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The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters)
that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a body-centered
cubic (BCC) crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these
dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the
assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of
neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we
obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound
neutrons. Consequences for the constraints from glitch observations are discussed.
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I. INTRODUCTION

The inner crust of neutron stars is characterized by the
presence of clusters in a more dilute gas of unbound neutrons.
While the clusters, containing protons and neutrons, form
probably a periodic lattice in order to minimize the Coulomb
energy, the neutron gas is superfluid. The superfluid compo-
nent of the crust can have potentially observable consequences
for the hydrodynamical and thermodynamical properties of
the crust [1]. It is therefore important to know the density of
effectively free neutrons. This is a nontrivial problem because
even the unbound neutrons might be “entrained” by the clusters
because of their interactions.

This entrainment effect has already been extensively dis-
cussed in the literature [2], mostly in the framework of a
band-structure theory for neutrons developed by Chamel and
co-workers [3–5]. This theory predicts that a large fraction
of the free neutrons are entrained. Consequently, the density
of effectively free superfluid neutrons is strongly reduced.
However, as discussed in Refs. [6,7], it is difficult to reconcile
this reduction of the superfluid density with the observed glitch
activity of the Vela pulsar.

The entrainment has also a strong effect on the heat
transport properties of the crust, and consequently on the
cooling of the star, through a modification of the speed of lattice
and superfluid phonons [8,9]. These have been discussed in
the framework of an effective theory for low-energy, long-
wavelength excitations [10]. A long wavelength means in this
context a wavelength that is large compared to the periodicity
of the crystalline structures in the crust. This effective theory
has a couple of parameters that have to be determined from
more microscopic approaches. Among these parameters are
the effective masses of the clusters, or, equivalently, the
superfluid density.

However, under the assumption that pairing is sufficiently
strong, superfluid hydrodynamics can also be applied on length
scales that are smaller than the periodicity of the crystalline
structures. This idea was used in [11–14] to estimate the

*noelmartin@ipno.in2p3.fr
†urban@ipno.in2p3.fr

effective mass of an isolated cluster immersed in a neutron gas,
and more recently also to describe collective modes in the so-
called “lasagne” phases in the deepest layers of the inner crust
[15,16]. In the present work, we apply this superfluid hydrody-
namics approach also to the crystalline and “spaghetti” phases.

In Sec. II A, we briefly summarize the hydrodynamic model
and the underlying assumptions. Then we apply it to the
uniform motion of a crystalline lattice of clusters relative
to the neutron gas (Sec. II B) and discuss how it can be
related to the macroscopic entrainment (Sec. II C). In Sec. III,
we explain how the hydrodynamic equations are solved.
The properties of the specific geometries, namely the body-
centered cubic (BCC) crystal of spherical clusters and the
hexagonal lattice of cylindrical rods, are discussed in Sec. IV.
Numerical results for microscopic and macroscopic quantities
and consequences for the interpretation of glitches are pre-
sented in Sec. V. We conclude with a discussion in Sec. VI.

Except in Sec. V C and in the Appendix, we use units with
� = c = 1, where � is the reduced Planck constant and c the
speed of light.

II. FORMALISM

A. Hydrodynamic model for the inner crust

Let us briefly recall the simple hydrodynamic model of
Refs. [12–14,16]. We assume that the clusters have constant
neutron and proton densities nn,2 and np,2 and a sharp surface
separating them from the neutron gas, whose density nn,1 is
also constant. The densities have to satisfy the conditions of
phase equilibrium (equal chemical potentials and pressure in
both phases), which is actually a very good approximation
[17].

Furthermore, it is assumed that the neutrons are superfluid.
Therefore, low-energy excitations correspond to coherent flow
of Cooper pairs. If the superfluid order parameter (gap) is
written as � = |�|eiϕ , the velocity field of the neutron pairs
is related to the phase ϕ by vn = ∇ϕ/(2m), where m denotes
the neutron mass.1 In the limit of zero temperature, and if one

1In contrast to Refs. [15,16] we neglect here the “microscopic”
entrainment of neutrons by protons in the liquid phase [18], which
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FIG. 1. Root-mean-square radius ξ of the Cooper pair in the
neutron gas (dashed lines) compared with the cell size L of the
crystalline lattice (red solid line) and the cluster radius R (blue solid
line) as functions of the total baryon density nB in the inner crust.
The neutron gas density nn,1 and the shown results for L and R were
obtained from calculations detailed in Ref. [17]. The results for ξ as
functions of nn,1 were obtained respectively by Matsuo [24] and Sun
et al. [25] using the Gogny force (purple short dashes), the G3RS
force (orange triangles), and the Bonn potential (green long dashes)
as pairing interactions.

excludes pair breaking, this leads to the equations of superfluid
hydrodynamics as discussed in Refs. [19,20] in the context of
ultracold atoms. Let us also mention that, again in the context
of ultracold atoms, a calculation in quasiparticle random-phase
approximation (QRPA) [21] showed that the collective modes
can be described by hydrodynamics if |�| becomes much
larger than the spacing of the discrete single-particle levels in
the trap potential.

In uniform neutron matter, the QRPA shows that the hydro-
dynamic behavior of the oscillations of the phase ϕ (Goldstone
or Bogoliubov-Anderson mode) is well fulfilled as long as the
excitation energy stays well below the two-quasiparticle (pair
breaking) threshold [22]. Furthermore, QRPA calculations of
collective modes of a cluster in a spherical Wigner-Seitz (WS)
cell predicted the appearance of “supergiant” resonances that
could be interpreted as hydrodynamic Bogoliubov-Anderson
modes in the volume of the cell [23].

In a nonuniform system, hydrodynamics is valid if the
coherence length ξ of the Cooper pairs is small compared
to the size of the inhomogeneities. In Fig. 1, we show different
theoretical predictions of the Cooper pair size ξ in the neutron
gas. While the results obtained with the Gogny force [24]
are in good agreement with those obtained with the Bonn
potential [25], the coherence length obtained with the G3RS
force [24] is considerably larger, especially at higher densities
nn,1. Actually, the uncertainty in ξ is directly related to the fact
that the density dependence of the gap � in neutron matter is
not very well known. From now on we will assume that pairing

originates from the velocity dependence of the effective neutron-
proton interaction. It should be included in future studies.

is strong, as with the Gogny or Bonn interactions. Note that
the coherence length is also relevant for the spatial structure
of vortices [26,27].

