α-decay properties of ${ }^{\mathbf{2 9 6}} \mathbf{1 1 8}$ from double-folding potentials

Peter Mohr*
Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany
and Institute for Nuclear Research (Atomki), H-4001 Debrecen, Hungary

(Received 30 November 2016; published 17 January 2017)

Abstract

α-decay properties of the yet unknown nucleus ${ }^{296} 118$ are predicted using the systematic behavior of parameters of α-nucleus double-folding potentials. The results are $Q_{\alpha}=11.655 \pm 0.095 \mathrm{MeV}$ and $T_{1 / 2}=0.825 \mathrm{~ms}$ with an uncertainty of about a factor of 4 .

DOI: 10.1103/PhysRevC. 95.011302

Very recently, Sobiczewski [1] has analyzed the decay properties of the yet unknown nucleus ${ }^{296} 118$ using a combination of Q_{α} values from mass models and a phenomenological formula for the α-decay half-lives. This study was motivated by ongoing experiments which attempt to synthesize this heaviest nucleus to date. The present work uses a completely different approach which is based on the smooth and systematic behavior of α-decay parameters using double-folding potentials [2].

Sobiczewski finds Q_{α} values between 10.93 MeV and 13.33 MeV from nine different mass models. Using the phenomenological formula for α-decay half-lives of [3], the resulting half-lives for ${ }^{296} 118$ vary by more than 5 orders of magnitude between $1.4 \mu \mathrm{~s}$ and 0.21 s . To reduce this uncertainty, three mass models are identified in [1] which describe the masses of nearby nuclei with the smallest deviations: Wang and Liu (WS3+ [4]), Wang et al. (WS4+ [5,6]), and Muntian et al. (HN $[7,8]$). In detail, two α-decay chains are studied for this purpose: the known chain ${ }^{294} 118 \rightarrow$ ${ }^{290} \mathrm{Lv} \rightarrow{ }^{286} \mathrm{Fl} \rightarrow{ }^{282} \mathrm{Cn}$ (hereafter: "chain-1"), and the chain ${ }^{296} 118 \rightarrow{ }^{292} \mathrm{Lv} \rightarrow{ }^{288} \mathrm{Fl} \rightarrow{ }^{284} \mathrm{Cn}$ ("chain-2"), where only the two latter α decays are known from experiment. The selection of the mass formulas leads to a restricted range of Q_{α} for ${ }^{296} 118$ from 11.62 MeV (WS3+), 11.73 MeV (WS4+), and $12.06 \mathrm{MeV}(\mathrm{HN})$, and the corresponding α-decay half-lives are 4.8 ms (WS3+), 2.7 ms (WS4+), and $0.50 \mathrm{~ms}(\mathrm{HN})$. This range of predictions of almost one order of magnitude for the α-decay half-life of ${ }^{296} 118$ does not yet include an additional uncertainty of the phenomenological formula of [3] which is on average a factor of 1.34 for even-even nuclei and does not exceed a factor of 1.78 in most cases [3].

In a further study Budaca et al. [9] have applied empirical fitting formulas for the prediction of the decay properties of ${ }^{296} 118$. They obtain a slightly lower $Q_{\alpha}=11.45 \mathrm{MeV}$ and half-lives of about 3 ms . A very low value of $Q_{\alpha}=$ 10.185 MeV is derived from mass formulas in [10,11], leading to predicted half-lives up to minutes for ${ }^{296} 118$. Half-lives of the order of 1 ms have been obtained in [12] using the $\mathrm{WS} 4+Q_{\alpha}$ and various empirical formulas for the half-life, and similar half-lives slightly below 1 ms were found very recently in $[13,14]$ which are also based on Q_{α} from WS4+.

[^0]Also very recently somewhat shorter half-lives of ${ }^{296} 118$ of $14-285 \mu$ s [15] and $\approx 25 \mu$ s [16] were reported which are based on $Q_{\alpha}=12.4 \mathrm{MeV}$ [15] and 12.3 MeV [16] from earlier mass formulas.

