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We study the quark mass dependence of the H dibaryon in the strangeness S = −2 baryon-baryon scattering.
A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass
dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3)
limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the �� scattering amplitude below the
threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N� threshold at the
physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N�

threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not
continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we
show that the unitary limit of the �� scattering is achieved between the physical point and the SU(3) limit. We
discuss the possible realization of the “H matter” in the unphysical quark mass region.
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I. INTRODUCTION

The two-baryon system with spin J = 0, isospin I = 0, and
strangeness S = −2 is of particular interest in the strangeness
nuclear physics, because of the possible existence of the H
dibaryon. The H dibaryon was predicted to be stable against
the strong decay with the MIT bag model [1]. A remarkable
recent finding by the lattice QCD simulations is that the
two-baryon system of these quantum numbers indeed supports
a bound state at relatively heavy quark mass region [2–8].
On the other hand, at the physical point, the existence of
the bound H dibaryon is confronted by a challenge from
several experimental data. The observation of the double �
hypernuclei [9,10] excludes the existence of the H dibaryon
with the binding energy larger than ∼7 MeV. The Belle
collaboration searched for the H dibaryon in the ϒ(1S) and
ϒ(2S) decays, finding no clear evidence in the �pπ− and
�� mass spectra [11]. The H -dibaryon signal was not found
also in the �pπ− spectrum from the Pb-Pb collisions at√

sNN = 2.76 TeV performed by the ALICE collaboration
at the CERN Large Hadron Collider (LHC) [12]. Recently,
the STAR collaboration extracted the �� correlation function
at the BNL Relativistic Heavy-Ion Collider (RHIC) [13]. A
detailed analysis of the STAR data indicates the attractive
scattering length of the �� system, as long as the pair
purity parameter λ is constrained by the measured �0/�
ratio [14–16]. The attraction at threshold is consistent with
the absence of the bound H dibaryon below the threshold.

In view of the lattice results and the current status of
experimental searches, a plausible scenario is that the H
dibaryon is unbound at the physical point, while it is bound
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below the �� threshold when the quark masses are increased.
In other words, there will be a level crossing of the H -dibaryon
state and the �� state along with the change of the quark
masses. This implies the existence of the quark mass region
where the �� system supports a very shallow bound state
with almost zero binding energy, having an infinitely large
scattering length. Such a situation is called the unitary limit
where various interesting phenomena will take place both in
the few-body and many-body systems [17,18]. In this respect,
the H dibaryon in the �� scattering is analogous to the σ
meson in the ππ scattering where the Efimov effect of three
pions is predicted to occur in a certain unphysical quark mass
region [19]. To examine this possibility for the �� system,
we need to know how the H dibaryon in the �� scattering
behaves with the variation of the quark masses.

The quark mass dependence of the H dibaryon has been
studied by two complementary approaches. One is to evaluate
the Nambu-Goldstone (NG) boson loop effect to the flavor
singlet bare H state [20,21]. Another study adopts chiral
perturbation theory (ChPT) for baryon-baryon systems with
four-point contact interaction and the NG boson exchange
contributions [22–24]. The physical picture of the H dibaryon
in the former approach corresponds to the compact six-quark
state, while the latter approach deals with the loosely bound
baryon-baryon molecular state. In both cases, the H dibaryon
is found to be unbound at the physical point when the lattice
QCD data are used to determine the unknown constants.

In general, the dominant nonanalytic contribution of the
quark mass dependence of hadron masses comes from the
chiral loop of the NG boson. In the case of the dibaryon
system near the threshold, however, a substantial contribution
is expected from the energetically closer two-baryon channels,
which are not considered in Refs. [20,21]. The relative
importance of the NG boson loop is suppressed when the
quark masses are increased, and the correct near-threshold
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scaling [25] cannot be reproduced without the coupling to the
baryon-baryon channels. ChPT is the standard and systematic
tool to study the quark mass dependence of hadrons. However,
the available lattice results in the SU(3) limit (the NG boson
mass is about 400–800 MeV) may not be in the region where
the perturbation theory well converges. In addition, the sym-
metry argument does not specify the relevant hadronic degrees
of freedom other than the NG bosons. For instance, the exis-
tence of a bare H -dibaryon field is in principle not excluded.

