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Binary and ternary ionic compounds in the outer crust of a cold nonaccreting neutron star
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The outer crust of a cold nonaccreting neutron star has been generally assumed to be stratified into different
layers, each of which consists of a pure body-centered cubic ionic crystal in a charge compensating background
of highly degenerate electrons. The validity of this assumption is examined by analyzing the stability of multinary
ionic compounds in dense stellar matter. It is thus shown that their stability against phase separation is uniquely
determined by their structure and their composition irrespective of the stellar conditions. However, equilibrium
with respect to weak and strong nuclear processes imposes very stringent constraints on the composition of
multinary compounds, and thereby on their formation. By examining different cubic and noncubic lattices, it
is found that substitutional compounds having the same structure as cesium chloride are the most likely to
exist in the outer crust of a nonaccreting neutron star. The presence of ternary compounds is also investigated.
Very accurate analytical expressions are obtained for the threshold pressure, as well as for the densities of the
different phases irrespective of the degree of relativity of the electron gas. Finally, numerical calculations of the
ground-state structure and of the equation of state of the outer crust of a cold nonaccreting neutron star are carried
out using recent experimental and microscopic nuclear mass tables.
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I. INTRODUCTION

Neutron stars are formed in the aftermath of gravitational
core collapse of single massive stars with a mass M > 8M�,
M� being the mass of the sun [1]. During the collapse and
the subsequent cooling of the hot compact stellar remnant, the
compressed stellar material is generally assumed to follow a
sequence of full thermodynamic quasiequilibrium states such
that the resulting neutron star eventually consists of “cold
catalyzed matter”, i.e., electrically charge neutral matter in its
absolute ground state at temperature T = 0 K [2,3].

Under these assumptions, the outermost region of a neutron
star is generally thought to form a solid crust stratified into
different layers, each of which consists of a perfect crystal
made of a single nuclear species with atomic number Z and
mass number A (see, e.g., Ref. [4] and references therein).
Due to the huge gravitational pressure, the density increases
sharply with depth below the stellar surface. As the density
reaches ρeip � 11AZ g cm−3, atoms are so densely packed that
their electron clouds overlap (see, e.g., Ref. [1]). At densities
ρ � ρeip, atoms are thus fully ionized, and each crustal layer
can be treated to a good approximation as a one-component
crystal of pointlike ions (nuclei) in a uniform charge compen-
sating background of highly degenerate electrons. It has been
generally assumed that nuclei are arranged in a body-centered
cubic (bcc) lattice, as put forward by Ruderman [5] based on
the pioneer cubic-lattice constant calculations of Fuchs [6].

With increasing depth, matter becomes progressively more
neutron rich due to the capture of electrons by nuclei (see,
e.g., Ref. [7]). At density ρdrip � 4 × 1011 g cm−3, neutrons
start to “drip” out of nuclei. The onset of neutron emission
marks the transition between the outer and inner regions of
the crust (see, e.g., Ref. [8] for a recent discussion). The
outer crust can thus be described by a stack of pure bcc
crystalline layers whose composition is completely determined
by nuclear masses [9] (see, e.g., Refs. [10–15] for recent

calculations). In 1971, Dyson [16] suggested the existence
of FeHe compound with rocksalt (NaCl) structure in the
crust of a neutron star. This possibility was further studied
by Witten in 1974 [17]. However, as pointed out by Jog
and Smith [18], such a compound is unstable against weak
and strong nuclear processes. On the other hand, they found
that binary compounds with cesium chloride (CsCl) structure
can be energetically favored at the interface between two
adjacent crustal layers. More recent studies have focused on
the formation of multinary ionic compounds in the crust of
accreting neutron stars (see, e.g., Refs. [19,20]). The accretion
of matter (mostly hydrogen and helium) from a companion star
triggers a series of nuclear reactions, whose ashes sink deep
into the crust (see, e.g., Ref. [4] for a review). This material
eventually solidifies with its composition remaining essentially
unchanged.

In this paper, we pursue the investigation of the existence
of ionic compounds in the outer crust of a cold nonaccreting
neutron star. In Sec. II, we first examine the thermodynamic
stability of a pure solid phase against the formation of
a multinary compound with an arbitrary composition. The
specific case of two-component solid phases is considered in
Sec. III, where the impact of solid-solid phase transitions on the
equation of state of dense matter is discussed in detail. Using
recent experimental and microscopic nuclear mass tables, we
thereafter determine the ground-state structure of the outer
crust of a neutron star allowing for ionic compounds. Results
are presented and discussed in Sec. IV.

II. GENERAL THERMODYNAMIC CONSIDERATIONS ON
PHASE TRANSITIONS IN COLD DENSE MATTER

In the following, we shall consider matter at temperatures
T below the crystallization temperature Tm (for all practical
purposes, we shall set T = 0 K), and at densities ρ above
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the ionization threshold and below the neutron-drip transition
(ρeip � ρ � ρdrip). It will be further assumed that all possible
weak and strong nuclear reactions are allowed.

A. Stability of a pure solid phase against a transition
into a multicomponent solid phase

Let us examine the absolute stability of a solid made of
only one type of nuclei (A,Z) with mass number A and
atomic number Z at some pressure P against the transition
to a multicomponent solid made of nuclei (Ai,Zi), where the
index i runs over the different nuclear species present. Let ni

be the number density of nuclei (Ai,Zi). Their proportion ξi

is defined by

ξi = ni∑
j nj

. (1)

Introducing the mean nucleon number density

n̄ =
∑

i

Aini, (2)

the nuclei number densities can be expressed as

ni = ξi

n̄

Ā
, (3)

where

Ā =
∑

i

ξiAi (4)

denotes the mean mass number. The energy density EN of
nuclei is given by

EN =
∑

i

niM
′(Ai,Zi)c

2, (5)

where c is the speed of light and M ′(A,Z) denotes the nuclear
mass (including the rest mass of Z protons, A − Z neutrons
and Z electrons1). The nuclear mass M ′(A,Z) can be obtained
from the atomic mass M(A,Z) after subtracting out the binding
energy of the atomic electrons (see Eq. (A4) of Ref. [21]).
Ignoring the small quantum zero-point motion of ions about
their equilibrium position, nuclei do not contribute to the
pressure, i.e., PN = 0.

Nuclei are embedded in a neutralizing electron background
of number density ne given by

ne =
∑

i

Zini = yen̄, (6)

where ye = Z̄/Ā is the mean electron fraction defined in terms
of the mean atomic number

Z̄ =
∑

i

ξiZi. (7)

Because electrons are highly degenerate, they can be very
well described by an ideal relativistic Fermi gas (see, e.g.,
Ref. [22] for a discussion of the validity of this approximation).

1The reason for including the electron rest mass is that experimental
atomic masses are generally tabulated rather than nuclear masses.

The expressions for the corresponding energy density Ee

and pressure Pe can be found in Chap. 2 of Ref. [1].
The main correction to the Fermi gas model arises from
electrostatic interactions among electrons and ions, which
from dimensional analysis can be generally expressed as

EL = Ce2n4/3
e f ({Zi}), (8)

PL = EL

3
= C

3
e2n4/3

e f ({Zi}), (9)

respectively, where e is the proton electric charge, while
the structure constant C < 0 and the dimensionless function
f ({Zi}) depend on the spatial arrangement of nuclei and
on their charge only ({Zi} denotes the set of all charge
numbers). The structure constant C is normalized such that
the structure function for solids made of isotopes (Zi = Z for
all i) reduces to f (Z) = Z2/3 (this includes the limiting case
of a single-constituent phase). Note that Eqs. (8) and (9) could
also be applied to liquid phases with suitable values for the
structure constant.

The ground state of matter at pressure P (and temperature
T = 0 K) is determined by the minimum of the Gibbs free
energy per nucleon defined by

g = E + P

n̄
, (10)

where the mean energy density E of matter and the pressure P
are given by (me is the electron mass)

E = EN + Ee + EL − nemec
2, (11)

P = Pe + PL, (12)

respectively. The last term in Eq. (11) is introduced to avoid
double counting. Collecting all terms using the thermodynamic
identity Ee + Pe = neμe (μe denoting the electron Fermi
energy), the Gibbs free energy can be finally expressed as

g({Ai,Zi},P ) = M̄ ′c2

Ā
+ ye

[
μe(ne) − mec

2

+ 4

3
Ce2n1/3

e f ({Zi})
]
, (13)

where we have introduced the mean mass of nuclei

M̄ ′ =
∑

i

ξiM
′(Ai,Zi). (14)

The electron number density ne is related to the pressure P
through Eq. (12).

