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In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly
baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from
the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the
color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a
space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs.
For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for
example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
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In 1980 Anishetty et al. [1] outlined what happens when
large nuclei collide at extremely relativistic energies. Rather
than stopping, as at lower energies, the nuclei pass through
each other, compressing and depositing energy in each other.
Most of the produced particles appear in the region between the
two receding nuclei, the so-called inside-outside cascade. They
argued that the matter within these fireballs would quickly
thermalize with a baryon density about 3.5 times that of atomic
nuclei and an energy density of about 2 GeV/fm3, which is
four times the energy density of a proton. In a seminal paper in
1983 Bjorken [2] utilized the inside-outside cascade to propose
a hydrodynamic model for the evolution of the matter produced
in the central rapidity region between the receding fireballs.
Ever since then the community has been focused on the central
region because: (i) the energy density is expected to be higher
there, (ii) the matter is nearly baryon free, making it more
relevant for the type of matter that existed in the early universe,
and (iii) detectors in a collider can more easily measure
particle production and correlations in a few units of rapidity
around the center of momentum. In the ensuing decades only
a few papers have studied the baryonic fireballs and their
deceleration [3–7]. In this Rapid Communication we use the
McLerran-Venugopalan model [8] to compute the rapidity loss
and excitation energy of the fireballs followed by a space-time
picture to obtain the energy and baryon densities. Currently
there is much interest in studying high baryon density matter
in the laboratory [9], albeit at center-of-momentum energies
much lower than discussed in this Rapid Communication.

Consider central collisions of equal mass nuclei; this is
easily relaxed to noncentral collisions and collisions of unequal
mass nuclei. We neglect transverse motion, which should not
be important during the fraction of a fm/c time interval of
relevance. Then the collision can be thought of as a sum
of independent slab-slab collisions each taking place at a
particular value of the transverse coordinate r⊥ with the beam
along the z axis. The projectile slab has a four-momentum
per unit area in the center-of-momentum frame denoted by
Pμ

P = (EP,0,0,PP). The slab loses energy and momentum
to the classical color electric and magnetic fields produced
in the region between the two receding slabs, sometimes
called glasma. This loss is quantified by dPμ

P = −T
μν

glasmad�ν

where d�ν = (dz,0,0, − dt) is the infinitesimal four-vector
perpendicular to the hypersurface spanned by dt, dz. The
energy momentum of the glasma has the form [10,11]

T
μν

glasma =

⎛
⎜⎝
A + B cosh 2η 0 0 B sinh 2η

0 A 0 0
0 0 A 0

B sinh 2η 0 0 −A + B cosh 2η

⎞
⎟⎠.

(1)

A and B are known analytical [11] and numerical [for
SU(2)] [12] functions of proper time τ = √

t2 − z2 (and other
input parameters), whereas the dependence on space-time
rapidity η = 1

2 ln[(t + z)/(t − z)] follows from the fact that
T

μν
glasma is a second-rank tensor in a boost-invariant setting.

The longitudinal position of the slab zP is a function of
time zP = zP(t). zP is related to time t via the velocity
vP = dzP/dt = tanh yP, where yP is the momentum-space
rapidity of the slab. So all the quantities solely depend on
t . Of course T

μν
glasma must be evaluated on the trajectory of the

slab. Explicitly,

dEP(t,zP) = −T 00
glasma(t,zP)dzP + T 03

glasma(t,zP)dt,

dPP(t,zP) = −T 30
glasma(t,zP)dzP + T 33

glasma(t,zP)dt. (2)

It is useful to define the Lorentz invariant effective mass per
unit area MP via the relations EP = MP cosh yP and PP =
MP sinh yP. The above pair of equations (2) describes not only
the loss of kinetic energy of the projectile nucleus, but also the
internal excitation energy imparted to it during the collision.
Thus MP is not constant but increases with time, unlike the
case of the string model [5]; this difference can be traced
to the lack of off-diagonal terms in the energy-momentum
tensor representing the strings but which are present in (1).
The thickness of the glasma slice at τ = 0 is zero and, since
the energy density in the glasma is finite at τ = 0, the total
energy initially in the glasma is zero.