In this paper, we study the quark mass dependence of the
H dibaryon and the near-threshold �� scattering, with the
lattice QCD data by the HAL QCD collaboration [5] being
constraints. To this end, we focus on the characteristic length
scales in the lattice QCD simulations in the SU(3) limit. In the
simulations in Ref. [5], it is found that the scattering length
is larger than 1 fm [26], while the interaction range estimated
by the NG-boson exchange λπ = 1/mπ is at most 0.4 fm.1 In
such cases, the interaction can be regarded as pointlike and the
pionless framework of the effective field theory (EFT) should
be valid to describe the near-threshold phenomena [27–32].
We thus construct an EFT to study the H dibaryon in the two-
baryon scattering, as a generalization of the EFT for the nuclear
forces. We then introduce the quark mass dependence in the
parameters of the EFT, with the lattice QCD result in the
SU(3) limit [5] being the guiding principle. This enables us
to extrapolate the scattering amplitude with the up and down
quark mass ml and the strangeness quark mass ms . Preliminary
results with only the singlet component interaction can be
found in Ref. [33]. Here we present the complete formulation
including 8 and 27 components, and the detailed discussion on
the behavior of the �� scattering amplitude and the structure
of H dibaryon.

This paper is organized as follows. We formulate the
EFT for the coupled-channel baryon-baryon scattering in
Sec. II. The quark mass dependence is discussed in Sec. III.
Combining with the lattice QCD results, we show the results of
the quark mass dependence of the baryon-baryon scattering in
Sec. IV. The last section is devoted to a summary of this work.

II. EFFECTIVE FIELD THEORY

In the following, we introduce the low-energy effective
field theory for the description of the two-baryon system with
S = −2, J = 0, and I = 0. As long as the small energy region
is concerned, the system can be described by the nonrelativistic
local quantum field theory with contact interactions [28,31]. In
this section, we consider the dynamics of the baryon-baryon
scattering for a given set of quark masses. The quark mass
dependence of the EFT will be discussed in Sec. III. We always
work in the isospin symmetric limit mu = md ≡ ml , while the
SU(3) symmetry may be broken by the strange quark mass,
ms �= ml . As shown in Sec. III, this causes the SU(3) breaking
in baryon masses.

1Strictly speaking, the pion exchange is absent in the �� channel.
However, since the pion is the lowest energy excitation in QCD,
λπ can be regarded as the upper limit of the range of the strong
interaction.

A. Effective Lagrangian

We consider the system of the bare H dibaryon coupled
with the two-baryon scattering states. The free part of the
Lagrangian density of the nonrelativistic effective field theory
is given by

Lfree =
4∑

a=1

∑
σ=↑,↓

B†
a,σ

(
i

∂

∂t
+ ∇2

2Ma

+ δa

)
Ba,σ

+H †
(

i
∂

∂t
+ ∇2

2MH

+ ν

)
H, (1)

where a labels the flavor of the baryon (N , �, �, �) and
σ denotes the spin of the baryon. We introduce δa = (Ma −
M�)c2 to account for the mass difference of baryons from �.
The bare H -dibaryon state is represented by the field H . The
parameter ν represents the energy difference of the bare H
dibaryon and the �� threshold.

We use the SU(3) symmetric interaction, and the SU(3)
breaking effect is included in Ma and δa which affect the
kinematics of the baryon loop diagrams. The SU(3) symmetric
interaction can easily be expressed in the SU(3) basis.
We denote the two-baryon system in the total spin J = 0,
strangeness S = −2, and isospin I = 0 channel as

D(F ) = [BB](F )
J=0,S=−2,I=0, (2)

where F labels the SU(3) representation. In this sector, only
the symmetric representations can contribute, so F = 1,8, and
27. The interaction Lagrangian is then given by

Lint = −g[D(1)†H + H †D(1)] − λ(1)D(1)†D(1)

− λ(8)D(8)†D(8) − λ(27)D(27)†D(27), (3)

with the coupling constants g and λ(F ). Here we assume that
the H -dibaryon field is in the flavor singlet representation and
there are no bare fields in the 8 and 27 sectors. The first term
represents the three-point contact interaction of the bare H
dibaryon and two baryons, and the other terms represent the
four-point contact interactions of baryons in different flavor
representations.

The SU(3) basis can be transformed to the isospin basis
as [7]

⎛
⎜⎝

D(1)

D(8)

D(27)

⎞
⎟⎠ = U

⎛
⎜⎝

��

N�

��

⎞
⎟⎠, U =

⎛
⎜⎜⎜⎝

−
√

1
8

√
1
2

√
3
8

−
√

1
5

√
1
5 −

√
3
5√

27
40

√
3

10 −
√

1
40

⎞
⎟⎟⎟⎠.