In Fig. 1, we also display the size L of the unit cell of the
crystalline lattice and the radius R of the clusters obtained in
Ref. [17]. Although the exact numbers for L and R depend on
the model, their order of magnitude follows from the balance
between surface and Coulomb energy and is therefore much
better constrained than the coherence length. We see that, at
low densities, the Cooper pair size ξ in the neutron gas is indeed
much smaller than the size L of the unit cell of the crystalline
lattice. At higher densities, where one expects the pasta phases,
the comparison would be somewhat less favorable. However,
the main problem is the small size of the clusters, whose radii
R are as small as ξ even in the case of strong pairing.

The condition ξ � R for the validity of hydrodynamics was
already mentioned in Migdal’s seminal work [28] in which he
explained the nuclear moments of inertia in the framework of
the theory of superfluidity. Since the coherence length ξ and the
nuclear radius R are of the same order of magnitude, rotating
nuclei exhibit a combination of irrotational and rotational flow.
Nevertheless, the nuclear moments of inertia are slightly closer
to the irrotational (hydrodynamic) than to the rigid-body limit
(see Fig. 8.2 in Ref. [29]).

In analogy to this observation, we expect that probably our
superfluid hydrodynamic model for the inner crust should give
the right picture, although it might probably overestimate the
superfluid flow inside (and close to) the clusters. We refer to
Sec. VI for a further discussion of this problem and possible
solutions.

B. Uniform flow of clusters through the gas

In the present paper, we concentrate on macroscopic (long
wavelength) motion. In this case, the relative velocity between
clusters and neutron gas varies only on length scales that are
much larger than the periodicity of the lattice.

We limit ourselves to a stationary motion, i.e., we assume
that the velocities and densities are time-independent in the
rest frame of the clusters. Then, in the limit of small velocities,
the size and shape of the clusters themselves as well as the
densities in the clusters and in the gas do not change as
compared to the static case. We define the cluster surface as the
surface of the sphere (3D) or rod (2D) containing the protons.
Hence, the velocity of the clusters is equal to the velocity of
the protons, up. The neutrons, however, can pass through the
cluster surface, and their velocity field vn(r) is not uniform,
since the neutrons of the gas somehow have to flow around or
through the clusters. To determine this motion is the main goal
of the present work.

As mentioned in Sec. II A, the superfluidity of the neutron
gas allows us to introduce a velocity potential φ = ϕ/(2m).
Since the densities remain constant, we have ∇ · vn = 0, i.e.,

�φ = 0. (1)

This equation is true in both phases, but it has to be
complemented with suitable boundary conditions at the phase
boundaries.
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In Refs. [11,15], the phase boundary was treated as
impermeable. However, this is not realistic, since neutrons
inside and outside the cluster are indistinguishable and nothing
prevents them from moving from the gas into the cluster
or vice versa. The permeability of the phase boundary was
included in the boundary conditions introduced by Magierski
and Bulgac [12–14]. Analogous boundary conditions were
given in Ref. [30] for a phase boundary in the context of
ultracold atoms. They were also used in Ref. [16] to describe
collective modes in the “pasta” phases of the neutron-star crust.

First, the phase of the order parameter is continuous across
the phase boundary, i.e.,

φ1 = φ2, (2)

where 1 and 2 refer to the limits of r approaching the interface
from outside or inside the cluster, respectively. This boundary
condition implies that the neutron velocity tangential to the
interface is continuous, too.

Second, the neutron current crossing the interface conserves
the particle number. Since the interface itself moves with
velocity up, this condition reads

nn,1(∇φ1 − up) · S = nn,2(∇φ2 − up) · S, (3)

where S is the normal vector to the surface, pointing outwards.
Note that in the limiting case of a vanishing gas density
(nn,1 = 0), this equation implies that ∇φ2 = up, i.e., in this
case the neutrons inside the cluster move together with the
protons as is intuitively clear.

So far, the boundary conditions are the same as in Ref. [12–
14], where the motion of a spherical nucleus in an infinite
neutron gas was studied. In this case, Eqs. (1)–(3) can be
solved analytically (see Sec. III A). However, except in the
case of plates (1D), this is no longer true if one considers a
periodic lattice of clusters.

To treat the periodicity, we introduce a primitive cell C
spanned by the D primitive vectors ai (i = 1, . . . ,D) of the
Bravais lattice, where D = 3 in the case of a crystal, D = 2
in the case of rods (spaghetti phase), and D = 1 in the case
of plates (lasagne phase). Depending on the lattice structure,
the primitive cell contains one or two clusters (see Sec. IV).
While the velocity field vn(r) is periodic,

vn(r + ai) = vn(r), (4)

the velocity potential itself can in general be the sum of a
periodic and a linear function. The linear function can be
written as un · r, where un is the spatially averaged neutron
velocity, which coincides with the velocity of the superfluid
neutrons [9,31] or conduction neutrons [8]. Note that un is
different from the average neutron velocity v̄n, which is defined
via the spatially averaged neutron current (see below). Without
loss of generality, let us choose the frame of reference such that
un = 0. In this frame, also the velocity potential is periodic,

φ(r + ai) = φ(r). (5)

From the function φ(r) in the primitive cell one can
derive the macroscopic (coarse grained) neutron current j̄n

by averaging over the volume of the cell, VC :

j̄n = 1

VC

∫
C
dV nn(r)∇φ(r). (6)

After integration by parts, Eq. (6) reduces to

j̄n = 1

VC
(nn,2 − nn,1)

∮
�

dS φ(r), (7)

where � is the surface of the cluster(s) in the cell. The integral
over the cell boundary vanishes because of the periodicity
of φ.

Similarly, one can calculate the average kinetic energy
density

Ekin,n = m

2VC

∫
C
dV nn(r)[∇φ(r)]2. (8)

Using the Gauss theorem and Eq. (3), this expression can be
simplified to [12]

Ekin,n = m

2V
(n2 − n1)

∮
�

dS · upφ(r) = m

2
up · j̄n. (9)

C. Entrainment

In Eq. (5) we assumed that un = 0. The solution for φ in
the general case un �= 0 is related to the periodic solution in
the special case un = 0 by

φ(r; up,un) = r · un + φ(r; up − un,0). (10)

The average velocity of neutrons v̄n is defined via the average
current j̄n as

v̄n = j̄n
n̄n

, (11)

where

n̄n = V1

VC
nn,1 + V2

VC
nn,2 (12)

denotes the average neutron density with V1,2 the volume
outside and inside the cluster(s), respectively. The neutron
current is now written as

j̄n = 1

VC

∫
C
dV nn(r)∇φ(r; up,un)

= n̄nun + 1

VC

∫
C
dV nn(r) ∇φ(r; up − un,0). (13)