For completeness it has to be mentioned that α decay is the dominant decay mode of ${ }^{296} 118$. Partial half-lives of ${ }^{296} 118$ for spontaneous fission have been estimated in [1,17]; they exceed the α-decay half-life by several orders of magnitude.

Contrary to the study of Sobiczewski and the other recent calculations for ${ }^{296} 118$ [9-16], the present approach does not use mass models for the prediction of the unknown Q_{α} of ${ }^{296} 118$ which is the most important quantity for the prediction of its half-life. Instead, the smooth behavior of parameters is used which is obtained in calculations with systematic doublefolding potentials [2]. This method is particularly well suited for the present case where the available experimental results for chain- 1 and chain- 2 have to be extrapolated only to a very close neighbor. For completeness it should be noted that there is another method for an independent determination of Q_{α} from the systematics of Q_{α} differences of neighboring nuclei; unfortunately, the published values end at ${ }^{295} 118$ and do not include ${ }^{296} 118$ [18].

The application of double-folding potentials for α decay in a simple $\alpha+$ nucleus two-body model has been described in detail already in [2], and it has been applied and further developed in a series of α-decay studies in the last years (e.g., [19-29]). Here I briefly repeat the essential points. First, the interaction between the daughter nucleus and the α particle is calculated by a double-folding procedure using an effective nucleon-nucleon interaction; for details, see [30]. As in [2], the unknown density of the daughter nucleus is calculated from a two-parameter Fermi distribution with the radius parameter $R=R_{0} A_{D}^{1 / 3}$ which scales with the mass number A_{D} of the daughter, and R_{0} and the diffuseness a are taken from the average values of ${ }^{232} \mathrm{Th}$ and ${ }^{238} \mathrm{U}$ [31]. The density of the α particle is also derived from from the charge density in [31]. This results in the double-folding potential $V_{\mathrm{DF}}(r)$. The total potential is given by

$$
\begin{equation*}
V(r)=\lambda V_{\mathrm{DF}}(r)+V_{\mathrm{C}}(r) \tag{1}
\end{equation*}
$$

with the strength parameter $\lambda \approx 1.1-1.3$ for heavy nuclei $[30,32]$. The Coulomb potential is calculated from the model of a homogeneously charged sphere where the Coulomb radius R_{C} is taken from the root-mean-square (rms) radius of the double-folding potential.

TABLE I. Parameters of the α decays in chain-1 and chain-2. Experimental values are taken from [34].

	decay	$Q_{\alpha}(\mathrm{MeV})$	λ	$J_{R}\left(\mathrm{MeV} \mathrm{fm}^{3}\right)$	$T_{1 / 2}^{\text {calc }}(\mathrm{s})$	$T_{1 / 2}^{\text {exp }}(\mathrm{s})$	P
chain-1	${ }^{286} \mathrm{Fl} \rightarrow{ }^{282} \mathrm{Cn}$	10.35	1.1633	302.86	8.48×10^{-3}	2.0×10^{-1}	0.0424
chain-1	${ }^{290} \mathrm{Lv} \rightarrow{ }^{286} \mathrm{~F}$	11.00	1.1568	300.96	7.36×10^{-4}	8.3×10^{-3}	0.0887
chain-1	${ }^{294} 118 \rightarrow{ }^{290} \mathrm{Lv}$	11.82	1.1486	298.63	3.27×10^{-5}	6.9×10^{-4}	0.0473
chain-2	${ }^{288} \mathrm{Fl} \rightarrow{ }^{284} \mathrm{Cn}$	10.07	1.1615	302.29	4.70×10^{-2}	6.6×10^{-1}	0.0713
chain-2	${ }^{292} \mathrm{Lv} \rightarrow{ }^{288} \mathrm{Fl}$	10.78	1.1545	300.26	2.51×10^{-3}	1.3×10^{-2}	0.1930
chain-2	${ }^{296} 118 \rightarrow{ }^{292} \mathrm{Lv}$	$11.655 \pm 0.095^{\mathrm{a}}$	1.1458^{b}	297.80	7.30×10^{-5}	$8.25 \times 10^{-4 \mathrm{c}}$	$0.0885^{\text {d }}$

