrinsic reference frame of the three-particle system, with momenta related by the LF boost
B−1

LF (K̃23/M23), are equal. Then we can take LF〈T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1|k̃′
23,τ2τ3,σ2σ3; k̃′

1σ
′
1τ1〉LF as the intrinsic part of

the overlap (52) and LF〈σ2σ3,τ2τ3,k̃′
23; τ1σ

′
1k̃′

1|j,jz; ε3
int,; 1

2Tz〉LF as the intrinsic three-body wave function of Eq. (42) and we
obtain

LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑
τ2τ3

∑
σ2σ3

∫
dk̃′

1

2k′+
1 (2π )3

∑
σ ′

1

∫
2M ′

0(1,2,3)dk′
23

E′
23M

′
23(2π )3

δσ1σ
′
1
(2π )32k′+

1 δ3
(
k̃′

1 − k̃(a)
1

)√κ+
1 E′

23

k′+
1 ES

√
(2π )3E′

23M
′
23

2M ′
0(1,2,3)

×
∑
σ ′′

2 ,σ ′′
3

〈T23,τ23; α,ε23; j23j23z|k′
23,σ

′′
2 σ ′′

3 ,τ2τ3〉D 1
2 [R†

M (k̃′
23)]σ ′′

2 σ2D
1
2 [R†

M (−k̃′
23)]σ ′′

3 σ3
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×
∑

σ ′′
1 ,σ ′

2,σ
′
3

D
1
2 [RM (k̃′

1)]σ ′
1σ

′′
1
D

1
2 [RM (k̃′

2)]σ2σ
′
2
D

1
2 [RM (k̃′

3)]σ3σ
′
3

×
√

(2π )62E(k′
1)E′

23M
′
23

2M ′
0(1,2,3)

〈
σ ′′

1 ,σ ′
2,σ

′
3; τ1,τ2,τ3; k′

23,k
′
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉
. (C8)

In the previous equation the integration variable k′+
23 has been changed in k′

23z, using the equality ∂k+
23/∂k23z = 2k+

23/M23 [see
Eqs. (B12) and (B15)]. Then one obtains

LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑
τ2τ3

∫
dk′

23

∑
σ ′

1

D
1
2
[RM

(
k̃′(a)

1

)]
σ1σ

′
1

√
(2π )32E

(
k′(a)

1

)√ κ+
1 E′

23

k
′+(a)
1 ES

×
∑
σ ′′

2 ,σ ′′
3

∑
σ ′

2,σ
′
3

∑
σ2σ3

D
1
2 [R†

M (k̃′
23)]σ ′′

2 σ2D
1
2 [R†

M (−k̃′
23)]σ ′′

3 σ3D
1
2 [RM (k̃′

2)]σ2σ
′
2
D

1
2 [RM (k̃′

3)]σ3σ
′
3

×〈T23,τ23; α,ε23; j23j23z|k′
23,σ

′′
2 σ ′′

3 ; τ2,τ3〉
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k′

23,k
′(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

=
∑
τ2τ3

∫
dk23

∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ1σ

′
1

√
(2π )32E

(
k(a)

1

)√ κ+
1 E23

k
+(a)
1 ES

∑
σ ′′

2 ,σ ′′
3

∑
σ ′

2,σ
′
3

Dσ ′′
2 ,σ ′

2
(k̃23,k̃2)Dσ ′′

3 ,σ ′
3
(−k̃23,k̃3)

×〈T23,τ23; α,ε23; j23j23z|k23,σ
′′
2 σ ′′

3 ; τ2,τ3〉
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉
, (C9)

where

Dσ ′′
i ,σ ′

i
(±k̃23,k̃i) =

∑
σi

D
1
2 [R†

M (±k̃23)]σ ′′
i σi

D
1
2 [RM (k̃i)]σiσ

′
i
, (C10)

with the + corresponding to i = 2 and the − corresponding to i = 3.
Let us notice that the matrices Dσ ′′

i ,σ ′
i
(±k̃23,k̃i) are unitary, i.e.,

∑
σi

D†
σ ′′

i ,σi
(±k̃23,k̃i)Dσi ,σ

′
i
(±k̃23,k̃i) = δσ ′′

i ,σ ′
i
, (C11)

because of the unitarity of the D1/2 matrices.

3. Normalization of overlaps between a state of cluster {1,(23)} and the bound state of three-particle system

The normalization of the intrinsic LF overlaps LF〈T23,τ23; α,ε23; j23j23z; τ1σ1,κ̃1|j,jz; ε3
int,; 1

2Tz〉 can be easily recovered by
using Eq. (C9); viz.