Since the last term in Eq. (13) is linear in up − un, we can
write the current in the form

j̄n = n̄nun + nb
n(up − un), (14)

with a 3 × 3 matrix nb
n. Factorizing Eq. (14) with respect to

un, one sees that nb
n can be interpreted as the density of bound

neutrons, which are entrained by the clusters with velocity
up, while the superfluid neutrons moving with velocity un

have an average density ns
n = n̄nI3 − nb

n. Concerning bound
and superfluid neutrons, we follow here the nomenclature of
Ref. [31]. Hence, the final expression for the neutron current
reads:

j̄n = nb
nup + ns

nun. (15)
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The fact that nb
n and ns

n are matrices shows that the
proportion of bound neutrons depends in general on the
direction of the relative motion between neutrons and protons.
This is intuitively clear, e.g., in the case of the 2D rod phase,
where neutrons and protons can move independently of each
other in the direction parallel to the rods, while this is not the
case in the directions perpendicular to the rods. As will be
shown in Sec. IV A, nb

n and ns
n are proportional to the unit

matrix if the lattice has a cubic symmetry.
It is straightforward to generalize also Eq. (9) for the

neutron kinetic energy to the general case un �= 0. First, note
that in the case un = 0, the current simplifies to j̄n = nb

nup, and
consequently Eq. (9) becomes Ekin,n = (m/2)uᵀ

pnb
nup. Starting

from Eq. (10) and repeating the same steps for the general case
un �= 0, one obtains:

Ekin,n = m

2

(
uᵀ

n ns
nun + uᵀ

pnb
nup

)
, (16)

which agrees with the expression of Chamel and Carter [32]
if one identifies nb

n with the neutron normal density in their
nomenclature.

In summary, the macroscopic entrainment coefficients of
the crust are determined by the matrices nb

n and ns
n which we

can obtain by solving numerically Eqs. (1)–(5) for the function
φ(r; up,0).

III. SOLUTION OF THE HYDRODYNAMIC EQUATIONS

A. Analytic solution in simple cases

In the case of a single cluster (spherical or cylindrical)
moving with velocity up through in an infinite and uniform
neutron gas, and in the case of a 1D lattice of parallel plates,
analytical solutions for the velocity potential can be found.

The case of a spherical cluster of radius R was studied in
Refs. [12–14]. If we place the origin of the coordinate system
in the center of the cluster and suppose that the neutron gas
is at rest at infinity (φ → 0 for r → ∞), the solution for the
velocity potential is

φ(r) =
⎧⎨
⎩

1−γ

1+2γ
r · up for r < R,

R3

r3
1−γ

1+2γ
r · up for r � R,

(17)

where γ = nn,1/nn,2 is the ratio between the neutron densities
in the gas and in the cluster. From this solution, one can
compute the total momentum carried by neutrons in the cluster
and in the gas. Identifying this momentum with Neffmup, one
can define the number Neff of neutrons effectively entrained
by the protons of the cluster,

Neff = Nr-cluster
(1 − γ )2

1 + 2γ
, (18)

with

Nr-cluster = 4π

3
R3 nn,2 (19)

the number of neutrons that are located inside the cluster (in
coordinate space, denoted r-cluster following Ref. [33]). It is
interesting to note that Neff < Nr-cluster, i.e., the main effect is
not that the cluster entrains neutrons of the gas with it, but

rather that the flow of gas neutrons through the cluster surface
reduces the speed of the neutrons inside the cluster.

The case of a cylindrical rod moving through an infinite
and uniform neutron gas can be treated analogously. Here, the
velocity potential is given by

φ(r) =
⎧⎨
⎩

1−γ

1+γ
r⊥ · up for r⊥ < R,

R2

r2
⊥

1−γ

1+γ
r⊥ · up for r⊥ � R,

(20)

where r⊥ is the projection of r on the plane perpendicular to
the symmetry axis of the rod. Since the rod is assumed to be
infinite, one can only define Neff and Nr-cluster as numbers per
unit length, e.g., Nr-cluster = πR2nn,2. If the proton velocity
up is parallel to the rod, the surface of the rod does not
move and there is obviously no entrainment. However, for up

perpendicular to the rod, the expression of effectively bound
(entrained) neutrons reads as

Neff = Nr-cluster
(1 − γ )2

1 + γ
. (21)

One sees that the number of entrained neutrons is again lower
than the number of neutrons geometrically located inside the
rod.

Another case in which an analytic solution can be found
is the phase of plates (1D). Let us consider alternating layers
of phases 1 and 2 with widths L1 and L2, respectively. We
take the layers parallel to the xy plane and choose the unit
cell 0 < z < L = L1 + L2 such that the region 0 < z < L1

corresponds to phase 1 and L1 < z < L to phase 2. Obviously
the protons can entrain the neutrons only in z direction. In
the rest frame of the superfluid neutrons, the solution for the
velocity potential reads

φ(r) =
{− 1−γ

L1/L2+γ
zup,z for 0 � z � L1,

1−γ

1+γL2/L1
(z − L)up,z for L1 � z � L.

(22)

From this solution, one can readily obtain the density of bound
neutrons (more precisely, the zz component of the matrix nb

n;
all other components vanish):

nb
n,zz = n̄n

(1 − γ )2L1L2

(L1 + γL2)(L2 + γL1)
. (23)

In practice, nb
n,zz is much smaller than n̄n (nb

n,zz/n̄n � 0.03)
because the plates are only found in the deepest layers of the
neutron-star crust [17], where the density of the gas is quite
large (γ � 0.7).

B. Numerical solution

In 2D and 3D, the situation is more difficult if one considers
instead of an isolated cluster a periodic lattice of clusters.
Because of the different geometries of the clusters and of the
lattice, the solution of the Laplace equation together with the
boundary condition can only be obtained numerically in this
case.

We start by discretizing the cell space with a regular mesh
of N points per row. Note that if the unit cell is not cubic
(as in the hexagonal 2D case, see Sec. IV), the rows are not
orthogonal to one another. The cluster surface is approximated
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L

L/N

FIG. 2. Schematic illustration of the discretization of a simple
cubic cell with a spherical cluster in its center.

by a set of NS points given by the intersections of the mesh
lines with the cluster surface. As an example, Fig. 2 illustrates
the case of a spherical cluster in a simple cubic cell. Points
belonging to the cell mesh are shown as black circles and blue
squares, those belonging to the cluster surface as red diamonds.
Because of periodicity, points lying on opposite edges of the
cell, shown as blue squares, are equivalent to each other. In
total, the number of independent points isN = ND + NS . The
numerical method for treating the periodicity is well described
in Ref. [34].