${ }^{a}$ Calculated using $\lambda=1.1458 \pm 0.0010$.
${ }^{\mathrm{b}}$ Extrapolated from neighboring nuclei; see Fig. 3.
${ }^{c} T_{1 / 2}^{\text {predict }}$.
${ }^{d}$ average of neighboring nuclei; see Fig. 4.

The strength parameter λ is adjusted to reproduce the experimental Q_{α}, i.e., the potential $V(r)$ has an eigenstate at the correct energy with a chosen number of nodes in the corresponding wave function ($N=11$ in the present case of 0^{+}ground states of even-even superheavy nuclei; see [2]). The resulting λ values and volume integrals J_{R} of the nuclear

FIG. 1. Volume integrals J_{R} for superheavy nuclei as a function of Z_{D} (upper), N_{D} (middle), and A_{D} (lower). Data for chain-1 (blue triangles) and chain-2 (red diamonds) have been added. Otherwise, this figure is identical to Fig. 3 of my previous study [2]; the lines are quadratic fits to the experimental data available in 2006.
potential are given in Table I for chain-1 and chain-2. In addition, Fig. 1 shows J_{R} as a function of the proton number Z_{D}, neutron number N_{D}, and mass number A_{D} of the daughter nucleus. Figure 1 is a copy of Fig. 3 of my previous study [2] where recent experimental data for chain-1 and chain-2 have been added. It is obvious from Fig. 1 that the volume integrals J_{R} show a regular and smooth dependence of Z_{D}, N_{D}, and A_{D}, which can be used to obtain reliable estimates for unknown nuclei. Discontinuities of J_{R} appear only at shell closures, e.g., at the doubly magic daughter nucleus ${ }^{208} \mathrm{~Pb}$ (see Fig. 1 and [2]).

In a next step the α-decay half-lives $T_{1 / 2, \alpha}^{\mathrm{calc}}$ are calculated from the transmission through the barrier of the potential in Eq. (1) using the semiclassical formalism of [33]. And finally the preformation factor P is calculated from the ratio

$$
\begin{equation*}
P=\frac{T_{1 / 2, \alpha}^{\mathrm{calc}}}{T_{1 / 2, \alpha}^{\mathrm{ex}}} \tag{2}
\end{equation*}
$$

The resulting preformation factors are shown in Fig. 2 which is a repetition of Fig. 1 of [2] with the additional results for chain-1 and chain-2. An average value of about 8% for P was found in [2], and the new data for chain-1 and chain-2 fit

FIG. 2. Preformation factors P as a function of the mass number A_{D} of the daughter nucleus, taken from [2] and extended by data for chain-1 (blue triangles) and chain-2 (red diamonds). The horizontal lines indicate an average value of $P \approx 8 \%$ (full line) and typical uncertainties of a factor of three (dotted lines); taken from [2].

FIG. 3. Potential strength parameter λ for chain-1 (blue triangles) and for chain- 2 (red diamonds). The full symbols are derived from experimental data [34]; the open diamond is the extrapolation for the unknown nucleus ${ }^{296} 118$. Further discussion see text.
nicely into this systematics. Because α decay is the dominating decay mode of the nuclei in chain-1 and chain-2 (except ${ }^{286} \mathrm{Fl}$ [34]), in the following the subscript α is omitted in $T_{1 / 2}$.