In its ground-state, a pure solid is expected to have a bcc
structure. Although the absolute stability of this lattice still
remains to be demonstrated, so far no other structure has been
found to be more stable (see, e.g., Refs. [6,23,24]). As a matter
of fact, the value of the corresponding structure constant Cbcc

(see, e.g. Table I) lies very close to the lower bound obtained by
Lieb and Narnhofer [25] and corresponding to the ion-sphere
model [26],

C � Cmin ≡ − 9

10

(
4π

3

)1/3

� −1.450 793. (15)

From now on, we consider this conjecture to be true. For a
multicomponent solid to be more stable, the corresponding
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TABLE I. Structure constants appearing in Eq. (88) for the binary
compounds shown in Figs. 3, 4, and 5. The quantity ξ denotes the
proportion of nuclei (A1,Z1).

Structure C η ζ ξ

fcc1 −1.418 649 0.403 981 0.403 981 1/2
fcc2 −1.393 491 0.239 521 0.592 901 1/3
sc1 −1.444 231 0.389 821 0.389 821 1/2
sc2 −1.444 141 0.654 710 0.154 710 3/4
p1 −1.365 879 0.785 206 0.121 479 4/5
p2 −1.365 879 0.311 629 0.514 083 2/5
p3 −1.365 879 0.121 479 0.660 206 1/5
hcp −1.444 083 0.345 284 0.345 284 1/2

Gibbs free energy per nucleon must be lower. The threshold
pressure Pthres for the onset of the transition can be obtained
from the condition

g(A,Z,Pthres) = g({Ai,Zi},Pthres). (16)

It is particularly convenient to rescale the function f ({Zi}) as

f̃ ({Zi}) ≡ (C/Cbcc)f ({Zi}). (17)

Excluding situations such that Z/A = Z̄/Ā (see Appendix A)
and expanding g to first order in α = e2/(�c) (� is the Planck-
Dirac constant), we find

μe + Cbcc α�cn1/3
e F (Z,A; {Zi,Ai}) = μthres

e , (18)

where we have introduced the threshold electron Fermi energy

μthres
e ≡

[
M̄ ′c2

Ā
− M ′(A,Z)c2

A

](
Z

A
− Z̄

Ā

)−1

+ mec
2,

(19)

and

F (Z,A; {Zi,Ai}) ≡
(

4

3

Z5/3

A
− 1

3

Z2/3Z̄

Ā
− Z̄

Ā
f̃ ({Zi})

)

×
(

Z

A
− Z̄

Ā

)−1

. (20)

In Eq. (18), ne refers to the electron density of the pure solid
of nuclei (A,Z) at pressure Pthres. The electron density of
the multicomponent solid at the same pressure is given by
ne + δne, where

δne ≈ 1

3
Cbcce

2n4/3
e [Z2/3 − f̃ ({Zi})]

(
dPe

dne

)−1

. (21)

Note that Eqs. (18) and (21) were obtained without making use
of the actual expressions for the electron Fermi energy μe and
pressure Pe. Therefore, these equations still remain valid in the
presence of a strongly quantizing magnetic field as in the crust
of magnetars (the lattice energy density EL is independent
of the magnetic field according to the Bohr–van Leeuwen
theorem [27]). In the absence of magnetic fields, Eq. (18) can
be transformed into a quadratic polynomial equation and can
thus be solved analytically, as demonstrated in the next section.

B. Transition pressure and densities of the solid phases

Recalling that the electron Fermi energy is given by

μe = mec
2
√

1 + x2
r , (22)

where xr = λeke is a dimensionless relativity parameter,
λe = �/(mec) is the electron Compton wavelength, and ke =
(3π2ne)1/3 is the electron Fermi wave number, the threshold
condition (18) can be equivalently expressed as

x2
r (1 − F̃ (Z,A; {Zi,Ai})2) + 2γ thres

e F̃ (Z,A; {Zi,Ai})xr

= (γ thres
e )2 − 1, (23)

with

γ thres
e ≡ μthres

e

mec2
, (24)

F̃ (Z,A; {Zi,Ai}) ≡ Cbcc

(3π2)1/3
αF (Z,A; {Zi,Ai}). (25)

Solving Eq. (23) for xr yields

xr = γ thres
e

[√
1 − (1 − F̃ (Z,A; {Zi,Ai})2)

/(
γ thres

e

)2

− F̃ (Z,A; {Zi,Ai})
]
[1 − F̃ (Z,A; {Zi,Ai})2]−1. (26)

Using Eqs. (9), (12), and the expression for the pressure of an
ideal electron Fermi gas (see, e.g., Chapter 2 in Ref. [1]), the
threshold pressure at the onset of the phase transition is given
by

Pthres = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

)√
1+x2

r +ln
(
xr +

√
1 + x2

r

)]

+ Cbccα

3(3π2)4/3
x4

r

mec
2

λ3
e

Z2/3. (27)

The maximum mean nucleon number density n̄max up to which
the pure solid of nuclei (A,Z) is present is given by

n̄max = A

Z
ne = A

Z

x3
r

3π2λ3
e

. (28)

The minimum possible mean nucleon number density n̄min
{i} at

which the multicomponent solid appears is given by

n̄min
{i} = Ā

Z̄
(ne + δne)

= Ā

Z̄

Z

A
n̄max

[
1 + Cbccα

(3π2)1/3
(Z2/3 − f̃ ({Zi}))

√
1 + x2

r

xr

]
.

(29)

The transition is thus accompanied by a density discontinuity
given by

n̄min
{i} − n̄max

n̄max
= Ā

Z̄

Z

A

[
1 + Cbccα

(3π2)1/3

× (Z2/3 − f̃ ({Zi}))
√

1 + x2
r

xr

]
− 1. (30)

According to Le Chatelier’s principle, mechanical stability
requires n̄min

{i} � n̄max. Since this constraint must be fulfilled
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irrespective of the small lattice correction, we thus obtain

ĀZ − Z̄A � 0. (31)

In other words, the multicomponent phase must be more
neutron rich than the pure solid phase.

In the regime of ultrarelativistic electrons such that
γ thres

e � 1, Eq. (26) reduces to

xr ≈ γ thres
e [1 + F̃ (Z,A; {Zi,Ai})]−1. (32)

The threshold pressure (27), and the densities (28) and (29) of
the solid phases become respectively

Pthres ≈
(
μthres

e

)4

12π2(�c)3
[1 + F̃ (Z,A; {Zi,Ai})]−4

×
(

1 + 4Cbccα

(81π2)1/3
Z2/3

)
, (33)

n̄max ≈ A

Z

(
μthres

e

)3

3π2(�c)3
[1 + F̃ (Z,A; {Zi,Ai})]−3, (34)

n̄min
{i} ≈ Ā

Z̄

Z

A
n̄max

[
1 + Cbccα

(3π2)1/3
(Z2/3 − f̃ ({Zi}))

]
. (35)

The density discontinuity is thus approximately given by

n̄min
{i} − n̄max

n̄max
≈ Ā

Z̄

Z

A

[
1 + Cbccα

(3π2)1/3
(Z2/3 − f̃ ({Zi}))

]
− 1.

(36)

The formulas presented in this section remain valid at
finite temperatures T such that (i) electrons remain highly
degenerate and (ii) matter in both phases is crystallized. The
first condition requires T � TFe, where TFe is the electron
Fermi temperature defined by

TFe = μe − mec
2

kB
, (37)

and kB is the Boltzmann constant. As for the second condition,
we must have T < T 0

m and T < Tm, where T 0
m and Tm denote

the crystallization temperatures of the pure and multicompo-
nents phases, as defined by (see, e.g., Ref. [1])

Tm = e2

aekB�m

Z5/3, (38)

and similarly for T 0
m, where ae is the electron-sphere radius,

�m is the Coulomb coupling parameter at melting, and Z5/3 =∑
i ξiZ

5/3
i . Neglecting the lattice correction in Eq. (18) such

that μe ≈ μthres
e , and assuming electrons are ultrarelativistic,

the electron Fermi temperature and the crystallization temper-
ature can be approximately expressed as

TFe ≈ 5.93 × 109 μthres
e

mec2
K, (39)

Tm ≈ 1.29 × 105 μthres
e

mec2
Z5/3 K, (40)

where we have adopted the value �m = 175 for the Coulomb
coupling parameter at melting [1]. Since typically Z5/3 and

Z5/3 are of order ∼300–500 (see Sec. IV C), we thus have
T 0

m ∼ Tm � TFe.

