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Reexamination of proton rms radii from low-q power expansions
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Several recent publications claim that the proton charge rms radius resulting from the analysis of electron-
scattering data restricted to low-momentum transfer agrees with the radius determined from muonic hydrogen,
in contrast to the radius resulting from analyses of the full (e,e) data set which is 0.04 fm larger. Here we show
why these publications erroneously arrive at the low radii.
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Introduction. The determination of the rms-radius R of the
proton charge distribution has recently attracted much atten-
tion. Whereas standard analyses of electron-proton scattering
data yield 0.879 ± 0.009 fm [1], the Lamb shift measurement
in muonic hydrogen gave 0.8409 ± 0.0004 fm [2]; this repre-
sents an ≈5σ discrepancy. The radii from electron scattering
near 0.88 fm come from analyses that fit with excellent χ2,
the world cross section, and polarization transfer data up to
large momentum transfer q, 5–12 fm−1 [3–8]. Recently, three
publications [9–11] which restrict the analysis to the low-q
data with qmax = 0.7,0.9, and 1.6 fm−1, respectively, find R
in the 0.84 fm neighborhood, i.e., compatible with the radius
from muonic hydrogen. In this Rapid Communication, we
show why these analyses, which yield values of R ≈ 0.04 fm
lower than Refs. [3–8], have led to erroneously low values.

Power-series expansion. In terms of the electric Sachs form
factor Ge(q) the proton charge rms-radius R is defined via
the slope of Ge(q2) at q2 = 0. It therefore seems natural to
parametrize G(q) in a power series,

Ge(q) = 1 + q2a2 + q4a4 + q6a6 + · · · , (1)

where R2 = −6a2. Nonrelativistically, a4 = 〈r4〉/120 and
a6 = −〈r6〉/5040 are given by the higher moments of the
charge-density distribution. The rationale behind an analysis
restricted to data with low maximum momentum transfer qmax:
At low enough q the terms proportional to q2n with n > 1 (or in
some cases n > 2) can be neglected, so a linear (quadratic) fit
of the data in terms of powers of q2 should suffice. Low-order
(one-parameter) fits in terms of derived functions as, e.g.,
a dipole, G(q) = 1/(1 + q2b2)2, follow the same rationale,
although these parametrizations do implicitly contain higher
q2na2n contributions as fixed by the analytical shape of the
parametrization.

Problems with expansions of the proton form fac-
tors in terms of q2n have been recognized earlier [12].
Due to the peculiar shape of the proton form factor—
approximately a dipole—and the peculiar shape of the cor-
responding charge density—approximately an exponential—
the moments 〈r2n〉 for n � 2 grow unusually fast with
increasing order n. In the form factor G(q) the moments
〈r2n〉 are tightly coupled and give contributions of al-
ternating signs. In an expansion with small n (n = 1,2)
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the values found for 〈r2n〉 depend on the maximum n and
the value of the maximum momentum transfer qmax employed
and always yield too small 〈r2〉. This has recently been shown
by Kraus et al. [13] who quantitatively demonstrate the pitfalls
of fits with low-order power series by analyzing pseudodata
generated with known R. They show that, e.g., a linear fit in q2

with qmax = 0.7 fm−1 as employed in Refs. [9,10] produces a
value of R which is low by 0.04 fm.

This result of Kraus et al. can qualitatively be understood.
When terminating the series Eq. (1) with the q2 term, one
implicitly posits 〈r4〉 = 0. As 〈r2〉 ≈ 0.7 fm2 this implies a
charge density that is positive at small r (charge proton +e)
but has a negative tail at large r; due to the larger weight in the
r4 term the tail can reduce 〈r4〉 to 0. This negative tail of course
also affects 〈r2〉 and leads to the systematically low values of
R. The same happens mutatis mutandis with truncations at
higher order [13].

The second obvious problem with very-low q: the finite-size
effect (FSE) 1 − Ge(q) decreases like q2

max. Already at the q ≈
0.8 fm−1 of maximal sensitivity of the data to R (see below)
the FSE ≈ q2R2/6 amounts to 0.09 only. The smallness of
the FSE emphasizes that fits used to extract R must reach the
minimal χ2

min achievable, a visually good fit is not enough: A
change in R of 1% corresponds to a systematic change in Ge

of only 0.0015 (0.17% of Ge), a difference that is far below
the resolution of typical plots of Ge(q) [9–11].

The sensitivity of the data to R is shown in Fig. 1
which results from a notch test employing SOG fits, i.e.,
parametrizing the density as a Sum Of Gaussians, of the world
data (for a recent reference to notch tests see Ref. [14]). When
exploiting only part of the range of q � 1.5 fm−1, one loses
part of the experimental information on R; analyses which
limit the data to, e.g., 0.8 fm−1 as performed in Refs. [9,10]
then ignore half of the data sensitive to R. Restriction to a
subset of the world data only amplifies this problem.