The very smooth and systematic behavior of the volume integrals J_{R} in Fig. 1 can be used for the prediction of unknown Q_{α} values. Instead of adjusting the strength parameter λ to experimentally known Q_{α}, the strength parameter λ is now fixed from neighboring nuclei, and from the resulting potential $V(r)$ the eigenstate energy is calculated. This is illustrated in Fig. 3: $\lambda=1.1458 \pm 0.0010$ is estimated for ${ }^{296} 118$. This estimate for λ is well constrained by the similar slope of $\lambda(Z)$ for chain- 1 and chain- 2 and by the small and almost constant difference between chain-1 and chain-2.

The potential $V(r)$ with the strength parameter $\lambda=1.1458$ has the eigenstate with $N=11$ nodes at $Q_{\alpha}=11.655 \mathrm{MeV}$. The small uncertainty of λ translates to an uncertainty of Q_{α} of only 95 keV . Thus, the present study predicts $Q_{\alpha}=11.655 \pm$ 0.095 MeV for the unknown nucleus ${ }^{296} 118$. This result is very close to the predictions of the selected mass models WS3+ and WS4+ and slightly lower than the mass model HN [1]. It is interesting to note that already the fits of J_{R} in Fig. 1 (taken from [2] and based on the available data in 2006) predict λ between 1.1413 and 1.1463 for ${ }^{296} 118$, corresponding to Q_{α} between 11.6 MeV and 12.1 MeV which is almost exactly the range of Q_{α} from the three selected mass models WS3+, WS4+, and HN in [1].

Finally, the half-life of ${ }^{296} 118$ can be calculated from this potential with $\lambda=1.1458$. The result is $T_{1 / 2}^{\text {calc }}=73.0 \mu \mathrm{~s}$. According to Eq. (2), for a prediction of the experimental half-life $T_{1 / 2}^{\exp }$, the calculated half-life has to be divided by the preformation factor P. Taking the average preformation factor $P_{\mathrm{av}}=0.0885$ of chain-1 and chain-2, one finally obtains $T_{1 / 2}^{\text {predict }}=0.825 \mathrm{~ms}$.

FIG. 4. Extrapolation of the preformation factor P to ${ }^{296} 118$.

A careful estimate of the uncertainty of the preformation factor P can be read from Fig. 4. The average value of the five known P in chain-1 and chain-2 is $P_{\mathrm{av}}=0.0885$. However, all P have significant uncertainties which result from the uncertainties of the experimental α-decay half-lives, and the P vary between 0.0424 for ${ }^{286} \mathrm{Fl}$ in chain-1 and 0.193 for ${ }^{292} \mathrm{Lv}$ in chain-2. Thus, I estimate the uncertainty of P for ${ }^{296} 118$ from the highest and smallest values of P in chain-1 and chain-2, leading to $P=0.0885_{-0.0461}^{+0.1045}$. Again it is interesting to note that my earlier study in 2006 [2] found very similar values of $P \approx 0.08$ with an uncertainty of a factor of three.

The uncertainty of the predicted half-life $T_{1 / 2}^{\text {predict }}=$ 0.825 ms can be estimated from the uncertainties of Q_{α} and P. The uncertainty of Q_{α} of about 100 keV translates to a factor of about 1.7 for the uncertainty of the half-life, and the uncertainty of P of slightly above a factor of two enters directly into the uncertainty of $T_{1 / 2}^{\text {predict }}$. Combining both uncertainties results in a factor of about 4 uncertainty for the predicted half-life, i.e., the half-life of ${ }^{296} 118$ should lie in between 0.2 ms and 3.3 ms .

In summary, I have used the smooth and regular behavior of the strength parameter λ of the α-nucleus double-folding potential to estimate the α-decay energy Q_{α} of the unknown nucleus ${ }^{296} 118$. The prediction of $Q_{\alpha}=11.655 \pm 0.095 \mathrm{MeV}$ is completely independent of mass formulas, but nevertheless in excellent agreement with the results from the selected mass formulas in [1]. From the barrier transmission and from the preformation P of about 9%, a half-life for ${ }^{296} 118$ of 0.825 ms is predicted with an uncertainty of a factor of 4 . These predictions for the Q_{α} value and for the α-decay half-life of ${ }^{296} 118$ may help to guide experimentalists, and hopefully, these predictions can be confronted with experimental results in the near future.