Initial conditions are needed to solve the equations of
motion. Immediately after the nuclei collide at τ = 0 the local
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energy density in the glasma is [10,13–15]

ε0(r⊥) = 2πNcα
3
s

N2
c − 1

μ2(r⊥,Q) ln2
(
Q2/	2

QCD

)
. (3)

Here αs is the (fixed) strong coupling, μ is the width of
a Gaussian which characterizes color charge fluctuations
at transverse distance r⊥, and Q is an ultraviolet cutoff
on transverse momentum which characterizes the division
between the classical gluon fields and the perturbative QCD.
Larger values of Q attribute more energy and momentum
to the classical fields whereas smaller values of Q attribute
more to production of partons or minijets. The value of
Q should be chosen optimally so that observable results
are minimally sensitive to it. In what follows we choose
3 � Q � 5 GeV with a favored value of 4 GeV. Generally
μ(r⊥) is taken to be proportional to the thickness function
TA(r⊥) = ∫ ∞

−∞ dz ρA(r⊥,z) where ρA is the nucleon number
density of a nucleus of atomic number A. We follow this
practice using a Woods-Saxon distribution for the nucleus.

Equation (3) contains significant uncertainties via the
numerical values of αs and μ(r⊥,Q). For the absolute normal-
ization, therefore, we turn to hydrodynamical descriptions of
collisions at the top Relativistic Heavy-Ion Collider (RHIC)
energy of

√
sNN = 200 GeV. Reference [16] assumed that

viscous hydrodynamics became applicable at τ = 0.6 fm/c
with ε(r⊥ = 0, τ = 0.6 fm/c) = 30 GeV/fm3. Extrapolating
back to τ = 0 using the results in Ref. [11] gives ε0 ≡
ε0(r⊥ = 0, τ = 0) = 123, 142, and 158 GeV/fm3 for Q =
3, 4, and 5 GeV, respectively. Other analyses result in some-
what higher values of the energy density at τ = 0.6 fm/c [17];
these would increase the rapidity and energy loss, making our
conclusion even stronger.

The function,

A = ε0[TA(r⊥)/TA(0)]2FA
[

ln
(
Q2/	2

QCD

)
,Qτ

]
(4)

is now fixed. The dimensionless function FA can be found
in Ref. [11]. The function B has the same form but with a
different FB. The functions FA and FB are plotted in Fig. 1 for
Q = 4 GeV.

( / )

FIG. 1. The dependence of FA and FB on proper time for Q =
4 GeV.
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FIG. 2. Rapidity of the central core of a Au projectile nucleus in
the center-of-momentum frame for

√
sNN = 200 GeV as a function

of proper time. The result is insensitive to the choice of Q in the
physically relevant range.

Now it is just a matter of solving the pair of equations (2) for
MP and yP numerically. We solve them up to τ = 0.6 fm/c
where it is assumed that a transition from glasma to quark-
gluon plasma has taken place [16].

Figure 2 shows the momentum-space rapidity yP of the
central core of a gold nucleus as a function of proper time
τ . (The beam rapidities in the center-of-momentum frame are
±5.36.) The central core loses about three units of rapidity
within the first 0.1–0.2 fm/c; this is a robust result, insensitive
to the value of Q. When averaged over the whole nucleus
the baryon rapidity loss is about 2.4. BRAHMS [18,19] was
the only detector at the RHIC or the Large Hadron Collider
(LHC) that could measure particle production anywhere near
the fragmentaion region. The coverage was limited to y � 3.1,
so the uncertainty in the loss estimate was large. For 0–10%
centrality BRAHMS found an average rapidity loss of about
2.05 + 0.4/ − 0.6. This is consistent with our result, especially
since we focus on 0% centrality for illustration.

Figure 3 shows the excitation energy per baryon in units
of the nucleon mass as a function of proper time. There is a
slow but monotonic increase, unlike the rapidity loss whose
asymptotic limit is reached within a few tenths of a fm/c.
There is a weak dependence on Q.