Due to the space discretization, the differential equation
(1)–(5) can be written as a linear system of equations. The
solution is represented as a vector φ of dimension N that
contains the values of φ(xi), i.e., the solution of the differential
equation in the points xi . In matrix form, the linear system of
equations is written as

Cφ = y. (24)

The elements of the N × N matrix C are the coefficients of
the φ(xi) in the discretized versions of the Laplace equation
(1) for all but one mesh points and of the boundary condition
(3) for the NS surface points. To obtain a closed system, the
Laplace equation in one of the mesh points, say, xi0 (we choose
it to be the center of the cell), is replaced by φ(xi0 ) = 0,
since otherwise φ would only be determined up to an additive
constant. The vector y of dimension N on the right-hand
side of Eq. (24) contains the inhomogeneities arising from
the boundary condition (3) due to the nonvanishing value of
up. Explicitly, its components read as

yi /∈� = 0, (25)

yi∈� = (nn,1 − nn,2) Si · up, (26)

where � denotes the surface points and Si is the normal vector
in the surface point i.

Let us also be more specific concerning the calculation of
the matrix C. The rows i �= i0 of the matrix C are defined as
follows:

(Cφ)i /∈� = �φ(xi), (27)

(Cφ)i∈� = Si · [nn,1∇φ1(xi) − nn,2∇φ2(xi)], (28)

while the i0th row simply reads Ci0j = δi0j . The Laplacian in
Eq. (27) is expressed in terms of the second partial derivatives
that are obtained by inverting the Taylor expansion

φ(xj ) = φ(xi) +
D∑

μ=1

∂φ(x)

∂xμ

∣∣∣∣
xi

(xj,μ − xi,μ)

+ 1

2

D∑
μ,ν=1

∂2φ(x)

∂xμ∂xν

∣∣∣∣
xi

(xj,μ − xi,μ)(xj,ν − xi,ν), (29)

for {xj } the nine (in 3D) or five (in 2D) closest and linearly
independent points around xi . The indices μ and ν correspond
to the spatial directions. In the special case of a 2D mesh with
orthogonal axes (as in Fig. 2), one recovers in this way exactly
the expressions given in Ref. [35] for the derivatives. For the
one-sided normal derivatives on the surface in Eq. (28), two
different sets of points {xj } are used, containing only surface
points and points outside the cluster for ∇φ1, and only surface
points and points inside the cluster for ∇φ2.

In order to reduce the size of the matrix C in memory, we
use a sparse matrix storage (i.e., only nonzero matrix elements
are stored). Unfortunately, the solution of Eq. (24) cannot be
found with iterative methods (e.g., Gauss-Seidel) because the
matrix is not positive definite. So a direct LU decomposition
is needed, during which the size of the matrix blows up, which
limits the maximum size of N .

IV. GEOMETRIES

A. Body-centered cubic lattice (3D)

In the less dense parts of the inner crust, one expects a
Coulomb lattice of spherical clusters. The most favorable
arrangement in space is probably a BCC lattice [36]. The
primitive cell of this lattice, Fig. 3, has one cluster at its center
and one eighth at each corner; i.e., it contains in total two
clusters.

The BCC primitive cell presents symmetries simplifying
the expressions for the average current and the kinetic energy.
Assuming a velocity up in direction x and un = 0, the average
neutron current reads

j̄n = nb
nup =

⎛
⎜⎜⎝

nb
n,11

nb
n,21

nb
n,31

⎞
⎟⎟⎠up, (30)

with nb
n,ij the elements of the matrix nb

n in the basis {ex,ey,ez}.
Because of the symmetry y ↔ −y and z ↔ −z, the current
j̄n cannot have any component in y or z directions; i.e., the
off-diagonal elements nb

n,21 and nb
n,31 must vanish. Repeating
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NOËL MARTIN AND MICHAEL URBAN PHYSICAL REVIEW C 94, 065801 (2016)

ex
ey

ez

FIG. 3. Primitive cell of a BCC lattice of spherical clusters.

the same arguments for velocities up in y or z directions, one
finds that all off-diagonal elements are zero.

Furthermore, the directions x, y, and z are equivalent in
BCC symmetry. Thus all diagonal terms are equal, and the
matrix simply reduces to a scalar matrix nb

n = nb
nI3. So finally,

in the BCC lattice, for un = 0, j̄n and Ekin,n are simply given
by

j̄n = nb
nup and Ekin,n = m

2
nb

nu2
p, (31)

and there is no effect of anisotropy.

B. Hexagonal lattice (2D)

Deeper in the crust, clusters are supposed to be rods of
bound nucleons [37]. In this case the most favored arrangement
with respect to the Coulomb energy is a hexagonal lattice [36].
The primitive cell is a rhombus of side length L, height

√
3L/2,

and an angle of π/3, as shown in Fig. 4. From the symmetry

ea

eb

ex

ey

FIG. 4. Cut through a hexagonal lattice of cylindrical rods. The
primitive cell is the parallelogram delimited by the white lines.

of the cell it is clear that the eigenvectors of nb
n are ea , eb, and

ez with (
ea

eb

)
=

( √
3

2
1
2

− 1
2

√
3

2

)(
ex

ey

)
. (32)

The vectors ea and eb are shown in Fig. 4. The three directions
(a,b,z) are, however, not equivalent, thus in the basis {ea,eb,ez}
the diagonal elements (eigenvalues) of nb

n are all different:
nb

n,11 �= nb
n,22 �= nb

n,33. Let us note that the rods are invariant
with respect to the z axis; i.e., all neutrons can move freely in
that direction, consequently nb

n,33 = 0.

V. RESULTS

A. Microscopic flow

We solve Eqs. (1)–(3) for a fixed velocity up of the clusters.
As input for the radius of the clusters, the densities inside and
outside the clusters, and the cell size, we use results obtained
in Ref. [17] within the extended Thomas-Fermi (ETF) method
with a Skyrme energy-density functional (SLy4). Figure 5
shows streamlines (left panels) and velocity potential (right
panels) in a BCC cell, in the case of up in x direction.
The neutron-fluid streamlines are displayed as white arrows;
they characterize the flow direction and are tangential to the
velocity field vectors. The background color scheme indicates
the speed, from dark purple in the slowest zones to red in
the fastest ones. We chose two cuts through the cell parallel
to the xy plane. The upper panels correspond to the plane
through the center of the cell (z = 0), while the lower panels
correspond to a plane between the clusters (z = L/4). In
Fig. 5(a) the neutron velocity inside the cluster vn,2 is prac-
tically constant but lower than the velocity up of the surface.
Here the ratio between the fluid and the surface velocity is
|vn,2|/|up| = 0.284, which can be compared with the analytic
result (17) for the neutron velocity inside a cluster moving
through an infinite neutron gas: (1 − γ )/(1 + 2γ ) = 0.315.