N =
∑
T23τ23

∫∑
λ(t)dt

∑
j23j23zα

∑
σ1τ1

∫
dκ̃1

2κ+
1 (2π )3

∣∣∣∣LF

〈
T23,τ23; α,ε23; j23j23z; τ1σ1,κ̃1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2

=
∑
T23τ23

∫∑
λ(t)dt

∑
j23j23zα

∑
σ1τ1

∫
dκ̃1

2κ+
1 (2π )3

∣∣∣∣∣∣
∑
τ2τ3

∫
dk23

∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ1σ

′
1

√
(2π )32E

(
k(a)

1

)

×
√

κ+
1 E23

k
+(a)
1 ES

∑
σ ′′

2 ,σ ′′
3

∑
σ ′

2,σ
′
3

Dσ ′′
2 ,σ ′

2
(k̃23,k̃2)Dσ ′′

3 ,σ ′
3
(−k̃23,k̃3)

×〈T23,τ23; α,ε23; j23j23z|k23,σ
′′
2 σ ′′

3 ; τ2,τ3〉
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2
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=
∑
T23τ23

∫∑
λ(t)dt

∑
j23j23zα

∑
σ1τ1

∑
τ2τ3

∫
dk23

∫
dk̃(a)

1

∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ1σ

′
1

√
E
(
k(a)

1

)
E23

√
1

k
+(a)
1

∑
σ ′′

2 ,σ ′′
3

∑
σ ′

2,σ
′
3

Dσ ′′
2 ,σ ′

2
(k̃23,k̃2)

×Dσ ′′
3 ,σ ′

3
(−k̃23,k̃3)〈T23,τ23; α,ε23; j23j23z|k23,σ

′′
2 σ ′′

3 ; τ2,τ3〉
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

×
∑
τ̄2 τ̄3

∫
dk′′

23

∑
σ̄ ′

1

D
1
2 ∗[RM

(
k̃′′(a)

1

)]
σ1σ̄

′
1

√
E
(
k′′(a)

1

)√ E′′
23

k
′′+(a)
1

∑
σ̄ ′′

2 ,σ̄ ′′
3

∑
σ̄ ′

2,σ̄
′
3

D∗
σ̄ ′′

2 ,σ̄ ′
2
(k̃′′

23,k̃
′′
2)D∗

σ̄ ′′
3 ,σ̄ ′

3
(−k̃′′

23,k̃
′′
3)

×〈T23,τ23; α,ε23; j23j23z|k′′
23,σ̄

′′
2 σ̄ ′′

3 ; τ̄2,τ̄3〉∗
〈
σ̄ ′

3,σ̄
′
2,σ̄

′
1; τ̄3,τ̄2,τ1; k′′

23,k
′′(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∗
. (C12)

In the last step of Eq. (C12) the change of integration variable dκ+
1 = dk

′+(a)
1 ES/E

′
23 [see Eqs. (B11) and (B17)] was performed.

Then, using the completeness for the two-body system (2,3) [see Eq. (A19)] one obtains

N =
∑

σ1σ2,σ3

∑
τ1τ2τ3

∫
dk23

∫
dk̃(a)

1

E
(
k(a)

1

)
k

+(a)
1

∣∣∣∣∣∣
∑
σ ′

1

D
1
2
[RM

(
k̃(a)

1

)]
σ1σ

′
1

×
∑
σ ′

2,σ
′
3

Dσ2,σ
′
2
(k̃23,k̃2)Dσ3,σ

′
3
(−k̃23,k̃3)

〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣∣∣
2

. (C13)

Finally, exploiting the unitarity of D1/2 and D matrices [see Eq. (C11)], one has

N =
∑
τ1

∑
τ2τ3

∫
dk23

∫
dk̃(a)

1

E
(
k(a)

1

)
k

+(a)
1

∑
σ ′

1

∑
σ ′

2,σ
′
3

〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉

×
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∗

=
∑
τ1

∑
σ ′

1

∫
dk23

∫
dk(a)

1

∑
τ2τ3

∑
σ ′

2,σ
′
3

∣∣∣∣
〈
σ ′

3,σ
′
2,σ

′
1; τ3,τ2,τ1; k23,k

(a)
1

∣∣∣∣j,jz; ε
3
int,;

1

2
Tz

〉∣∣∣∣
2

= 1. (C14)

where Eqs. (B14) and (43) were used.
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R1591 (1992).

[38] C. Ciofi degli Atti, E. Pace, and G. Salmè, Phys. Rev. C 51, 1108
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