The McLerran-Venugopalan model assumes that the pro-
jectile and target nuclei move along the light cone. The validity
of the model increases with increasing beam energy. It assumes
that the nuclei can be treated as infinitesimally thin slabs. This
is valid to a high degree of accuracy, but it does not address the
space-time evolution of the individual nuclei. (A modification
of the model to give the nuclei a nonzero thickness was
performed in Ref. [20], and its parameters were determined in
Ref. [21]. However, the space-time evolution of the glasma was
not found and so cannot be used here.) To estimate the space-
time evolution requires additional input. Anishetty et al. [1]
presented a very simple and direct calculation that the nuclear
matter would be compressed in its own rest frame by a factor
of exp(�y) where �y > 0 is the rapidity loss (gain) of the pro-
jectile (target). It is clearly a Lorentz invariant quantity which
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FIG. 3. Excitation energy per baryon in the central core of a Au
projectile nucleus in the center-of-momentum frame for

√
sNN =

200 GeV as a function of proper time. The result is mildly sensitive
to the choice of Q in the physically relevant range.

follows from the infinitely thin projectile sweeping through
the target in the target rest frame. The argument was verified
in a specific model in Ref. [4]. Noting that �y depends on the
transverse coordinate r⊥ the local proper baryon density is

nB(r⊥,z′) = e�y(r⊥)ρA(r⊥,z′e�y(r⊥)), (5)

where z′ = z − zP(r⊥), all evaluated at τ = 0.6 fm/c.
Figure 4 shows the proper energy density and baryon

density as functions of the transverse coordinate for Q =
4 GeV at τ = 0.6 fm/c. As can be seen from the previous
figures, the baryon density is less sensitive to the time at which
the transition from glasma to quark-gluon plasma occurs than
the excitation energy. It should be noted that the maximum
baryon density, about 3 baryons/fm3, is 20 times greater than
the normal matter density of 0.155 nucleons/fm3.

Figure 5 is a contour plot of the proper baryon den-
sity. The contours are drawn at nB = 3, 2, 1, 0.5, and
0.15 baryons/fm3. The shapes of the contours arise for the
following reasons. The diameter of a gold nucleus 2RA is about
14 fm. The core centered at r⊥ = 0 along the z axis contains

0.0 2.0 4.0 6.0 8.0
0.0

5.0

10.0

15.0

20.0

r fm

p
G

eV
fm

3

p

0.0

1.0

2.0

3.0

4.0

n B
1

fm
3

nB

FIG. 4. The energy density and baryon density at τ = 0.6 fm/c
as functions of the transverse distance for central collisions of Au
nuclei at

√
sNN = 200 GeV.
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FIG. 5. Contour plot of the proper baryon density for central
collisions of Au nuclei at

√
sNN = 200 GeV. The numbers are in units

of baryons per fm3. The horizontal axis measures the distance along
the beam direction in the local rest frame. Care must be taken when
interpreting this plot since the rapidity of the matter and therefore the
frame of reference depend on r⊥.

the most matter, suffers the greatest deceleration, and hence
the greatest compression. Moving outward with increasing
r⊥, the length of the tube is decreased to 2

√
R2

A − r2
⊥ , and

the deceleration and hence compression, are reduced. These
opposing effects approximately cancel each other, giving rise
to roughly rectangular contours on the r⊥-z plane. Care must
be taken when interpreting this figure. Since the rapidity loss
depends on r⊥ it means that there is a shear in the r⊥ direction,
and there is no single global frame of reference for all elements
of the fireball.

A boost-invariant way to display these results is on the
r⊥-η plane as shown in Fig. 6, but there the volumes involved
are not apparent.

It should be emphasized that the baryon densities calculated
here are more robust than the energy densities. The reason
can be seen by comparing Figs. 2 and 3. The rapidity loss
and therefore compression are determined mostly within the
first few tenths of a fm/c when the glasma dominates the
dynamics. The excitation energy continues its slow growth as
time goes on. If the transition from glasma to quark-gluon
plasma happens earlier than 0.6 fm/c, it would reduce the
excitation energy but hardly affect the compression. Exactly
how the transition occurs is a topic of much current interest and
activity. Possibilities include: instabilities due to initial-state
fluctuations [12,22–24], a universal attractor solution which
governs the late-time evolution in the classical regime [25],
and rapid conversion of classical fields to partons with
subsequent evolution of the system described by a Boltzmann
equation [26]. This should be kept in mind in the following
discussions.
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FIG. 6. Contour plot of the proper baryon density at τ = 0.6 fm/c
for central collisions of Au nuclei at

√
sNN = 200 GeV. The units are

baryons per fm3. The horizontal axis is the space-time rapidity.