Furthermore one sees that neutrons between the clusters
move in the opposite direction. The velocity discontinuity
at the cluster surface satisfies the boundary condition (3) of
the conservation of the neutron current crossing the surface.
When going away from the cluster surface, we observe that the
speed decreases because the flux is spread over a larger area.
Figures 5(c) and 5(d) show the plane between the clusters
at z = L/4. One can observe on the edges of the cell the
periodicity of the field. The five red areas correspond to the
regions that are closest to the clusters.

Let us now discuss the case of the hexagonal lattice
shown Fig. 6. Qualitatively, the behavior is similar to the one
observed in the BCC lattice. However, in contrast to the BCC
case, the hexagonal primitive cell is not isotropic. Thus we
performed calculations with velocities up in the directions of
the eigenvectors ea and eb (cf. Sec. IV B). One can clearly see
a strong difference of the periodic behavior between Fig. 6(a)
and Fig. 6(c), especially at the corners of the primitive cell. In
Fig. 6(c), the streamlines continue straight to the next cell,
while in Fig. 6(a) they deviate from their initial trend ea .
Instead of exiting or entering through the corners of the cell, the
flow passes through its sides and then through the neighboring
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FIG. 5. Streamlines and neutron speed (left) and velocity potentials (right) in a BCC cell of size L = 32.8 fm, with a cluster of radius
R = 7.54 fm moving with velocity up = ex . The neutron density inside the cluster is nn,2 = 0.0973 fm−3 and outside nn,1 = 0.0412 fm−3 (the
cluster and cell properties were obtained from calculations described in Ref. [17] and correspond to a baryon density of nB = 0.0485 fm−3). In
the left panels, the streamlines are shown as the white arrows, and the speed of the flow is indicated by the background color from dark purple
(slowest) to red (fastest).

clusters situated in the directions of the translation vectors
a1 and a2 of the Bravais lattice (parallel to the white lines
in Fig. 4). Hence, the currents and the energies depend on
the direction of up. Nevertheless, the anisotropy effect on the
ratio |vn,2|/|up| is very weak; numerically one finds 0.244 and
0.248 in the cases of up in direction ea and eb, respectively.
Similarly to the BCC case, this ratio is somewhat lower than
the analytical result Eq. (20) for a single rod in an infinite gas,
|vn,2|/|up| = 0.281.

B. Cluster effective mass and superfluid density

With the help of Eq. (7), which is equivalent to averaging the
microscopic current over the cell, one obtains the macroscopic
quantities ns

n and nb
n. In Sec. II C, they were interpreted as if

ns
n were the neutrons that move independently of the clusters

while nb
n are the neutrons moving with the clusters. However,

the preceding discussion of the microscopic flow shows that
this is a simplified picture. In the BCC case, staying within
this picture, we can define a cluster effective mass number

Aeff = Neff + Z = 1
2VCnb

n + Z, (33)

where the factor 1/2 accounts for the fact that there are two
clusters per cell and Z is the number of protons in each cluster.

The cluster effective mass plays an important role for
the calculation of the lattice phonons, as discussed, e.g., in
[8,11,14]. It can be compared with the trivial result one obtains
by counting all nucleons that are geometrically located inside
the cluster, Ar-cluster = Nr-cluster + Z.
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FIG. 6. Same as Fig. 5, but for a hexagonal cell of size L = 24.7 fm, containing a cylindrical rod of radius 5.53 fm moving with velocity
up = ea (upper panels) or eb (lower panels). The neutron density inside the rod is 0.0942 fm−3 and outside 0.0528 fm−3 (corresponding to a
baryon density of nB = 0.0624 fm−3).

However, it might be more appropriate to define the cluster
in energy space (e-cluster [33]). In this picture, neutrons
are considered free or confined [32] (the word bound is
also employed [3,33] but should not be confused with the
effectively bound neutrons defined in Sec. II C) depending
on their energy and independently of their position; i.e.,
free neutrons may also be located inside the cluster. In our
approximation of constant densities in the two phases, the
neutron Hartree-Fock mean field Un(r) is also constant in each
phase and takes the values Un,1 in the gas and Un,2 in the cluster.
Confined neutrons are characterized by a single-particle energy
εn(k) = k2/(2m∗

n) + Un that lies below the mean field in the
gas, εn(k) < Un,1, while the single-particle energy of free
neutrons lies above, εn(k) > Un,1; see Fig. 7. Hence, the

U ( )r

Un,2

n,1

μn
U

ε n

n

confined

free

FIG. 7. Schematic illustration of the definition of free and
confined neutrons in energy space.

density of confined neutrons inside the cluster is in this picture
given by

nc
n,2 = 1

3π2
[2m∗

n,2(Un,1 − Un,2)]3/2, (34)

with m∗
n,i the neutron effective mass calculated in phase i, and

the remaining neutrons inside the cluster are free,2

n
f
n,2 = nn,2 − nc

n,2. (35)

The effective neutron and mass numbers of the cluster (in
energy space) are therefore

Ne-cluster = 4π

3
R3nc

n,2 (36)

and Ae-cluster = Ne-cluster + Z. The mean fields Un,i and ef-
fective masses m∗

n,i in Eq. (34) are calculated with the same
Skyrme functional (SLy4) that was used in the ETF calculation
of the cell properties [17].

In Fig. 8, we compare the effective neutron numbers of the
clusters obtained within the different approaches as functions
of the baryon density nB = n̄n + n̄p. At low density, i.e.,
close to the outer crust, the density of the neutron gas is

2Here we do not distinguish between localized and unlocalized
unbound neutrons [33].

065801-8



SUPERFLUID HYDRODYNAMICS IN THE INNER CRUST . . . PHYSICAL REVIEW C 94, 065801 (2016)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0  0.01  0.02  0.03  0.04  0.05  0.06

N
ef

f

nB (fm-3)

super. hydro.
r-cluster

Magierski
e-cluster

FIG. 8. Effective neutron number of the clusters moving through
the neutron gas as a function of the baryon density nB . The results of
our numerical calculations (blue crosses) are compared with the result
of Eq. (18) by Magierski and Bulgac [12–14] for an isolated cluster
in a uniform neutron gas (green dashed line), and with the neutron
numbers (19) and (36) of the cluster defined in coordinate (red solid
line) and energy (black double-dashed line) space, respectively.

very low and all approaches converge towards the same result.
However, at higher density, when the density of the neutron
gas increases, the approaches start to differ considerably. More
and more neutrons that are located inside the clusters (in
coordinate space) are not bound in energy space. Therefore,
the number of neutrons in the e-cluster (black double-dashed
line) is considerably smaller than the number of neutrons in
the r-cluster (red solid line).

