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α-decay properties of 296118 from double-folding potentials

Peter Mohr*

Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany
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α-decay properties of the yet unknown nucleus 296118 are predicted using the systematic behavior of parameters
of α-nucleus double-folding potentials. The results are Qα = 11.655 ± 0.095 MeV and T1/2 = 0.825 ms with an
uncertainty of about a factor of 4.
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Very recently, Sobiczewski [1] has analyzed the decay prop-
erties of the yet unknown nucleus 296118 using a combination
of Qα values from mass models and a phenomenological
formula for the α-decay half-lives. This study was motivated
by ongoing experiments which attempt to synthesize this
heaviest nucleus to date. The present work uses a completely
different approach which is based on the smooth and sys-
tematic behavior of α-decay parameters using double-folding
potentials [2].

Sobiczewski finds Qα values between 10.93 MeV and
13.33 MeV from nine different mass models. Using the
phenomenological formula for α-decay half-lives of [3], the
resulting half-lives for 296118 vary by more than 5 orders
of magnitude between 1.4 μs and 0.21 s. To reduce this
uncertainty, three mass models are identified in [1] which
describe the masses of nearby nuclei with the smallest devia-
tions: Wang and Liu (WS3+ [4]), Wang et al. (WS4+ [5,6]),
and Muntian et al. (HN [7,8]). In detail, two α-decay chains
are studied for this purpose: the known chain 294118 →
290Lv → 286Fl → 282Cn (hereafter: “chain-1”), and the chain
296118 → 292Lv → 288Fl → 284Cn (“chain-2”), where only the
two latter α decays are known from experiment. The selection
of the mass formulas leads to a restricted range of Qα for
296118 from 11.62 MeV (WS3+), 11.73 MeV (WS4+), and
12.06 MeV (HN), and the corresponding α-decay half-lives
are 4.8 ms (WS3+), 2.7 ms (WS4+), and 0.50 ms (HN). This
range of predictions of almost one order of magnitude for the
α-decay half-life of 296118 does not yet include an additional
uncertainty of the phenomenological formula of [3] which is
on average a factor of 1.34 for even-even nuclei and does not
exceed a factor of 1.78 in most cases [3].

In a further study Budaca et al. [9] have applied empirical
fitting formulas for the prediction of the decay properties
of 296118. They obtain a slightly lower Qα = 11.45 MeV
and half-lives of about 3 ms. A very low value of Qα =
10.185 MeV is derived from mass formulas in [10,11], leading
to predicted half-lives up to minutes for 296118. Half-lives
of the order of 1 ms have been obtained in [12] using the
WS4+ Qα and various empirical formulas for the half-life,
and similar half-lives slightly below 1 ms were found very
recently in [13,14] which are also based on Qα from WS4+.
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Also very recently somewhat shorter half-lives of 296118
of 14 − 285 μs [15] and ≈ 25 μs [16] were reported which
are based on Qα = 12.4 MeV [15] and 12.3 MeV [16] from
earlier mass formulas.

For completeness it has to be mentioned that α decay is the
dominant decay mode of 296118. Partial half-lives of 296118 for
spontaneous fission have been estimated in [1,17]; they exceed
the α-decay half-life by several orders of magnitude.

Contrary to the study of Sobiczewski and the other recent
calculations for 296118 [9–16], the present approach does not
use mass models for the prediction of the unknown Qα of
296118 which is the most important quantity for the prediction
of its half-life. Instead, the smooth behavior of parameters is
used which is obtained in calculations with systematic double-
folding potentials [2]. This method is particularly well suited
for the present case where the available experimental results
for chain-1 and chain-2 have to be extrapolated only to a very
close neighbor. For completeness it should be noted that there
is another method for an independent determination of Qα

from the systematics of Qα differences of neighboring nuclei;
unfortunately, the published values end at 295118 and do not
include 296118 [18].