C. Formation of a solid compound

A multicomponent solid may consist of (i) spatially
separated pure bcc phases or (ii) a compound. The latter may
not necessarily form for arbitrary composition. Moreover, a
compound may be ordered or disordered depending on the
charges {Zi} (see, e.g. Ref. [28]).

A compound made of nuclei (Ai,Zi) is stable against the
separation into pure bcc phases if the Gibbs free energy per
nucleon of the compound is lower than that of the coexisting
phases at the same pressure P and at the same composition.
Neglecting surface effects, the Gibbs free energy per nucleon
of coexisting phases can be written in the form (13) after
substituting the structure function f ({Zi}) by (see, e.g., Sec.
2.4.7 in Ref. [1])

f̃mix({Zi}) = fmix({Zi}) = Z5/3

Z̄
. (41)

Expanding g to first order in α, the stability of a multinary
compound against phase separation can be expressed as

R ≡ f̃ ({Zi})
fmix({Zi}) > 1, (42)

irrespective of the stellar conditions. In other words, if a
compound with a fixed composition is found to be stable at
some pressure P , it will remain so at any other pressure and
independently of the degree of relativity of the electron gas, as
recently noticed in Ref. [20]. The condition (42) generalizes
that originally obtained by Dyson [16] in the case of a binary
compound under the approximation P ≈ Pe; see his Eq.
(1.17). In particular, our present derivation shows that Eq. (42)
still remains valid if the lattice contribution to the pressure is
taken into account. Let us emphasize that this inequality only
pertains to the stability of a multinary compound against the
formation of pure coexisting bcc phases and does not preclude
the occurrence of instabilities due to weak and strong nuclear
processes, as we shall show in Sec. IV.

In full thermodynamic equilibrium, as generally assumed
in the crust of nonaccreting neutron stars [2,3], the formation
of multinary compounds made of a large variety of different
nuclear species seems unlikely (see, e.g., Ref. [29]). In what
follows, we shall thus focus on binary compounds since they
could be found at the interface between adjacent layers of
neutron-star crusts [18]. We shall also briefly discuss the
existence of ternary compounds in the crust. The possible
charge ratios of these compounds are expected to remain close
to ∼1 according to crustal compositions predicted by recent
models (see, e.g., Refs. [10,11,13–15]; see also Sec. IV C). For
such charge ratios, disordered compounds are unstable [28,30],
and therefore will not be further considered.
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FIG. 1. Schematic representation of the pressure P versus mean
baryon number density n̄ for a transition between two pure body-
centered cubic lattice solid phases of nuclei (A1,Z1) and (A2,Z2). The
two phases coexist at pressure P1→2 irrespective of their proportion.

III. TRANSITIONS BETWEEN ONE- AND
TWO-COMPONENT SOLID PHASES

A. Transitions between two pure solid phases

Let us consider as a limiting case of the general situation
considered in the previous section: the transition between
two pure solid phases, made of nuclei (A1,Z1) and (A2,Z2)
respectively (arranged in a bcc lattice, as discussed earlier).
The variation of the pressure with respect to the density is
schematically illustrated in Fig. 1.

The threshold conditions can be readily obtained using the
formulas given in Sec. II B. The relativity parameter is thus
given by

xr = γ 1→2
e [

√
1 − (1 − F̃0(Z1,A1; Z2,A2)2)

/(
γ 1→2

e

)2

− F̃0(Z1,A1; Z2,A2)][1 − F̃0(Z1,A1; Z2,A2)2]−1.

(43)

with

γ 1→2
e ≡ μ1→2

e

mec2
, (44)

μ1→2
e ≡

[
M ′(A2,Z2)c2

A2
− M ′(A1,Z1)c2

A1

]

×
(

Z1

A1
− Z2

A2

)−1

+ mec
2, (45)

F̃0 (Z1,A1; Z2,A2)

≡ F̃ (Z1,A1; Z2,A2,Z2,A2)

= Cbcc

(3π2)1/3
α

(
4

3

Z
5/3
1

A1
− 1

3

Z
2/3
1 Z2

A2
− Z

5/3
2

A2

)

×
(

Z1

A1
− Z2

A2

)−1

. (46)

The threshold pressure P1→2 is given by

P1→2 = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

)√
1+x2

r + ln
(
xr +

√
1 + x2

r

)]

+ Cbccα

3(3π2)4/3
x4

r

mec
2

λ3
e

Z
2/3
1 . (47)

The highest possible density at which nuclei (A1,Z1) are stable
is given by

n̄max
1 = A1

Z1

x3
r

3π2λ3
e

, (48)

while the lowest possible density at which nuclei (A2,Z2) can
be found is given by

n̄min
2 = A2

Z2

Z1

A1
n̄max

1

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
1 − Z

2/3
2

)√
1 + x2

r

xr

]
.

(49)

The transition is thus accompanied by a density discontinuity
given by

n̄min
2 − n̄max

1

n̄max
1

= A2

Z2

Z1

A1

[
1 + Cbccα

(3π2)1/3

× (
Z

2/3
1 − Z

2/3
2

)√
1 + x2

r

xr

]
− 1. (50)

As discussed in Sec. II B, mechanical stability requires

A2Z1 − Z2A1 � 0. (51)

In the ultrarelativistic regime γ 1→2
e � 1, the threshold

pressure and the densities of the two solid phases can be
approximately expressed as

P1→2 ≈
(
μ1→2

e

)4

12π2(�c)3
[1 + F̃0(Z1,A1; Z2,A2)]−4

×
(

1 + 4Cbccα

(81π2)1/3
Z

2/3
1

)
, (52)

n̄max
1 ≈ A1

Z1

(
μ1→2

e

)3

3π2(�c)3
[1 + F̃0(Z1,A1; Z2,A2)]−3, (53)

n̄min
2 ≈ A2

Z2

Z1

A1
n̄max

1

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
1 − Z

2/3
2

)]
. (54)

The density discontinuity is thus approximately given by

n̄min
2 − n̄max

1

n̄max
1

≈ A2

Z2

Z1

A1

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
1 − Z

2/3
2

)]
− 1.

(55)

The apparent dissymmetry of Eq. (47) hence also of Eq. (52)
under the interchange 1 ↔ 2 arises from the expansion of the
Gibbs free energy per nucleon to first order in α. The symmetry
can be restored by expressing the pressure at first order in
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α:

P1→2 ≈ mec
2

8π2λ3
e

[
xr0

(
2

3
x2

r0−1

)√
1+x2

r0+ln
(
xr0+

√
1+x2

r0

)]

+ Cbccα

(3π2)4/3

mec
2

λ3
e

x4
r0

A1Z
5/3
2 − A2Z

5/3
1

A2Z1 − A1Z2
, (56)

with

xr0 =
√

(γ 1→2
e )2 − 1. (57)

To this order, the pressure (47) can thus be equivalently written
as

P1→2 = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

)√
1+x2

r +ln
(
xr +

√
1 + x2

r

)]

+ Cbccα

3(3π2)4/3
x4

r

mec
2

λ3
e

Z
2/3
2 , (58)

with

xr = γ 1→2
e

[√
1 − (1 − F̃0(Z2,A2; Z1,A1)2)/(γ 1→2

e )2

− F̃0(Z2,A2; Z1,A1)
]
[1 − F̃0(Z2,A2; Z1,A1)2]−1.

(59)

In the limit of ultrarelativistic electrons, we find

P1→2 ≈
(
μ1→2

e

)4

12π2(�c)3

(
1 − 4Cbccα

(3π2)1/3

A1Z
5/3
2 − A2Z

5/3
1

A1Z2 − A2Z1

)
.