However, the effective neutron number obtained within the
present superfluid hydrodynamics approach (blue crosses) is
even smaller: at the highest densities where one still expects
the BCC lattice, one finds Ne-cluster/Nr-cluster ≈ 0.3, while
superfluid hydrodynamics predicts Neff/Nr-cluster ≈ 0.1. Quite
surprisingly, even at the highest densities, where the unit cell
is not very large compared to the cluster size, our numerical
results stay quite close to the analytical ones, Eq. (18) one
would obtain for an isolated cluster (green dashed line).

Concerning the (small) difference between the numerical
results and those of Eq. (18), one might think that it comes from
the restriction of the integration to a finite volume. Actually,
one can easily derive a modified version of Eq. (18) where
one integrates the neutron current nn∇φ only up to the WS
radius instead of infinity, but it turns out that the difference
is negligible. The main reason for the difference between
the numerical results and those of Eq. (18) is the change of
the velocity potential φ itself due to the periodic boundary
conditions.

Another quantity of interest is the superfluid density ns
n.

In Fig. 9 we show the superfluid fraction ns
n/n̄n as a function

of the baryon density nB . Unfortunately, we cannot perform
numerical calculations at very low total densities (as they
prevail near the outer crust), because the unit cells become too
large. But it seems that at these low densities, the superfluid
density obtained within our hydrodynamic approach (solid red
line) agrees approximately with the density of free neutrons
(green dashed line). At higher total neutron densities, the
superfluid fraction is larger than the density of free neutrons

 0
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f

n 
/ n– n

nB (fm-3)

super. hydro. ns
n

e-cluster nf
n

Chamel nf
n

Chamel ns
n

FIG. 9. Fraction of superfluid neutrons, ns
n/n̄n as a function of the

baryon density nB . Results of the present superfluid hydrodynamics
approach (red solid line) are compared with the result of band-
structure calculations by Chamel [5] (black circles). We display also
our results for the fraction of (energetically) free neutrons nf

n /n̄n

(green dashes) and those obtained within the band-structure approach
[5] (purple squares).

and it increases rapidly above 90%, exceeding 97% at the
transition towards the 2D phase.

We compare these results with those obtained by Chamel
[5] in the framework of the band theory for neutrons (black
circles). This theory is analogous to the band theory in solid-
state physics to describe electrons in the periodic Coulomb
potential of a crystal [38]. In the inner crust of a neutron star,
one has instead neutrons in the periodic mean field generated
by the clusters. The superfluid density is in this approach
obtained from an average of the Fermi velocity over the (highly
nontrivial) Fermi surface [3,4,8]. While in our hydrodynamic
approach the superfluid density is higher than the density of
free neutrons, the band-structure calculation predicts a much
lower superfluid density. Possible reasons for this discrepancy
will be discussed in Sec. VI.

As a consistency check, we also compare our results for
the fraction of free neutrons with those of the band-structure
approach (purple squares), and for this quantity the agreement
is excellent in spite of the crude approximations (sharp
interface between the cluster and the gas, Thomas-Fermi
approximation for the density of states) underlying Eq. (34).

So far we discussed the BCC lattice, where the densities
of bound and superfluid neutrons are scalar quantities. The
situation is different in the 2D hexagonal lattice of rods. In
this case, if the velocity is parallel to the rods (z direction),
the neutrons can move independently of the protons and the
superfluid fraction is 100%. In the transverse plane, however,
there is some entrainment. In Fig. 10, we show the densities
of bound neutrons, nb

n, for velocities in the directions of the
eigenvectors ea (red solid line) and eb (green dashed line), as
functions of the average neutron density in the density range
where we expect to find the 2D phase, i.e., between ∼0.06
and 0.07 fm−3 [17]. It can be seen that the anisotropy in the
transverse plane, i.e., the difference between the directions a
and b, is very small.
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FIG. 10. Effective densities of bound neutrons in the 2D
(spaghetti) phase for velocities in the directions of the two eigen-
vectors ea and eb as functions of total baryonic density.

C. Application to glitches

Glitches correspond to a sudden transfer of angular momen-
tum from the superfluid to the normal parts of the star [39]. In
the preceding sections, we discussed the densities of bound and
superfluid neutrons in the inner crust. These quantities play a
crucial role in the understanding of glitches in the neutron star
[7,32]. In particular, as pointed out in Refs. [6,7], the observed
glitches of the Vela pulsar can hardly be understood with the
low superfluid fraction obtained in band structure theory. Since
our results for the superfluid fraction are very different from
those of band structure theory, let us discuss how this changes
the conclusions from the glitch data. In this subsection, we
follow to a large extent the arguments given in Refs. [7,32].

Let us assume that the superfluid and the normal parts
of the star rotate at slightly different but spatially constant
frequencies �s and �b, i.e., the velocity fields are given by
up = �b × r and un = �s × r.

Note that un has to be understood as the average velocity
field on length scales that are large compared to the distance
between the quantized vortices [40]. If we consider, e.g., a
frequency of �s = 100 s−1, the number of vortices per area
is [41] 2m�s/(π�) ≈ 109 m−2; i.e., the vortices are separated
by ∼30 μm. Since this distance is many orders of magnitude
larger than the crystalline structures in the inner crust, one
may use the results for ns

n and nb
n calculated for a uniform

velocity field.
The total angular momentum of the star can now be

decomposed into two contributions,

J = Js + Jb = Is�s + Ib�b, (37)

where Is and Ib are the moments of inertia of the superfluid
and normal-fluid components, respectively:3

Is =
∫

mns
nr

2
⊥d3r, Ib =

∫
m

(
nb

n + np

)
r2
⊥d3r, (38)

with r⊥ = r sin θ the radial distance from the rotation axis.

3Note that, unlike in Ref. [32], there are no nondiagonal contribu-
tions to the angular momentum (contributions of �s to Jb and vice
versa) because we are working in the chemical basis of superfluid
and bound neutrons, cf. Eq. (16).