The application of double-folding potentials for α decay
in a simple α+nucleus two-body model has been described
in detail already in [2], and it has been applied and further
developed in a series of α-decay studies in the last years
(e.g., [19–29]). Here I briefly repeat the essential points. First,
the interaction between the daughter nucleus and the α particle
is calculated by a double-folding procedure using an effective
nucleon-nucleon interaction; for details, see [30]. As in [2], the
unknown density of the daughter nucleus is calculated from
a two-parameter Fermi distribution with the radius parameter
R = R0A

1/3
D which scales with the mass number AD of the

daughter, and R0 and the diffuseness a are taken from the
average values of 232Th and 238U [31]. The density of the α
particle is also derived from from the charge density in [31].
This results in the double-folding potential VDF(r). The total
potential is given by

V (r) = λ VDF(r) + VC(r) (1)

with the strength parameter λ ≈ 1.1–1.3 for heavy nu-
clei [30,32]. The Coulomb potential is calculated from the
model of a homogeneously charged sphere where the Coulomb
radius RC is taken from the root-mean-square (rms) radius of
the double-folding potential.
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TABLE I. Parameters of the α decays in chain-1 and chain-2. Experimental values are taken from [34].

decay Qα (MeV) λ JR (MeV fm3) T calc
1/2 (s) T

exp
1/2 (s) P

chain-1 286Fl → 282Cn 10.35 1.1633 302.86 8.48 × 10−3 2.0 × 10−1 0.0424
chain-1 290Lv → 286Fl 11.00 1.1568 300.96 7.36 × 10−4 8.3 × 10−3 0.0887
chain-1 294118 → 290Lv 11.82 1.1486 298.63 3.27 × 10−5 6.9 × 10−4 0.0473
chain-2 288Fl → 284Cn 10.07 1.1615 302.29 4.70 × 10−2 6.6 × 10−1 0.0713
chain-2 292Lv → 288Fl 10.78 1.1545 300.26 2.51 × 10−3 1.3 × 10−2 0.1930
chain-2 296118 → 292Lv 11.655 ± 0.095a 1.1458b 297.80 7.30 × 10−5 8.25 × 10−4c 0.0885d

aCalculated using λ = 1.1458 ± 0.0010.
bExtrapolated from neighboring nuclei; see Fig. 3.
cT

predict
1/2 .

daverage of neighboring nuclei; see Fig. 4.

The strength parameter λ is adjusted to reproduce the
experimental Qα , i.e., the potential V (r) has an eigenstate
at the correct energy with a chosen number of nodes in the
corresponding wave function (N = 11 in the present case of
0+ ground states of even-even superheavy nuclei; see [2]).
The resulting λ values and volume integrals JR of the nuclear
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FIG. 1. Volume integrals JR for superheavy nuclei as a function
of ZD (upper), ND (middle), and AD (lower). Data for chain-1 (blue
triangles) and chain-2 (red diamonds) have been added. Otherwise,
this figure is identical to Fig. 3 of my previous study [2]; the lines are
quadratic fits to the experimental data available in 2006.

potential are given in Table I for chain-1 and chain-2. In
addition, Fig. 1 shows JR as a function of the proton number
ZD , neutron number ND , and mass number AD of the daughter
nucleus. Figure 1 is a copy of Fig. 3 of my previous study [2]
where recent experimental data for chain-1 and chain-2 have
been added. It is obvious from Fig. 1 that the volume integrals
JR show a regular and smooth dependence of ZD,ND , and AD ,
which can be used to obtain reliable estimates for unknown
nuclei. Discontinuities of JR appear only at shell closures,
e.g., at the doubly magic daughter nucleus 208Pb (see Fig. 1
and [2]).

In a next step the α-decay half-lives T calc
1/2,α are calculated

from the transmission through the barrier of the potential in
Eq. (1) using the semiclassical formalism of [33]. And finally
the preformation factor P is calculated from the ratio

P = T calc
1/2,α

T
exp

1/2,α

. (2)

The resulting preformation factors are shown in Fig. 2
which is a repetition of Fig. 1 of [2] with the additional results
for chain-1 and chain-2. An average value of about 8 % for P
was found in [2], and the new data for chain-1 and chain-2 fit
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FIG. 2. Preformation factors P as a function of the mass number
AD of the daughter nucleus, taken from [2] and extended by data for
chain-1 (blue triangles) and chain-2 (red diamonds). The horizontal
lines indicate an average value of P ≈ 8% (full line) and typical
uncertainties of a factor of three (dotted lines); taken from [2].
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FIG. 3. Potential strength parameter λ for chain-1 (blue triangles)
and for chain-2 (red diamonds). The full symbols are derived from
experimental data [34]; the open diamond is the extrapolation for the
unknown nucleus 296118. Further discussion see text.

nicely into this systematics. Because α decay is the dominating
decay mode of the nuclei in chain-1 and chain-2 (except 286Fl
[34]), in the following the subscript α is omitted in T1/2.