(60)

B. Transitions from a pure solid phase of nuclei (A1,Z1) to a
two-component solid phase of nuclei (A1,Z1) and (A2,Z2)

Using the formulas given in Sec. II B, the threshold pressure
at the onset of the transition is given by

P1→1+2 = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

)√
1+x2

r +ln
(
xr +

√
1 + x2

r

)]

+ Cbccα

3(3π2)4/3
x4

r

mec
2

λ3
e

Z
2/3
1 , (61)

where

xr = γ 1→2
e

[√
1 − (1 − F̃ (Z1,A1; Z1,A1,Z2,A2)2)

/(
γ 1→2

e

)2

− F̃ (Z1,A1; Z1,A1,Z2,A2)
]

× [1 − F̃ (Z1,A1; Z1,A1,Z2,A2)2]−1. (62)

The threshold electron Fermi energy (19) turns out be the same
as that given by Eq. (45) for the transition between pure bcc
solid phases. However, P1→1+2 is generally not equal to P1→2

due to the different lattice contributions. The highest density

at which nuclei (A1,Z1) can be possibly present is given by

n̄max
1 = A1

Z1

x3
r

3π2λ3
e

. (63)

The lowest density at which a two-component solid phase of
nuclei (A1,Z1) and (A2,Z2) possibly appears is given by

n̄min
1+2 = Ā

Z̄

Z1

A1
n̄max

1

×
[

1 + Cbccα

(3π2)1/3

(
Z

2/3
1 − f̃ (Z1,Z2)

)√
1 + x2

r

xr

]
.

(64)

The transition is thus accompanied by a density discontinuity
given by

n̄min
1+2 − n̄max

1

n̄max
1

= Ā

Z̄

Z1

A1

[
1 + Cbccα

(3π2)1/3

×
(

Z
2/3
1 − f̃ (Z1,Z2)

)√
1 + x2

r

xr

]
− 1.

(65)

As discussed in Sec. II B, we must have

ĀZ1 − Z̄A1 � 0, (66)

to ensure mechanical stability.
Assuming electrons are ultrarelativistic, i.e., γ 1→2

e � 1, the
threshold pressure and the densities of the two solid phases are
approximately given by

P1→1+2 ≈
(
μ1→2

e

)4

12π2(�c)3
[1 + F̃ (Z1,A1; Z1,A1,Z2,A2)]−4

×
(

1 + 4Cbccα

(81π2)1/3
Z

2/3
1

)
, (67)

n̄max
1 ≈ A1

Z1

(
μ1→2

e

)3

3π2(�c)3
[1 + F̃ (Z1,A1; Z1,A1,Z2,A2)]−3,

(68)

n̄min
1+2 ≈ Ā

Z̄

Z1

A1
n̄max

1

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
1 − f̃ (Z1,Z2)

)]
.

(69)

The density discontinuity is thus approximately given by

n̄min
1+2 − n̄max

1

n̄max
1

≈ Ā

Z̄

Z1

A1

[
1+ Cbccα

(3π2)1/3

(
Z

2/3
1 −f̃ (Z1,Z2)

)]
−1.

(70)

C. Coexistence of two pure solid phases

The onset of the transition from a pure bcc phase of
nuclei (A1,Z1) to a coexistence of bcc phases of nuclei
(A1,Z1) and (A2,Z2) is found to be determined by the same
stability condition as that for the transition between two
pure bcc phases of nuclei (A1,Z1) and (A2,Z2) respectively.
In particular, the threshold electron Fermi energy and the
pressure are still given by Eqs. (45) and (47) respectively.
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However, the density now varies continuously at the transition,
as can be seen from Eq. (65) with ξ1 = 1, recalling that
f̃ (Z1,Z2) = f̃mix(Z1,Z2) = Z

2/3
1 in this case (see Sec. II C).

As ξ1 decreases from ξ1 = 1 to ξ1 = 0, the mean density n̄
increases from n̄max

1 [pure bcc phase of nuclei (A1,Z1)] to
n̄min

2 [pure bcc phase of nuclei (A2,Z2)], whereas the pressure
remains unchanged P = P1→2, as illustrated in Fig. 1. Since
inside a self-gravitating body in hydrostatic equilibrium the
pressure must increase monotonically with depth (see, e.g.,
Ref. [1]), pure solid phases cannot coexist in any region of the
crust of a neutron star.

D. Stability of a binary compound against phase separation

As discussed in Sec. II C, the stability of a binary compound
made of nuclei (A1,Z1) and (A2,Z2) against phase separation
is determined by the condition (42), which reads

R ≡ f̃ (Z1,Z2)

fmix(Z1,Z2)
> 1. (71)

If fulfilled, the inequality (71) implies that a mixture of two
pure bcc phases of nuclei (A1,Z1) and (A2,Z2) at pressure
P1→2 is unstable against the formation of a binary compound.
As a consequence, the threshold pressure P1→1+2 for the

appearance of the compound must be lower than P1→2. To
show this, let us first remark that

F̃ (Z1,A1; Z1,A1,Z2,A2) − F̃0(Z1,A1; Z2,A2)

= A1
Z5/3 − f̃ (Z1,Z2)Z̄

Z1A2 − A1Z2

Cbccα

(3π2)1/3
. (72)

Using Eqs. (41), (51), and (71), and recalling that Cbcc < 0,
we thus have

F̃ (Z1,A1; Z1,A1,Z2,A2) > F̃0(Z1,A1; Z2,A2). (73)

The inequality P1→1+2 < P1→2 follows by comparing
Eqs. (47) and (61). Likewise, the highest possible density
n̄max

1 at which the pure bcc solid phase of nuclei (A1,Z1)
can possibly exist is lower than that obtained for the
transition between the two pure solid phases if Eq. (71)
holds.

With further compression, the compound will be unstable
against the transition to a pure bcc phase of nuclei (A2,Z2).
The pressure P1+2→2 at which this transition occurs can be
obtained using the formulas given in Sec. II B:

P1+2→2 = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

)√
1 + x2

r + ln
(
xr +

√
1 + x2

r

)] + Cbccα

3(3π2)4/3
x4

r

mec
2

λ3
e

Z
2/3
2 , (74)

xr =γ 1→2
e

[√
1−(1−F̃ (Z2,A2; Z1,A1,Z2,A2)2)/

(
γ 1→2

e

)2 − F̃ (Z2,A2; Z1,A1,Z2,A2)
]
[1 − F̃ (Z2,A2; Z1,A1,Z2,A2)2]−1,

(75)

with the same threshold electron Fermi energy as that given by
Eq. (45) for the transition between pure bcc solid phases. The
highest density at which the compound is possibly present is
given by

n̄max
1+2 = Ā

Z̄

Z2

A2
n̄max

2

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
2

− f̃ (Z1,Z2)

)√
1 + x2

r

xr

]
, (76)

where

n̄min
2 = A2

Z2

x3
r

3π2λ3
e

(77)

is the lowest density at which the pure bcc solid phase of nuclei
(A2,Z2) can appear. The transition between these two phases
is accompanied by a density discontinuity given by

n̄max
1+2 − n̄min

2

n̄min
2

= Ā

Z̄

Z2

A2

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
2

− f̃ (Z1,Z2)

)√
1 + x2

r

xr

]
− 1. (78)

As discussed in Sec. II B, we must have

ĀZ2 − Z̄A2 � 0 (79)

to ensure mechanical stability. Collecting Eqs. (66) and (79)
thus shows that the composition of the compound is not
arbitrary, but must satisfy the following constraint (matter
neutronization):

A1

Z1
� Ā

Z̄
� A2

Z2
. (80)

In the limit of ultrarelativistic electrons, γ 1→2
e � 1, the

threshold pressure and the associated densities are approxi-
mately given by

P1+2→2 ≈
(
μ1→2

e

)4

12π2(�c)3
[1 + F̃ (Z2,A2; Z1,A1,Z2,A2)]−4

×
(

1 + 4Cbccα

(81π2)1/3
Z

2/3
2

)
, (81)

n̄max
1+2 ≈ Ā

Z̄

Z2

A2
n̄min

2

[
1 + Cbccα

(3π2)1/3

(
Z

2/3
2 − f̃ (Z1,Z2)

)]
,

(82)

n̄min
2 ≈ A2

Z2

(
μ1→2

e

)3

3π2(�c)3
[1 + F̃ (Z2,A2; Z1,A1,Z2,A2)]−3.