As argued in Refs. [32,42], the entire core is probably
rotating together with the nonsuperfluid part. Therefore,
the superfluid contribution comes only from the superfluid
neutrons in the inner crust, and the neutrons in the core are
counted in nb

n, although they are of course not bound to clusters.
Between two glitches, the observable frequency �b is

slowly decreasing because the emission of radiation leads to
some loss of angular momentum of the normal component.
Let us denote by ��b < 0 the frequency change during
the interglitch time. The superfluid component, however, is
supposed to slow down much less than the normal component,
e.g., because the vortices are pinned. Hence, the superfluid
component can serve as a reservoir of angular momentum for
the next glitch [42]. A glitch is interpreted as a sudden transfer
of angular momentum from the superfluid to the normal
fluid component. However, during the short duration of the
glitch, the total angular momentum is conserved. Therefore,
the differences of the frequencies before and after the glitch,
denoted by δ�s and δ�b, satisfy

Isδ�s + Ibδ�b = 0. (39)

Since �s − �b cannot become too large, �s must in average
(after many glitches) decrease by the same amount as �b, i.e.,

〈δ�s〉 � 〈��b〉 + 〈δ�b〉, (40)

where the equality corresponds to the limiting case that the
superfluid does not slow down at all between two glitches
(��s = 0). Combining Eq. (39) and (40), one arrives at the
simple relation

Is

I
� − 〈δ�b〉

〈��b〉 ≡ G, (41)

with I = Is + Ib the total moment of inertia of the neutron
star, and G the coupling parameter, which is closely related to
the pulsar activity parameter [42].

Following Ref. [7], one can make some additional approx-
imations in order to obtain a quick estimate for the ratio Is/I .
First, we write Is/I = (Icrust/I )(Is/Icrust), where Icrust is the
moment of inertia of the crust. For the crustal fraction of the
moment of inertia, Icrust/I , Lattimer and Prakash [43] gave an
approximate expression that depends only on the pressure Pcore

and density ncore at the crust-core transition and on the total
radius R and mass M of the star, but does not require detailed
knowledge of the high-density equation of state (EOS) in the
core. Moreover, making use of the thin crust approximation
[44], one can derive the following simple expression for the
superfluid contribution of the crustal moment of inertia [7]:

Is

Icrust
= 1

Pcore

∫ Pcore

Pdrip

ns
n

nB

dP, (42)

where Pdrip is the pressure at the transition between the outer
and the inner crust. Here, we use the EOS of the ETF model
of the inner crust [17]. With our results for the superfluid
density, we obtain Is/Icrust ≈ 0.94. For the pasta phases with
anisotropy (rods, plates), we assume that the orientation is
random so that one can average the superfluid density over the
three directions.
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FIG. 11. Constraints on mass and radius of the Vela pulsar from its
observed glitch activity for different superfluid fractions in the crust:
hydrodynamic result Is/Icrust = 0.94 (red), result from band-structure
theory [7] Is/Icrust = 0.17 (green), and an intermediate situation
Is/Icrust = 0.64 (blue) corresponding to hydrodynamics in the gas
but no superfluidity in the clusters (see Sec. VI). We also show as an
example the mass-radius relation obtained with the SLy4 interaction
(dashed line). Note that other equations of state would lead to different
mass-radius relations in a band around the shown one (see, e.g.,
Ref. [45] for an attempt to use observational data to constrain the
width of this band).

For the Vela pulsar, one hasG ≈ 1.6% [7]. With the approxi-
mations mentioned above and using our result Is/Icrust ≈ 0.94,
this allows one to identify an excluded zone in the mass-radius
diagram, shown in Fig. 11 in red. Details on the boundary of
the excluded zone are given in the Appendix. No assumption
has been made so far concerning the EOS in the core. To give
a specific example, we show in Fig. 11 also the mass-radius
relation obtained by solving the Tolman-Oppenheimer-Volkov
(TOV) equations [46,47] with the EOS given by the SLy4
interaction in the whole star (for the outer crust, we use the
results of Ref. [48]).4 One sees that, with this EOS, Vela could
have a mass of up to 1.7Msun.

The strong entrainment predicted by band-structure theory
results in a much smaller ratio Is/Icrust = 0.17 [7]. As one can
see from the corresponding excluded zone in the mass-radius
diagram (zone above the green line in Fig. 11), this small
superfluid fraction can only be conciliated with the observed
glitch activity if either Vela is a very unusual neutron star with
M < 0.7 Msun [7], or also the core has a superfluid component
that can serve as a reservoir of angular momentum [6,7].
Another solution to this puzzle was suggested in Ref. [49],
where it was pointed out that uncertainties in the EOS do not
exclude the possibility that the crust could be much thicker
than usually assumed.

However, in Fig. 11 we see that, with the much larger
superfluid density predicted by our approach, the observed
glitch activity is compatible with the assumption that Vela is a

4The calculation of the outer crust in Ref. [48] and our ETF model
for the inner crust [17] are based on the SLy4 interaction.

perfectly normal neutron star, without any need for a superfluid
core or an unusually thick crust.

VI. DISCUSSION

In this paper, we used a superfluid hydrodynamics approach
to determine how the gas neutrons flow on a microscopic scale
around and through the clusters when the crystal lattice of
the clusters is uniformly and slowly moved through the gas.
This allowed us to compute the densities of superfluid and
bound (entrained) neutrons, ns

n and nb
n, and the effective mass

of the clusters. Surprisingly, it turned out that ns
n is larger than

the density of free neutrons, nf
n . As a consequence, the cluster

effective mass number Aeff is not only smaller than the number
of nucleons that are spatially located inside the cluster, but even
smaller than the number of energetically bound nucleons.

Our results are in line with those obtained in Refs. [12–14]
using the same hydrodynamic approach but for the case of an
isolated cluster in an infinite neutron gas. However, in other
studies, the opposite effect was found, namely that the effective
mass of the clusters is increased by the presence of the gas.

For instance, in Ref. [11], a hydrodynamic approach was
used, too, but with different boundary conditions at the
interface between the cluster and the gas. In that work, the gas
was assumed to flow around the cluster, increasing the total
kinetic energy, while in our approach and that of Refs. [12–14]
the permeability of the phase boundary allows the neutrons to
flow through the cluster, reducing the neutron velocity inside
the cluster and the total kinetic energy.

Studies of entrainment in the framework of band-structure
theory [3,5] also predict a strong reduction of ns

n as compared to
n

f
n , and therefore a strong increase of Aeff. This approach was

developed in analogy to band structure theory for electrons in
condensed-matter physics. However, the situation of neutrons
in the inner crust differs in some respects from the one of
electrons in superconducting metals. In superconductors, the
distance between the energy bands, of the order of a few eV,
is much larger than the pairing gap � which is typically of the
order of a few Kelvin (10−4 eV). This is why the pairing affects
only electrons of the conduction band. The spatial extension
of a Cooper pair of electrons is much larger than the unit cell
of the crystal. In contrast, the neutron energy bands in the
neutron-star crust lie very close to one another (cf. Figs. 2–4
in Ref. [5]): for a given quasimomentum k, there can be many
bands α whose energies εαk are separated by less than 1 MeV,
which is the typical scale for the pairing gap �. This goes
along with a coherence length ξ that is smaller than the unit
cell.