The very smooth and systematic behavior of the volume
integrals JR in Fig. 1 can be used for the prediction of unknown
Qα values. Instead of adjusting the strength parameter λ to
experimentally known Qα , the strength parameter λ is now
fixed from neighboring nuclei, and from the resulting potential
V (r) the eigenstate energy is calculated. This is illustrated
in Fig. 3: λ = 1.1458 ± 0.0010 is estimated for 296118. This
estimate for λ is well constrained by the similar slope of λ(Z)
for chain-1 and chain-2 and by the small and almost constant
difference between chain-1 and chain-2.

The potential V (r) with the strength parameter λ = 1.1458
has the eigenstate with N = 11 nodes at Qα = 11.655 MeV.
The small uncertainty of λ translates to an uncertainty of Qα of
only 95 keV. Thus, the present study predicts Qα = 11.655 ±
0.095 MeV for the unknown nucleus 296118. This result is very
close to the predictions of the selected mass models WS3+ and
WS4+ and slightly lower than the mass model HN [1]. It is
interesting to note that already the fits of JR in Fig. 1 (taken
from [2] and based on the available data in 2006) predict λ
between 1.1413 and 1.1463 for 296118, corresponding to Qα

between 11.6 MeV and 12.1 MeV which is almost exactly
the range of Qα from the three selected mass models WS3+,
WS4+, and HN in [1].

Finally, the half-life of 296118 can be calculated from this
potential with λ = 1.1458. The result is T calc

1/2 = 73.0 μs.
According to Eq. (2), for a prediction of the experimental
half-life T

exp
1/2 , the calculated half-life has to be divided by

the preformation factor P . Taking the average preformation
factor Pav = 0.0885 of chain-1 and chain-2, one finally obtains
T

predict
1/2 = 0.825 ms.
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FIG. 4. Extrapolation of the preformation factor P to 296118.

A careful estimate of the uncertainty of the preformation
factor P can be read from Fig. 4. The average value of the five
known P in chain-1 and chain-2 is Pav = 0.0885. However,
all P have significant uncertainties which result from the
uncertainties of the experimental α-decay half-lives, and the P
vary between 0.0424 for 286Fl in chain-1 and 0.193 for 292Lv in
chain-2. Thus, I estimate the uncertainty of P for 296118 from
the highest and smallest values of P in chain-1 and chain-2,
leading to P = 0.0885+0.1045

−0.0461. Again it is interesting to note
that my earlier study in 2006 [2] found very similar values of
P ≈ 0.08 with an uncertainty of a factor of three.

The uncertainty of the predicted half-life T
predict

1/2 =
0.825 ms can be estimated from the uncertainties of Qα and P .
The uncertainty of Qα of about 100 keV translates to a factor of
about 1.7 for the uncertainty of the half-life, and the uncertainty
of P of slightly above a factor of two enters directly into the
uncertainty of T

predict
1/2 . Combining both uncertainties results in

a factor of about 4 uncertainty for the predicted half-life, i.e.,
the half-life of 296118 should lie in between 0.2 ms and 3.3 ms.

In summary, I have used the smooth and regular behavior
of the strength parameter λ of the α-nucleus double-folding
potential to estimate the α-decay energy Qα of the unknown
nucleus 296118. The prediction of Qα = 11.655 ± 0.095 MeV
is completely independent of mass formulas, but nevertheless
in excellent agreement with the results from the selected
mass formulas in [1]. From the barrier transmission and from
the preformation P of about 9%, a half-life for 296118 of
0.825 ms is predicted with an uncertainty of a factor of 4.
These predictions for the Qα value and for the α-decay half-life
of 296118 may help to guide experimentalists, and hopefully,
these predictions can be confronted with experimental results
in the near future.
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