(83)
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FIG. 2. Schematic representation of the pressure P versus mean
baryon number density n̄ for a transition between two pure body-
centered cubic solid phases of nuclei (A1,Z1) and (A2,Z2) accompa-
nied by the formation of a binary compound (with cesium chloride
structure in this case). For comparison, the transition leading to
the coexistence of pure phases is indicated by the dotted line. The
figure is not to scale. In reality, the range of pressures for which
the compound is present (from P1→1+2 to P1+2→2) is very small,
(P1+2→2 − P1→1+2)/P1→2 � 1, as shown in Eq. (86).

The density discontinuity is thus approximately given by

n̄max
1+2−n̄min

2

n̄min
2

≈ Ā

Z̄

Z2

A2

[
1+ Cbccα

(3π2)1/3

(
Z

2/3
2 −f̃ (Z1,Z2)

)]
−1.

(84)

If the binary compound is stable, i.e., Eq. (71) is fulfilled,
it can be shown that P1+2→2 > P1→2 by comparing Eqs. (58)
and (74) using Eq. (51) and the identity

F̃ (Z2,A2; Z1,A1,Z2,A2) − F̃0(Z2,A2; Z1,A1)

= A2
Z5/3 − Z̄f̃ (Z1,Z2)

Z2A1 − Z1A2

Cbccα

(3π2)1/3
. (85)

Similarly, it can be shown that n̄max
1+2 > n̄min

1+2. Binary com-
pounds can exist in the crust of a neutron star, but only over
a very small range of pressures, which to lowest order in α is

approximately given by

P1+2→2 − P1→1+2

P1→2
≈ 4Cbccα

(3π2)1/3

ĀZ̄(A2Z1 − A1Z2)

(Z1Ā − Z̄A1)(Z2Ā − Z̄A2)

×
(

f̃ (Z1,Z2) − Z5/3

Z̄

)
, (86)

where we have used Eqs. (60), (67), and (81). This equation
also shows that compounds made of different isotopes are
unlikely to be present in the crust since P1+2→2 = P1→1+2

if Z1 = Z2. The range of densities for which the compound
exists is approximately given to lowest order in α by

n̄max
1+2 − n̄min

1+2

n̄min
2 − n̄max

1

≈ 3Cbccα

(3π2)1/3

(
f̃ (Z1,Z2) − Z5/3

Z̄

)

×
(

1 − Z̄A1

ĀZ1

)−1(
1 − Z̄A2

ĀZ2

)−1

. (87)

The variation of the pressure with respect to the density
is schematically illustrated in Fig. 2. In principle, the pure
bcc crystal of nuclei (A1,Z1) and the binary compound can
coexist at pressure P1→1+2 (at densities between n̄max

1 and
n̄min

1+2); similarly the pure bcc crystal of nuclei (A2,Z2) and the
binary compound can coexist at pressure P1+2→2 (at densities
between n̄max

1+2 and n̄min
2 ). However, as discussed in Sec. III C,

such coexistence of solid phases cannot occur in any region of
neutron-star crusts.

IV. EQUILIBRIUM COMPOSITION OF THE OUTER
CRUST OF COLD NONACCRETING NEUTRON STARS

A. Stability of various cubic and noncubic binary compounds
against phase separation

The binary compound structures that we consider here are
illustrated in Figs. 3, 4, and 5. The most familiar example
of terrestrial fcc1 compounds is rocksalt—sodium chloride
(NaCl). Other such compounds are various oxides (e.g., CaO,
MgO, NiO, SrO, YbO, ZrO) and carbonitrides (e.g., TiC,
TiN, HfC). The prototype of fcc2 compounds is fluorite
(CaF2). Terrestrial sc1 compounds include for instance cesium
chloride (CsCl) and β-brass (CuZn). Examples of terrestrial
compounds with sc2 and hcp structures are auricupride
(AuCu3) and tungsten carbide (WC) respectively. Kobyakov
and Pethick [31] have recently argued that the equilibrium

sc2sc1fcc1 fcc2

FIG. 3. Binary compounds made of two nuclear species (A1,Z1) (black circles) and (A2,Z2) (white circles) with face-centered cubic (fcc)
and simple cubic (sc) crystal structures.
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p1 p2 p3

FIG. 4. Binary compounds made of two nuclear species (A1,Z1) (black circles) and (A2,Z2) (white circles) based on the cubic perovskite
structure shown in Fig. 8.

structure of the inner crust of a neutron star could be similar
to that of baryum titanate (BaTiO3) represented in Fig. 8, but
made of only one kind of nuclear clusters. For this reason, we
have also considered binary compounds based on the cubic
perovskite structure. The formation of ternary compounds
will be briefly discussed in Sec. IV B. Let us stress that
stellar compounds differ in two fundamental ways from their
terrestrial counterparts: first, stellar compounds are made of
“bare” nuclei; and second, these nuclei are embedded in an
essentially uniform relativistic electron Fermi gas.

The structure functions of a binary compound can be
generally written as

f (Z1,Z2) = Z̄−4/3[ηZ2
1 + ζZ2

2 + (1 − η − ζ )Z1Z2
]
. (88)

The numerical values for the lattice constants C, η, and ζ are
indicated in Table I. Lattice constants of the fcc1, sc1, sc2,
and hcp lattices were taken from Ref. [18]. The calculations
of the other lattice constants can be found in Appendix B. In
the limiting case of a pure crystal, the structure function (88)
reduces to f (Z,Z) = Z2/3 independently of η and ζ . As can
be seen from Table I, the sc1 lattice (which coincides in this
case with a bcc lattice) yields the lowest energy. In particular,
pure cubic perovskite structures are unstable in the outer crust
of neutron star, but might exist in the inner crust due to nuclei-
nuclei interactions induced by free neutrons [31].

hcp

FIG. 5. Binary compound made of two nuclear species (A1,Z1)
(black circles) and (A2,Z2) (white circles) with an hexagonal close-
packed (hcp) structure.

As discussed in Sec. III D, the stability of a compound is
determined by the dimensionless ratio

R(q) = f̃ (Z1,Z2)

fmix(Z1,Z2)

= C

Cbcc

η + (1 − η − ζ )q + ζq2

[ξ + (1 − ξ )q]1/3[ξ + (1 − ξ )q5/3]
, (89)

where q ≡ Z2/Z1 and ξ = ξ1 denotes the proportion of nuclei
(A1,Z1). The compound is stable if R(q) > 1. As shown in
Figs. 6 and 7, the sc2, fcc2, p3 and hcp structures do not
lead to any stable compound since R(q) � 1 for any value
of q. On the other hand, binary compounds with sc1, fcc1,
p1, and p2 structures can be stable depending on the charge
ratios. In particular, the fcc1 structure with a charge ratio
q � 0.07 yields the most stable compounds with R � 1.003,
as first pointed out by Dyson [16]. However, such compounds
are not necessarily the most stable ones considering full
thermodynamic equilibrium with respect to all kinds of weak
and strong nuclear reactions [18]. Recalling that the crust
of a neutron star is expected to be stratified into pure bcc
layers with different compositions, binary compounds could
be naturally formed at the interfaces by substitution of nuclei,
by addition of nuclei in the interstices of the bcc lattice, or
by both mechanisms. Interstitial compounds with p2 structure
are stable against phase separation only for very low charge
ratios, from q = 0 to q � 0.013 (with R reaching 1.000 13
at q � 0.0058). The p1 type compounds that could be formed
from both substitution and additions allows for a larger range
of values for the charge ratios from q = 0 to q � 0.084 (with
R reaching 1.000 44 at q � 0.039). Nevertheless, it appears
that substitutional compounds with the sc1 structure are the
most likely to be present in the crust of a neutron star since
they are stable against phase separation over a very wide range
of values of the charge ratio, from q � 0.413 to q � 2.42
(with R reaching 1.000 16 at q � 0.055 and q � 1.83). This
conclusion is consistent with Monte Carlo simulations of
binary ionic mixtures [30].