Contribution of higher moments. For a more detailed
discussion of the problems with Eq. (1), we start from the
values of a2,a4, . . . determined by Bernauer [15] via a power-
series fit (with a χ2 as low as a spline fit) to the Mainz data
for qmax = 5 fm−1. One might hope that, due to the large qmax

and the high-order 2n = 20 employed, the values of the lowest
moments of interest here should not be affected seriously by the
above-mentioned problems [12]. Figure 2 shows the percent
contribution of the a4–a10 terms to the FSE. Also indicated is
the uncertainty in the FSE due to a (very optimistic) uncertainty
of 0.2% in the experimental Ge(q).
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FIG. 1. Sensitivity (arbitrary units) to the moments 〈r2〉 and 〈r4〉
obtained from fits of the world data.

This figure shows several features:

(1) At the q’s used in the “low-q fits” referred to above
with qmax = 0.72–0.9 fm−1, the contribution of the q4

term to the FSE ≈ q2R2/6 amounts to 10–15% at the
upper limit of the q range where FSE is most sensitive
to R. This shows immediately and without further
calculation that neglecting this contribution in a linear
fit in terms of q2 must yield a value of R2 which is low
by a comparable percentage.

(2) Even the contribution of the q6 term is not entirely
negligible (15% of the q4 term at q = 0.9 fm−1); when
attempting to determine a4 from a fit quadratic in q2 a

FIG. 2. The solid curves show the relative contribution (in
percentages) of the q2n terms to the FSE in Ge(q). The dashed
curve shows the relative contribution of a 0.2% uncertainty of the
experimental Ge(q). For comparison: The qmax of the fits linear in q2

(dipole) of Refs. [9,10] ([11]) amount to 0.72, 0.90, and 1.6 fm−1,
respectively.

wrong value results if the contribution of the q6 term
is not accounted for.

(3) Restriction of qmax to extremely low values, such as to
justifiably neglect the q4 term and maintain an accuracy
of 1% in R, would require qmax < 0.35 fm−1. At these
values of q, the FSE is <0.015, and the typical error
bars of Ge(q) would yield huge uncertainties in the
FSE contribution, hence R2 (see the dashed curve).

Figure 2 makes it obvious that the low-q fits of Refs. [9,10],
which neglect the q4 contribution, must find wrong values for
R due to the omitted q4 term (for a quantitative analysis see
below). Figure 2 also shows without further calculation that
for q � 1.6 fm−1 the information content of the data is four to
five parameters (moments), which hardly can be represented
correctly by a one-parameter form factor, such as employed
by Horbatsch and Hessels [11] (for a quantitative discussion
see below).

Higher moments from world data. As was pointed out in
Ref. [12] and quantitatively demonstrated in Ref. [13] the
determination of the lowest moments via a power-series fit is
not very reliable and for the higher n dependent on the cutoff
in n. We therefore have made an independent determination.

We use the world data up to the maximum momentum
transfer available for Ge, 10 fm−1 (not including the data of
Ref. [15] which show systematic differences [3]). This data set,
which composes 603 cross sections and polarization transfer
points, is corrected for two-photon exchange effects [16]
and fitted with a Fourier transform of Laguerre functions of
order 11 for both Ge(q) and Gm(q). Laguerre functions1 are
particularly well suited as

(1) They provide an orthonormal basis which makes mul-
tiparameter fits very efficient (even if the polynomials
are not strictly orthogonal over the limited q range of
the data).

(2) They have a controlled behavior at large radii r due
to the e−γ r weight function, a consideration which
is particularly important [20] when addressing higher
moments [an aspect shared with the parametrizations
of the vector dominance model (VDM)].

(3) They provide values for the moments insensitive to the
cutoff in the number of terms employed; the moments
〈r2n〉 are given by the lowest 2n + 3 coefficients.

The set of data can be reproduced with a χ2 of 542 with 548
degrees of freedom when the normalizations of the individual
data sets are floated. When keeping the normalizations at
their measured values and without increasing the error bars
due to systematic error of the normalizations, χ2 amounts
to 783 with 580 degrees of freedom. These χ2 values are
excellent given a set of data measured over some 50 years.
The resulting values for 〈r4〉 are 2.01 ± 0.05(1.99) fm4. The
quality of the fit and the values of the moments are very
close to the ones obtained using SOG [21] (〈r4〉 = 2.03) or
a VDM-type parametrization (〈r4〉 = 2.01). We have verified
that a variation of qmax between 7 and 12 fm−1 and a variation

1For similar expansions see Refs. [17–19].
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of n between 10 and 13 changes 〈r4〉 by <0.03 fm4. Distler
et al. [22] obtained 2.59 ± 0.19 ± 0.04 from a mix of two
form factor parametrizations fit separately to low-q [15] and
high-q [23] data. With these preliminaries we are in the
position to quantitatively discuss the recent low-q fits.

Fits to very-low-q data. Higinbotham et al. [10] perform
a linear fit in q2 to a subset of the data available, the form
factors of Mainz80 and Saskatoon74 [24,25]. For their highest
qmax of 0.9 fm−1, which yields the result with the smallest
uncertainty, they find2 R = 0.844 ± 0.014 fm. From this the
authors conclude that R agrees with the value of 0.84 fm from
muonic hydrogen. When repeating exactly the same analysis
but adding in the q4 and q6 contributions using the higher
moments from the fit to the high-q data, one finds a reduced
χ2 (i.e., χ2 per degree of freedom) which is 11% smaller and a
radius R of 0.899 fm. This R disagrees with the muonic value
and agrees with the above-cited R’s in the 0.88-fm region.