(4)

The interaction Lagrangian in the isospin basis can be
obtained as

Lint = −g

⎡
⎣(�†�† N †�† �†�†)dH + H †d†

⎛
⎝��

N�
��

⎞
⎠

⎤
⎦

− (�†�† N †�† �†�†)V

⎛
⎝��

N�
��

⎞
⎠, (5)
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where

d =

⎛
⎜⎜⎜⎝

−
√

1
8

−
√

1
2√

3
8

⎞
⎟⎟⎟⎠, V = U−1

⎛
⎜⎝

λ(1)

λ(8)

λ(27)

⎞
⎟⎠U. (6)

B. Scattering amplitude

We now consider the baryon-baryon scattering amplitude.
In the following, we work in the center-of-mass frame of
the two-baryon system and evaluate the on-shell scattering
amplitude with the total energy E, measured from the ��
threshold. Because of the phase symmetry in the effective
Lagrangian, the two-baryon sector is decoupled from the
N -baryon sectors with N �= 2, so the two-baryon problem
can be solved exactly. It is straightforward to derive Feynman
rules and write down the tree-level two-baryon amplitude as

Atree
ij (E) = −

(
Vij + g2d

†
i dj

E − ν + i0+

)
, (7)

where i,j denote the channel indices in the isospin basis. The
two-baryon scattering amplitude is given by the solution of the
Lippmann-Schwinger equation:

Aij (E) = Atree
ij (E) −

∑
k

Atree
ik (E)Ik(E)Akj (E). (8)

The solution is analytically given by

A(E) = [(Atree(E))−1 + I (E)]−1, (9)

where Ii(E) is defined by

Ii(E) =
∫

d3k

(2π )3

1

E − �i − k2

2μi
+ i0+ (10)

with μ1 = M�/2, μ2 = MNM�/(MN + M�), μ3 = M�/2,
�1 = 0, �2 = δN + δ�, and �3 = 2δ� . Ultraviolet divergence
of the integral is tamed by the sharp cutoff �. The regularized
loop function for E − �i > 0 is given by

Ii(E) = μi

π2

(
−� + ki artanh

�

ki

)
, (11)

ki =
√

2μi(E − �i). (12)

While the EFT is renormalizable, in this study, we keep the
finite cutoff at the momentum scale below which the EFT
description is reliable, and determine the coupling constants at
this scale. For later convenience, we introduce the loop func-
tions in the first and second Riemann sheet for complex E as

Ii,I(E) = μi

π2

[
−� + [2μi(E − �i)]

1/2

× artanh
�

[2μi(E − �i)]1/2

]
, (13)

Ii,II(E) = μi

π2

[
−� + [2μi(E − �i)]

1/2

×
(

artanh
�

[2μi(E − �i)]1/2
+ iπ

)]
, (14)

where the arguments of the complex variables are chosen to
be 0 � θ < 2π . With three coupled channels, the scattering
amplitude is defined on the 23 = 8 sheeted Riemann surface.
The Riemann sheet is identified by specifying the choice of
I/II loop function for each channel. The most adjacent sheet to
the real axis is obtained by choosing I for the closed channels
and II for the open channels.

The forward scattering amplitude is given by

fii(E) = μi

2π
[(Atree(E))−1 + I (E)]−1

ii . (15)

The scattering length in the �� channel is defined as

a�� = −f11(E)|E→0. (16)

In this convention, the negative (positive) scattering length
stands for the attraction (repulsion) at the threshold. The N�
scattering length is given by

aN� = −f22(E)|E→δN+δ�
. (17)

C. SU(3) limit

In the SU(3) limit ml = ms , there is no mass difference
in the flavor multiplet, and we denote the baryon mass M
and the reduced mass μ = M/2. Because the interaction
Lagrangian (3) is SU(3) symmetric, the baryon-baryon scatter-
ing reduces to the independent single-channel problems. The
scattering amplitude in the flavor singlet channel is given by

f (1)(E) =
[
−2π

μ

(
λ(1) + g2

E − ν + i0+

)−1

− 2

π

(
� − k artanh

�

k

)]−1

, (18)

where k = √
2μE. The amplitudes in the octet and 27-plet

channels are given by

f (8),(27)(E) =
[
− 2π

μλ(8),(27)
− 2

π

(
� − k artanh

�

k

)]−1

.