B. Stability of cubic perovskite ternary compounds
against phase separation

In this section, we briefly discuss the possible formation of
ternary compounds in the crust of a neutron star. The structure
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0 0.5 1 1.5 2
q

0.998

0.999

1

1.001
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1.004

sc1
sc2
fcc1
fcc2

0 1 2 3 4 5
q

0.95

0.96

0.97

0.98

0.99

1

1.01

sc1
sc2
fcc1
fcc2

FIG. 6. Values of the dimensionless ratio R(q) as a function of the charge ratio q = Z2/Z1 for the binary compounds shown in Figure 3.
The thin horizontal line delimits the region of stability against phase separation; a compound is stable if R(q) > 1. The right panel shows a
close-up view near q = 1. See text for details.

function can be quite generally written as

f (Z1,Z2,Z3) = Z̄−4/3
[
η1Z

2
1 + η2Z

2
2 + η3Z

2
3 + η12Z1Z2

+ η13Z1Z3 + η23Z2Z3
]
. (90)

The constants corresponding to the cubic perovskite structure
shown in Fig. 8 are indicated in Table II. Their calculations
can be found in Appendix B.

As discussed in Sec. II C, the stability of a ternary
compound against phase separation is determined by the
dimensionless ratio

R(q,p) = f̃ (Z1,Z2,Z3)

fmix(Z1,Z2,Z3)

= C

Cbcc

η1(1 + q2) + η3p
2 + η12q + η13p + η23qp

(ξ1 + ξ2q + ξ3p)1/3(ξ1 + ξ2q5/3 + ξ3p5/3)
,

(91)

where q ≡ Z2/Z1 and p ≡ Z3/Z1. The cubic perovskite
compound is found to be stable [R(q) > 1] in a very restricted
domain of the charge ratios q and p, as shown in Fig. 9.
The maximum is found for q � 0.0510 and p � 0.870 with
R � 1.000 59. This kind of analysis naturally explains why
systems with very different charges are generally more liable to
form compounds than systems with similar charges, as recently
observed in Ref. [20] from systematic phase equilibrium
calculations.

C. Ground-state composition of dense stellar matter

Determining the ground-state composition of dense matter
allowing for fcc1, sc1, p1, and p2 binary compounds as
well as the cubic perovskite ternary compounds still remains
computationally very expensive since at each pressure P
the Gibbs free energy must be calculated for all possible
combinations of nuclei (∼7 × 107 for binary compounds,

0 0.5 1 1.5 2
q

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

hcp
p1
p2
p3

0 1 2 3 4 5
q

0.9

0.95

1

1.05

1.1
hcp
p1
p2
p3

FIG. 7. Same as Fig. 6 for the binary compounds shown in Figs. 4 and 5.
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FIG. 8. Ternary compound with cubic perovskite structure made
of three nuclear species (A1,Z1) (black circles), (A2,Z2) (grey circle),
and (A3,Z3) (white circles).

∼6 × 1011 for ternary compounds). For this reason, we shall
proceed as follows.

First, the equilibrium composition of the crust is determined
by considering only pure phases (for which the most stable
crystal structure is the bcc lattice). To this end, for each
pressure P , we minimize the Gibbs free energy per nucleon
g(A,Z,P ) over all possible nuclei (A,Z). We have made use
of experimental atomic masses from the 2012 Atomic Mass
Evaluation [32] supplemented with the Brussels-Montreal
microscopic nuclear mass model HFB-24 [33] for the masses
that have not yet been measured. Starting from the initial value
P = 3 × 10−11 MeV fm−3, we have increased the pressure
with a step 
P = 0.003P until the onset of neutron dripping
out of nuclei, which delimits the boundary between the outer
and inner regions of the crust. Results are summarized in
Table III. Let us consider that the equilibrium nucleus thus
found is (A,Z) in the range of pressures Pmin � P � Pmax.
The compounds most likely to appear in this region are
those yielding the lowest values for the threshold pressure
Pthres, which is completely determined by Eq. (18) and can
therefore be tabulated once and for all. In the ultrarelativistic
regime, Pthres can be accurately estimated from Eq. (33).
Some compounds may yield values for the threshold electron
Fermi energy such that μthres

e < mec
2; such transitions are

energetically forbidden and must therefore be ignored. A

TABLE II. Structure constants appearing in Eq. (90) for the
ternary compounds shown in Fig. 8. The quantities ξ1, ξ2, and ξ3

denote the proportions of nuclei (A1,Z1), (A2,Z2), and (A3,Z3)
respectively.

C −1.365 879

η1 0.121 479
η2 0.121 479
η3 0.514 083
η12 0.0686 701
η13 0.149 645
η23 0.024 644 1
ξ1 1/5
ξ2 1/5
ξ3 3/5

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q
p

FIG. 9. Stability of cubic perovskite compounds shown in Fig. 8
against phase separation, as a function of the charge ratios q = Z2/Z1

and p = Z3/Z1. Stable compounds only exist in black regions, where
the dimensionless ratio R(q,p) exceeds unity. See text for details.

compound will be energetically favored if the corresponding
threshold pressure Pthres lies in the range Pmin � Pthres � Pmax.
The analysis of the mass tables suggests that the compounds

TABLE III. Composition of the outer crust of a cold nonaccreting
neutron star considering only pure body-centered cubic crystals made
of nuclei with atomic number Z and mass number A. Results were
obtained using experimental masses from the 2012 Atomic Mass
Evaluation [32] supplemented with the Brussels-Montreal nuclear
mass model HFB-24 [33]. The mean baryon number densities n̄ are
measured in units of fm−3, the transition pressures P1→2 are in units
of MeV fm−3, and the threshold electron Fermi energies μ1→2

e are in
units of MeV. See text for details.

Z A n̄min n̄max P1→2 μ1→2
e

26 56 4.94 × 10−9 3.36 × 10−10 0.96
28 62 5.09 × 10−9 1.59 × 10−7 4.20 × 10−8 1.97
26 58 1.60 × 10−7 1.65 × 10−7 4.39 × 10−8 2.67
28 64 1.70 × 10−7 8.01 × 10−7 3.56 × 10−7 4.15
28 66 8.28 × 10−7 9.21 × 10−7 4.12 × 10−7 6.21
36 86 9.42 × 10−7 1.86 × 10−6 1.03 × 10−6 5.13
34 84 1.92 × 10−6 6.79 × 10−6 5.57 × 10−6 7.83
32 82 7.04 × 10−6 1.67 × 10−5 1.77 × 10−5 10.49
30 80 1.74 × 10−5 3.46 × 10−5 4.44 × 10−5 13.25
28 78 3.62 × 10−5 6.64 × 10−5 1.00 × 10−4 16.85
28 80 6.83 × 10−5 7.85 × 10−5 1.21 × 10−4 23.06
42 124 8.21 × 10−5 1.21 × 10−4 2.05 × 10−4 19.09
40 122 1.26 × 10−4 1.56 × 10−4 2.75 × 10−4 20.62
39 121 1.59 × 10−4 1.63 × 10−4 2.85 × 10−4 20.84
38 120 1.67 × 10−4 1.95 × 10−4 3.54 × 10−4 22.92
38 122 1.99 × 10−4 2.40 × 10−4 4.55 × 10−4 24.40
38 124 2.44 × 10−4 2.56 × 10−4 4.87 × 10−4
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TABLE IV. Composition of the outer crust of a cold nonaccreting neutron star allowing for binary compounds with the sc1 structure
shown in Fig. 3. Results were obtained using experimental masses from the 2012 Atomic Mass Evaluation [32] supplemented with the
Brussels-Montreal nuclear mass model HFB-24 [33]. The columns give the atomic and mass numbers of the two nuclei, the maximum mean
baryon number density n̄max

1 at which the pure crystal (A1,Z1) is present, the transition pressure P1→1+2 for the formation of the compound, the
lowest and highest densities (respectively n̄min

1+2 and n̄max
1+2) at which the compound exists, the threshold pressure P1+2→2 for the disappearance of

the compound, and the minimum density n̄min
2 at which the pure crystal (A2,Z2) appears. The densities are measured in units of fm−3 and the

pressures are in units of MeV fm−3.