Higinbotham et al. also perform a fit quadratic in q2 and
found a radius of 0.873 ± 0.039 fm. This agrees with the radii
in the 0.88-fm region, although, as the authors want to see it, the
value is “within one σ of the muonic result”. The uncertainty
of ±0.039 fm illustrates the large error bars resulting from the
restriction of the analysis to a fraction of the q region sensitive
to R (see Fig. 1) and the large uncertainty of 〈r4〉 due to the
truncation in q. When using, instead of the 〈r4〉 = 1.32 ± 0.96
of Higinbotham et al., the value of 2.01 ± 0.05 we know from
the fit to the high-q data, the result for R becomes 0.901 fm
with a smaller error bar of 0.010 fm.

Griffioen et al. [9] analyze part of the cross sections of
Ref. [7] for q < 0.72 fm−1 using Eq. (1) including terms up
to a4. They use a low-q parametrization for Gm/Ge and take
the shortcut of ignoring the free relative normalizations of
the individual data sets.3 They find a rms radius of 0.850 ±
0.019 fm and conclude that this value is consistent with the
muonic hydrogen result of 0.84 fm.

Repeating their fit but using a4 determined much better from
the high-q fit yields a radius of 0.877 ± 0.008 fm with lower
χ2 and a significantly smaller error bar. This result agrees
with the 0.88-fm-type results and disagrees with the radius
from muonic hydrogen.

Griffioen et al. also perform fits up to order q6 with a4,a6

values as given by simple models for the proton charge density
(uniform, exponential, and Gaussian) which all produce the
same χ2; the resulting R values are linearly correlated with

2Including Coulomb distortion would have increased R by ≈
0.01 fm [26].

3Correct treatment of the normalizations of the data sets of Ref. [7],
which are individually floating, would have increased the uncertainty
of R by a factor of 1.6.

a4. Extrapolating these values linearly to the value of a4 given
by the fit to high-q data yields R = 0.876 ± 0.008 fm, again
in agreement with the R’s in the 0.88-fm region.

Summarizing: All the low-q fits of Refs. [9,10] yield radii
in the 0.88-fm region once the higher moments of the charge
density—which are nonzero but ignored (or poorly fixed in the
low-q fits due to the truncation of the series in n of qmax)—are
properly accounted for.

Fits to not-so-low-q data. Horbatsch and Hessels [11]
employ the cross sections of Ref. [7] up to a qmax of 1.6 fm−1.
They parametrize the form factors via a one-parameter dipole
expression for both Ge and Gm. Their fit yields a reduced χ2

of 1.11, and a (charge) rms-radius of R = 0.842 ± 0.002 fm.
From this, together with other fits which yield radii near
0.89 fm, the authors conclude that R is in the range of
0.84–0.89 fm, i.e., could be compatible with the radius from
muonic hydrogen.

Figure 2 shows that for qmax = 1.6 fm−1 the moments up to
at least 2n = 10 are important to get the full FSE. It is highly
unlikely that the one-parameter dipole contains the mix of
q2n terms for 2n = 4 · · · 10 appropriate for the proton. Indeed,
expansion of the dipole in terms of powers of q2 shows that
the numerically largest difference to the power-series fit of
Ref. [15] results from the contribution of the 〈r4〉 term. This
difference in 〈r4〉 alone would lead, at the q = 0.85 fm−1

of maximal sensitivity to R, to a difference �Ge of 0.0081
corresponding to 9.5% in the FSE, hence R2 (causing the
systematic deviations just visible in Fig. 3 of Ref. [11]).
The same consideration applies to the parametrization of
G(q) as a (one-parameter) linear function 1 − cz with z =
(
√

tc − t − √
tc)/(

√
tc − t + √

tc) and t = −q2. The lacking
flexibility of the fit function, causing systematic differences
between data and fit and a χ2 larger than the one of already
published fits, also affects the results from the high-q fits of
Refs. [9,10].

For the fits of Horbatsch and Hessels it is not practical to
correct for the effect upon R of the incorrect higher q2n terms
as we did above for the analyses of Refs. [9,10]; too many
terms 2n = 4 · · · 10 would contribute. In order to demonstrate
the importance of their effect we rather quote the result of
a Laguerre-function fit (four terms each for Ge and Gm) to
exactly the same data, yielding a lower reduced χ2 of 1.045
and a (charge) rms radius of R = 0.884 ± 0.016 fm. Due to
the lacking flexibility the parametrization of Horbatsch and
Hessels has a χ2 that is higher by 50. From such a fit that is
some seven σ ’s away from a genuine best fit, one obviously
cannot get a significant value for R.

Conclusion. The moments 〈r2n〉 of the proton for n > 1 are
there, and they are known to be large. Ignoring their strong
correlation with R [9–11] leads to the wrong results for the
proton rms radius.
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