For hydrodynamics to be quantitatively accurate, one would
need a coherence length ξ that is also much smaller than the
clusters. Since this condition is not satisfied, the true answer
lies probably somewhere between the two models, i.e., the
entrainment is maybe stronger than the one predicted by
hydrodynamics, but weaker than the one predicted by band
structure theory.

Coming back to the analogy with rotating nuclei which
exhibit a mixture of rotational and irrotational flow as
mentioned in Sec. II A, one might think about describing the
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FIG. 12. Superfluid fraction ns
n/n̄n as a function of the baryon

density nB , obtained under the assumption that a fraction δ = 0 (green
short dashes), 0.5 (blue long dashes), or 1 (red solid line) of the
neutrons in the clusters are superfluid. For comparison, the black
circles are the result of the band-structure calculations by Chamel
[5].

neutrons in the clusters as a mixture of superfluid neutrons,
whose motion is governed by the phase ϕ of the gap, and
normal-fluid neutrons, which move together with the protons.
Recently it was suggested in the supplemental material of
Ref. [50] to modify the hydrodynamic model of Refs. [12–14]
in this sense by reinterpreting the densities nn,1 and nn,2 as
effective superfluid densities. For instance, if we assume that
all neutrons in the gas but only a fraction δ of the neutrons in
the cluster participate in the superfluid motion, Eq. (18) for the
effective mass of a single spherical cluster becomes

Neff = Nr-cluster

(
1 − δ + (δ − γ )2

δ + 2γ

)
. (43)

Analogously, it is straightforward to generalize also Eqs. (21)
and (23) to the case δ < 1. In the extreme case δ = 0 (no
superfluidity inside the clusters, i.e., all neutrons in the cluster
move together with the protons), one retrieves the picture of
the gas flowing around the cluster as in Ref. [11], resulting
in Neff = Nr-cluster(1 + γ /2). However, this extreme case does
not seem to be realistic, since, e.g., in rotating nuclei at least
one half of the nucleons follow the superfluid motion as one
can conclude from the moments of inertia. Furthermore, we
note that the present situation of a uniform flow of neutrons
through the cluster is more favorable for hydrodynamics than
the rotation of nuclei: while in a deformed nucleus rotating
around the z axis the phase ϕ is proportional to xy [28], our
phase is (inside the clusters) only linear in the coordinates.
Therefore, δ should probably be larger than one half.

In analogy to the result of Sec. V B that Neff in the periodic
lattice follows closely the analytic formula (18), we can also
compute the superfluid density ns

n = n̄n − 2Neff/VC with Neff

from Eq. (43). The resulting superfluid fractions for three
values of δ are shown in Fig. 12. The case δ = 1 corresponds
to the one shown already in Fig. 9, but also for δ = 0.5 and
even in the extreme case δ = 0 we obtain a superfluid density
that is considerably larger than the one of Ref. [5].

Using the superfluid fraction obtained for δ = 0 in Eq. (42),
we find that the superfluid contribution to the moment of inertia
of the crust would still be Is/Icrust ≈ 0.64. The corresponding

excluded region in the mass-radius diagram is the region above
the blue line in Fig. 11 and, although it extends to lower masses
than the result for δ = 1 (Is/Icrust ≈ 0.94), it is still compatible
with a mass of up to ∼1.5Msun.

In any case, superfluid hydrodynamics remains a strongly
simplified model, not only because of the assumption that
the neutron motion is completely determined by the phase
ϕ, but also because of the sharp surface of the clusters. To
obtain more reliable results, one should ideally perform a
QRPA calculation on top of a Hartree-Fock-Bogoliubov (HFB)
ground state imposing the Bloch boundary conditions [38]
on the single-particle wave functions as in band structure
theory. However, at present this objective seems to be out of
reach. Using a much simpler QRPA calculation in a spherical
Wigner-Seitz (WS) cell, as in Ref. [23], could help to resolve
at least the issues of the effective superfluid density in the
cluster and the most realistic boundary conditions to be used
in hydrodynamic calculations. Instead of the QRPA, one
might also use the time-dependent superfluid local-density
approximation (TDSLDA) [50,51]. Furthermore, as pointed
out in Ref. [9], one should probably also consider zero-point
oscillations of the clusters that would reduce the band-structure
effects.
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APPENDIX: BOUNDARY OF THE EXCLUDED ZONE
IN THE MASS-RADIUS DIAGRAM

According to Eq. (41), the boundary between the allowed
and the excluded zone in Fig. 11 corresponds to Is/I = G. As
mentioned in Sec. V C, we follow Ref. [7] and decompose the
ratio Is/I as (Is/Icrust)(Icrust/I ). The factor (Is/Icrust) is given
by Eq. (42). For (Icrust/I ), an analytic expression is given in
Eq. (47) of Ref. [43], which can be written in a compact way
as

Icrust

I
= a0(R)

1 − 1.67β − 0.6β2

2a1 + 10a1β + (1 − 28a1)β2
. (A1)

In this equation,

β = GM

Rc2
(A2)

denotes the compactness of the star, with G the gravitational
constant, M the mass of the star, and R its radius. The
dimensionless coefficients ai that appear in Eq. (A1) are given
by

a0(R) = 28πGPcoreR
2

3c4
, a1 = Pcore

ncoremc2
, (A3)

with Pcore and ncore the pressure and the density at the crust-
core transition, respectively, and m the neutron mass. Note
that the expression (A1) for Icrust/I contains R and M as
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independent variables because no assumption about the EOS in
the core of the star is made, while it depends on the EOS in the
crust through Pcore and ncore. We use the values corresponding
to our ETF model for the inner crust [17] based on the SLy4
interaction: Pcore = 0.38 MeV fm−3 and ncore = 0.081 fm−3.

For a given radius R, the compactness β and hence the mass
M corresponding to the boundary of the excluded zone shown
in Fig. 11 is now obtained as the solution of the quadratic

equation

[0.6 + (1 − 28a1)b(R)]β2 + [1.67 + 10a1b(R)]β

+ [1 + 2a1b(R)] = 0, (A4)

where b(R) is defined as

b(R) = G
a0(R)

(
Is

Icrust

)−1

. (A5)
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