Z1 A1 Z2 A2 n̄max
1 P1→1+2 n̄min

1+2 n̄max
1+2 P1+2→2 n̄min

2

26 56 28 62 4.93698 × 10−9 3.36539 × 10−10 5.01371 × 10−9 5.01376 × 10−9 3.36544 × 10−10 5.08514 × 10−9

28 62 26 58 1.59126 × 10−7 4.20338 × 10−8 1.59572 × 10−7 1.59591 × 10−7 4.20407 × 10−8 1.60071 × 10−7

26 58 28 64 1.65281 × 10−7 4.39084 × 10−8 1.67532 × 10−7 1.67537 × 10−7 4.39100 × 10−8 1.69630 × 10−7

28 66 36 86 9.23299 × 10−7 4.13609 × 10−7 9.33458 × 10−7 9.33710 × 10−7 4.13758 × 10−7 9.41661 × 10−7

36 86 34 84 1.85904 × 10−6 1.02956 × 10−6 1.88857 × 10−6 1.88859 × 10−6 1.02957 × 10−6 1.91982 × 10−6

34 84 32 82 6.79092 × 10−6 5.57552 × 10−6 6.90842 × 10−6 6.90850 × 10−6 5.5756 × 10−6 7.03316 × 10−6

32 82 30 80 1.66930 × 10−5 1.76809 × 10−5 1.70089 × 10−5 1.70091 × 10−5 1.76812 × 10−5 1.73455 × 10−5

30 80 28 78 3.45867 × 10−5 4.44090 × 10−5 3.53057 × 10−5 3.53062 × 10−5 4.44098 × 10−5 3.60754 × 10−5

28 80 42 124 7.85386 × 10−5 1.21210 × 10−4 8.06025 × 10−5 8.06081 × 10−5 1.21221 × 10−4 8.19983 × 10−5

42 124 40 122 1.21516 × 10−4 2.04847 × 10−4 1.23392 × 10−4 1.23392 × 10−4 2.04849 × 10−4 1.25360 × 10−4

40 122 39 121 1.56784 × 10−4 2.76056 × 10−4 1.58063 × 10−4 1.58064 × 10−4 2.76058 × 10−4 1.59375 × 10−4

39 121 38 120 1.63675 × 10−4 2.86036 × 10−4 1.65058 × 10−4 1.65058 × 10−4 2.86037 × 10−4 1.66476 × 10−4

most likely to exist in the outer crust of a neutron star are
those made of nuclei from neighboring layers, as previously
found in Ref. [18]. By inspecting Table III, it can be seen that
the corresponding charge ratios vary from about q = 0.93 for
62Ni +58Fe to 1.5 for 80Ni +124Mo. Therefore, only binary
compounds with sc1 structure need to be considered, as can
be inferred from Fig. 6 (see also Refs. [34,35]).

For each pair (A1,Z1) and (A2,Z2) of adjacent nuclei
shown in Table III, we have solved numerically Eq. (16) with
(A,Z) = (A1,Z1) and (A,Z) = (A2,Z2). In this way, we have
determined the threshold pressures P1→1+2 and P1+2→2, as
well as the densities for the appearance and disappearance of
the different phases without any further approximation. Results
are summarized in Table IV. We have studied the stability of
these compounds against phase separation. We have found that
the direct comparison of the Gibbs free energies per nucleon is
equivalent to the simple criterion (42) obtained by expanding g

to first order in α. Contrary to the results obtained in Ref. [18],
we do not find any stable compound composed of different
isotopes, as anticipated in Sec. III D. Using the numerical
results, we have tested the precision of the analytical formulas
for the threshold densities and pressures. The errors amount
at most to 0.2% for the pressures and 0.07% for the densities.
The approximate expressions obtained under the assumption
of ultrarelativistic electrons are less reliable. However, their
precision is expected to increase with increasing μ1→2

e thereby
with increasing depth below the stellar surface (see Table III).
Leaving aside the shallowest layer containing the compound
made of 56Fe +62Ni (the associated threshold electron Fermi
energy is less than twice the electron rest mass energy; see
Table III), the errors amount at most to about 16% for the
pressures and 8% for the densities. The errors on the pressures
and on the densities are the largest for the compound made of
62Ni +58Fe, and drop to about 0.2% and 0.08% respectively
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FIG. 10. Pressure versus mean baryon number density in the outer crust of a cold nonaccreting neutron star. Results were obtained using
experimental masses from the 2012 Atomic Mass Evaluation [32] supplemented with the Brussels-Montreal nuclear mass model HFB-24 [33].
Two regions of the crust are highlighted corresponding to the change of composition from 56Fe to 62Ni (left panel) and from 80Ni to 124Mo
(right panel). In both cases, a binary compound with the sc1 structure shown in Fig. 3 is present in the intermediate layers. The dashed lines
represent the transition considering pure crystalline phases only.
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for the deepest compound made of 121Y +120Sr. As illustrated
in Fig. 10, the impact of binary compounds on the equation of
state of the outer crust of a nonaccreting neutron star is very
small.

V. CONCLUSIONS

It has been generally thought that the outer crust of a cold
nonaccreting neutron star consists of different layers, each of
which are made of a pure body-centered cubic ionic crystal
in a charge compensating background of highly degenerate
electrons. We have analyzed the stability of such layer against
its conversion (due to weak and strong nuclear processes) into
a multinary ionic compound with an arbitrary composition.
We have derived general analytical formulas for the pressure
at the onset of the transition, as well as for the densities of the
different phases irrespective of the degree of relativity of the
electron gas. These expressions take particularly simple forms
in the limit of ultrarelativistic electrons; see Eqs. (33), (34),
and (35) respectively.

A necessary condition for the formation of a compound is
that it must be stable against the separation into pure coexisting
phases. We have shown that the stability condition, embedded
in Eq. (42), is uniquely determined by the compound structure
and composition irrespective of the stellar conditions. In
particular, we have thus shown that the stability of a compound
against phase separation in dense matter depends neither on
the pressure nor on the degree of relativity of the electron gas,
as recently noticed in Ref. [20] from a systematic search of
equilibrium phases. Moreover, with this simple criterion, it
can be easily shown that systems with very different charges
are more likely to form stable compounds than systems with
similar charges, as observed in Ref. [20].

However, equilibrium with respect to weak and strong
nuclear interactions imposes very stringent constraints on the
nuclear species present in the crust of a neutron star. Typically,
the charge numbers of equilibrium nuclides are Z ∼ 30–40.
For this reason, the formation of disordered compounds and
multinary compounds made of a large variety of different
nuclei appears very unlikely (see, e.g., Ref. [28]). On the other
hand, ordered binary ionic compounds are generally present at
the interface between two pure adjacent crustal layers. Their
existence is uniquely determined by their stability against
phase separation, and can thus be very easily assessed. In
particular, compounds made of different isotopes are unstable.
By examining different cubic and noncubic lattices, we have
found that substitutional compounds having the same structure
as cesium chloride are the most likely to be formed in the
outer crust of a nonaccreting neutron star, whereas compounds
similar to auricupride (AuCu3) or tungsten carbide (WC)
are all unstable irrespective of their composition. Likewise,
the formation of ternary compounds with cubic perovskite
structure such as baryum titanate (BaTiO3) is found to be
highly improbable.

Using experimental atomic mass data from the 2012
Atomic Mass Evaluation [32] supplemented with the Brussels-
Montreal HFB-24 nuclear mass model [33], we have calculated
the ground-state structure and the equation of state of the
outer crust of a cold nonaccreting neutron star, allowing for

binary compounds. These calculations have confirmed that
compounds with cesium chloride structure can be formed at the
boundary between pure crustal layers. With these numerical
results, we have also been able to assess the precision of
our analytical formulas: the errors never exceed 0.2% for
the threshold pressures and 0.07% for the densities of the
solid phases. Although the impact of binary compounds on
the equation of state has been found to be very small, their
presence may have important implications for the thermal
and mechanical properties (especially the brittleness) of the
crust (see, e.g., Refs. [34–36]). In our investigation, we have
neglected electron exchange and polarization effects, as well
as quantum zero point motion of ions about their equilibrium
positions. Although these corrections are very small [16,17],
they may affect the stability of ionic compounds and thus need
to be closely examined.