I thank Zs. Fülöp, Gy. Gyürky, G. G. Kiss, and E. Somorjai for many encouraging discussions on α-nucleus potentials. This work was supported by OTKA (K108459 and K120666).
[1] A. Sobiczewski, Phys. Rev. C 94, 051302(R) (2016).
[2] P. Mohr, Phys. Rev. C 73, 031301(R) (2006); 74, 069902(E) (2006).
[3] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).
[4] N. Wang and M. Liu, Phys. Rev. C 84, 051303(R) (2011).
[5] N. Wang, M. Liu, Xizhen Wu, and J. Meng, Phys. Rev. C 93, 014302 (2016).
[6] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
[7] I. Muntian, Z. Patyk, and A. Sobiczewski, Acta Phys. Pol. B 32, 691 (2001).
[8] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).
[9] A. I. Budaca, R. Budaca, and I. Silisteanu, Nucl. Phys. A 951, 60 (2016).
[10] K. P. Santhosh, B. Priyanka, and C. Nithya, Nucl. Phys. A 955, 156 (2016).
[11] K. P. Santhosh and B. Priyanka, Phys. Rev. C 90, 054614 (2014).
[12] E. Shin, Y. Lim, Chang Ho Hyun, and Y. Oh, Phys. Rev. C 94, 024320 (2016).
[13] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong, and J. Q. Li, J. Phys. G 42, 085101 (2015).
[14] S. Zhang, Y. Zhang, J. Cui, and Y. Wang, Phys. Rev. C 95, 014311 (2017).
[15] H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650100 (2016).
[16] M. Ismail, W. M. Seif, A. Adel, and A. Abdurrahman, Nucl. Phys. A 958, 202 (2017).
[17] K. P. Santhosh and C. Nithya, Phys. Rev. C 94, 054621 (2016).
[18] M. Bao, Z. He, Y. M. Zhao, and A. Arima, Phys. Rev. C 90, 024314 (2014).
[19] N. G. Kelkar and M. Nowakowski, J. Phys. G 43, 105102 (2016).
[20] Y. Qian and Z. Ren, J. Phys. G 43, 065102 (2016).
[21] M. Ismail, A. Y. Ellithi, A. Adel, and A. R. Abdulghany, Nucl. Phys. A 947, 64 (2016).
[22] M. Ismail, A. Adel, and M. M. Botros, Phys. Rev. C 93, 054618 (2016).
[23] D. Ni and Z. Ren, Phys. Rev. C 93, 054318 (2016).
[24] D. Ni and Z. Ren, Phys. Rev. C 92, 054322 (2015).
[25] A. Adel and T. Alharbi, Phys. Rev. C 92, 014619 (2015).
[26] M. Ismail, W. M. Seif, A. Y. Ellithi, and A. Abdurrahman, Phys. Rev. C 92, 014311 (2015).
[27] Y. Qian and Z. Ren, Phys. Lett. B 738, 87 (2014).
[28] Y. Qian and Z. Ren, Phys. Rev. C 90, 064308 (2014).
[29] M. Ismail and A. Adel, Nucl. Phys. A 912, 18 (2013).
[30] P. Mohr, G. G. Kiss, Zs. Fülöp, D. Galaviz, Gy. Gyürky, and E. Somorjai, At. Data Nucl. Data Tables 99, 651 (2013).
[31] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).
[32] U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, and G. Staudt, Phys. Rev. C 53, 1336 (1996).
[33] S. A. Gurvitz and G. Kälbermann, Phys. Rev. Lett. 59, 262 (1987).
[34] Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015).

[^0]: *widmaiermohr@t-online.de; mohr@atomki.mta.hu