The above results do not assume that the fireballs thermal-
ize. Now, out of curiosity, let us assume that the matter in
the fireballs does equilibrate on the time scale of 0.6 fm/c
as argued in Ref. [1]. What does that imply for the temper-
atures and chemical potentials attainable? That requires an
equation of state. For simplicity consider a massless gas of
noninteracting up, down, and strange quarks and gluons. (A
recent QCD perturbative calculation of the equation of state
at high chemical potential [27] would give similar results.)
The net strangeness in the fireball is zero, which means that
the chemical potential of the strange quark is zero. Let the up
and down quark chemical potentials be equal to each other
and to 1/3 of the baryon chemical potential μB. Then the
charge-to-baryon ratio is 0.5 versus 0.4 for a gold nucleus. The
equation of state is then given by the pressure as a function of
temperature and baryon chemical potential,

P (T ,μB) = 19π2

36
T 4 + 1

9
T 2μ2

B + 1

162π2
μ4

B. (6)

Taking the energy density 20 GeV/fm3 and the baryon density
3 baryons/fm3 (20 times normal nuclear matter density)
results in a temperature of T = 299 and μB = 1061 MeV
(approximating �c = 200 MeV fm). Thus the up and down
quark chemical potentials are greater than the temperature,
very unlike in the central rapidity region at the top RHIC
energy or at the LHC. The entropy per baryon of 26.2 is
still quite large. However, the energy density decreases with
r⊥ faster than the baryon density as can be seen in Fig. 4.
Taking the energy density 5.5 GeV/fm3 and the baryon density
1.5 baryons/fm3 results in T = 205 and μB = 1007 MeV
with an entropy per baryon of 18.9.

/

FIG. 7. Entropy per baryon rapidity distribution at τ = 0.6 fm/c.
A rapidity scan might help locate a critical point.

It would be expected that the hydrodynamic expansion of
the fireball would be approximately adiabatic, just as in the
central rapidity region. If that is the case, then the values of the
entropy per baryon estimated above would be in just the right
range for the trajectories of the fluid elements on the T -μB

plane to pass near or even through a possible critical point
in the QCD phase diagram [28]. Figure 7 shows the entropy
per baryon as a function of rapidity and begs the question of
whether a rapidity scan could help locate a possible critical
point.

In a follow-up paper we will study the systematics of
high baryon densities achievable in high-energy heavy ion
collisions, such as the dependence on impact parameter, beam
energy, nuclear size, projectiles, targets of different masses,
and so on. Beyond that, one must consider that we are only
proposing initial conditions for subsequent hydrodynamic
evolution of the hot and dense fireball. This cannot be studied
on its own but must incorporate the production of quark-
gluon plasma in the region between the receding fireballs.
Generally this will broaden the baryon rapidity distribution
due to collective flow and thermal smearing in the final
state.

As mentioned earlier, detectors at the RHIC and LHC that
are or were being used for heavy ion collisions focus on
central rapidities, generally within a few units of y = 0. Apart
from BRAHMS, which was still limited to about three units
of rapidity, this precludes them from studying the range of
rapidities of the hadrons emerging from the fireballs. Even
if the LHC was to operate in a fixed target mode at a beam
energy of 2.76 GeV per nucleon for lead nuclei, this would
only provide a

√
sNN of 72 GeV, which is already within the

RHIC energy range and near the lower limit of applicability
of the McLerran-Venugopalan model.

In conclusion, we have employed the McLerran-
Venugopalan model to calculate the energy and rapidity loss
of baryons in high-energy heavy ion collisions. Very similar
results should be obtained in different pictures of heavy ion
collisions, even though the language is rather different [29–31].
We found that the baryon densities in the fireballs outside the
central rapidity region attain values an order of magnitude
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greater than normal nuclear matter. These findings suggest
that further theoretical and experimental studies be performed
to probe the equation of state at the highest baryon densities
achievable in a laboratory setting.
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