From our analysis, we expect a much larger variety of
ordered and disordered multinary ionic compounds to form in
the core of white dwarfs, and in the crust of accreting neutron
stars (see, e.g. Refs. [19,20]). This warrants further studies.
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APPENDIX A: ON TRANSITIONS TO A
MULTICOMPONENT SOLID PHASE

SUCH THAT Z̄/ Ā = Z/A

Let us consider the transition from of a solid made of only
one type of nuclei (A,Z) to a multi-component solid made of
nuclei (Ai,Zi) such that Z̄/Ā = Z/A. Solving the threshold
condition (16) after expanding the Gibbs free energies per
nucleon to first order in α leads to the following expression for
the maximum mean nucleon number density of the pure solid
phase

n̄max =
[

M̄ ′

Āme

− M ′(A,Z)

Ame

]3 (A/Z)4

(λeCbccα)3
[Z2/3 − f̃ ({Zi})]−3.

(A1)
Because α � 1, the threshold density for the onset of such
transitions is thus likely to lie well above the threshold
densities for any transitions accompanied by a discontinous
change of proton fraction (Z̄/Ā �= Z/A). As a matter of fact,
n̄max diverges as α → 0 for transitions such that Z̄/Ā = Z/A
whereas n̄max remains finite for any other transitions, as can
be seen by comparing Eqs. (A1) and (28), with

xr = γ thres
e

√
1 − 1(

γ thres
e

)2 (A2)

using Eq. (26).
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APPENDIX B: STRUCTURE FUNCTIONS OF CUBIC
BINARY COMPOUNDS

The structure function f (Z1,Z2) of the fluorite (fcc2) and
cubic perovskite (p1, p2, and p3) lattices shown in Figs. 3
and 4 can be determined from the calculations of Refs. [18,24]
using the lattice constants Csc, Cbcc, and Cfcc of the pure sc,
bcc, and fcc lattices, respectively. For these latter constants, we
shall use the values given in Ref. [18] and indicated in Table I;
considering that if the two nuclear species are the same, the
fcc1 lattice reduces to a sc lattice, the sc1 lattice to a bcc lattice,
and the sc2 lattice to a fcc lattice, we thus have Csc = Cfcc1,
Cbcc = Csc1, and Cfcc = Csc2. The calculations of the lattice
constants of the fluorite and cubic perovskite structures are
presented in the following sections.

1. Fluorite

From dimensional analysis, the lattice energy density can
be quite generally expressed as

EL = nN

e2

aN

(
c1Z

2
1 + c2Z

2
2 + c12Z1Z2

)
, (B1)

where nN denotes the mean number density of nuclei (A1,Z1)
and (A2,Z2), whereas aN = (4πnN/3)−1/3 is the ion-sphere
radius. Using the electric charge neutrality condition ne =
Z̄nN , the lattice energy density can be equivalently written
in the form of Eq. (8) with the structure function given by
Eq. (88). The corresponding constants are given by

C =
(

4π

3

)1/3

(c1 + c2 + c12), (B2)

η = c1

c1 + c2 + c12
, (B3)

ζ = c2

c1 + c2 + c12
. (B4)

These constants can be determined by considering limiting
cases as follows.

(i) Z1 = 0
The nuclei (A2,Z2) form a sc sublattice, therefore the
lattice energy EL must coincide with that of a sc lattice
of nuclei (A2,Z2), i.e.,

nN

e2

aN

c2Z
2
2 = n2

e2

a2

(
3

4π

)1/3

CscZ
2
2, (B5)

where a2 = (4πn2/3)−1/3 and n2 = (2/3)nN , as can
be easily seen from Fig. 3. We thus obtain

c2 =
(

3

4π

)1/3(2

3

)4/3

Csc. (B6)

(ii) Z2 = 0
The nuclei (A1,Z1) form a fcc sublattice. Following
the same reasoning as above, we find

c1 =
(

3

4π

)1/3(1

3

)4/3

Cfcc. (B7)

(iii) Z1 = Z2 = 1

The lattice energy density reduces to

EL = nN

e2

aN

(c1 + c2 + c12), (B8)

which can be directly compared to the expression
obtained in Ref. [24]:

EL = −1.728906 nN

e2

2aN

. (B9)

We can thus determine the remaining coefficient c12

from the equation

2(c1 + c2 + c12) = −1.728906. (B10)

2. Cubic perovskites

From dimensional analysis, the lattice energy density
of a ternary compound can be quite generally expressed
as

EL = nN

e2

aN

(
c1Z

2
1 + c2Z

2
2 + c3Z

2
3 + c12Z1Z2

+ c13Z1Z3 + c23Z2Z3
)
. (B11)

Alternatively, the lattice energy density can be written in
the form (8) with the structure function (90). The dif-
ferent coefficients are related to each by the following
equations:

C =
(

4π

3

)1/3

(c1 + c2 + c3 + c12 + c13 + c23), (B12)

η1 = c1

c1 + c2 + c3 + c12 + c13 + c23
, (B13)

η2 = c2

c1 + c2 + c3 + c12 + c13 + c23
, (B14)

η3 = c3

c1 + c2 + c3 + c12 + c13 + c23
, (B15)

η12 = c12

c1 + c2 + c3 + c12 + c13 + c23
, (B16)

η13 = c13

c1 + c2 + c3 + c12 + c13 + c23
, (B17)

η23 = c23

c1 + c2 + c3 + c12 + c13 + c23
. (B18)

Let us consider the original perovskite structure represented
in Fig. 8. The proportions of nuclei (A1,Z1), (A2,Z2), and
(A3,Z3) are 1/5, 1/5, and 3/5 respectively. By symmetry, we
have c1 = c2, or equivalently η1 = η2.

We shall follow the same approach as for the fluorite
structure.

(i) Z2 = Z3 = 0
The nuclei (A1,Z1) form a sc sublattice, thus leading
to

c1 =
(

3

4π

)1/3(1

5

)4/3

Csc. (B19)

(ii) Z3 = 0 and Z1 = Z2
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The nuclei (A1,Z1) and (A2,Z2) form a bcc sublattice.
We thus find

2c1 + c12 =
(

3

4π

)1/3(2

5

)4/3

Cbcc. (B20)

(iii) Z2 = 0
The cubic perovskite structure coincides with the sc2
lattice shown in Fig. 3. The corresponding lattice
energy density

EL = nN

e2

aN

(
c1Z

2
1 + c3Z

2
3 + c13Z1Z3

)
(B21)

can be directly compared to that given in Ref. [18]
(see Table I). In particular, the coefficients c3

and c13 can be completely determined from the
equations

c1 + c3 + c13 =
(

3

4π

)1/3(4

5

)4/3

Cfcc (B22)

[the nuclei (A1,Z1) and (A3,Z3) form a fcc sublattice],

ηsc2 = c3

c1 + c3 + c13
. (B23)

(iv) Z1 = Z2 = Z3 = 1
The lattice energy density reduces to

EL = nN

e2

aN

(c1 + c2 + c3 + c12 + c13 + c23),

(B24)
which can be directly compared to the expression
obtained in Ref. [24],

EL = −1.694648 nN

e2

2aN

. (B25)

We can thus determine the remaining coefficient c23

from the equation
2(c1 + c2 + c3 + c12) = −1.694 648, (B26)

using Eqs. (B19), (B20), and (B22).

Having determined all the lattice constants of the original
perovskite compound, the structure function of the binary
compounds shown in Fig. 4 can be easily determined from
particular cases:

(i) Z1 = Z3

Cp1 = (2c1 + c3 + c12 + c13 + c23)

(
4π

3

)1/3

,

(B27)

ηp1 = c1 + c13 + c3

2c1 + c3 + c12 + c13 + c23
, (B28)

ζp1 = c1

2c1 + c3 + c12 + c13 + c23
. (B29)

(ii) Z1 = Z2

Cp2 = Cp1, (B30)

ηp2 = 2c1 + c12

2c1 + c3 + c12 + c13 + c23
, (B31)

ζp2 = c3

2c1 + c3 + c12 + c13 + c23
. (B32)

(iii) Z2 = Z3

Cp3 = Cp1, (B33)

ηp3 = ζp1, (B34)

ζp3 = c1 + c3 + c23

2c1 + c3 + c12 + c13 + c23
. (B35)
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