(19)

The scattering length a(F ) = −f (F )(E = 0) is given by

a(1) = M

4π

[(
λ(1) − g2

ν

)−1

+ M�

2π2

]−1

, (20)

a(8),(27) = M

4π

[
1

λ(8),(27)
+ M�

2π2

]−1

. (21)

III. QUARK MASS DEPENDENCE

Our aim is to consider the quark mass dependence of
the H dibaryon and the two-baryon scattering amplitude.
In the previous section, we introduce the EFT to describe
the near-threshold phenomena accurately, but the framework
is not based on a systematic expansion with respect to the
quark mass. The quark mass dependence should therefore be
included in the parameters of the scattering amplitude.
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To begin with, we define the “quark masses” ml and ms

from the meson masses as (see also Ref. [20])

B0ml = m2
π

2
, B0ms = m2

K − m2
π

2
. (22)

Choosing the constant B0 = −〈q̄q〉/(3F 2
0 ) with the quark

condensate 〈q̄q〉 and the pion decay constant F0 in the chiral
limit, we obtain the Gell-Mann–Oakes–Renner relation [34].
Up to the linear order in quark masses, these are the rigorous
relations in QCD to relate the NG boson masses with the
quark masses. Of course, it is not always guaranteed that the
leading order result works well in the unphysical quark mass
region, but it turns out that Eq. (22) is sufficient for the accuracy
required in the present study. Higher order corrections in quark
masses could be systematically included in ChPT [35].

We consider the H dibaryon and the baryon-baryon
interaction in ml-ms plane. In the following, we introduce
the quark mass dependence in the hadron masses and coupling
constants. We here consider the minimal dependence up to
linear order in ml and ms , for the consistency with Eq. (22).

A. Hadron masses

The baryon masses are expressed in the leading order ChPT
as [20]

MN (ml,ms) = M0 − (2α + 2β + 4σ )B0ml − 2σB0ms,

(23)

M�(ml,ms) = M0 − (α + 2β + 4σ )B0ml

− (α + 2σ )B0ms, (24)

M�(ml,ms) = M0 −
(

5

3
α + 2

3
β + 4σ

)
B0ml

−
(

1

3
α + 4

3
β + 2σ

)
B0ms, (25)

M�(ml,ms) = M0 −
(

1

3
α + 4

3
β + 4σ

)
B0ml

−
(

5

3
α + 2

3
β + 2σ

)
B0ms (26)

with parameters M0, α, β, and σ . We note that the combination
M0 − 2σB0(2ml + ms) is common for all baryons, and three
mass differences are expressed by two parameters, α and β.
This leads to the constraint on the mass differences, known as
the Gell-Mann–Okubo formula [36,37]

MN + M�

2
= 3M� + M�

4
, (27)

which is known to be satisfied by the physical ground state
baryons at 1% accuracy. In the SU(3) limit (ml = ms), all the
baryons have the same mass

MB(ml) = M0 − (2α + 2β + 6σ )B0ml. (28)

In Eq. (1), the parameter ν represents the energy difference
of the bare H dibaryon and the �� threshold. Because the
H dibaryon is introduced as flavor singlet, the bare mass MH

should be proportional to the combination 2ml + ms . Thus, we

parametrize the quark mass dependence of ν by introducing
two parameters MH,0 and σH as

ν(ml,ms)/c
2 = MH,0 − σH B0(2ml + ms) − 2M�(ml,ms),

(29)

where M�(ml,ms) is given in Eq. (24).

B. Coupling constants

There are coupling constants λ(F ) (four-point vertices, F =
1,8,27) and g (three-point vertex in the singlet channel) in the
effective Lagrangian. In general, we can introduce the quark
mass dependence in all coupling constants. We here introduce
the linear quark mass dependence in λ(F ) as

λ(F )(ml,ms) = λ
(F )
0 + λ

(F )
1 B0(2ml + ms). (30)

The quark mass dependence is SU(3) symmetric, because the
SU(3) breaking term also induces the off-diagonal coupling in
SU(3) basis. The three-point vertex is kept as constant:

g(ml,ms) = g, (31)

because the quark mass dependence is induced in the bare-H
propagator through ν in Eq. (7).

IV. NUMERICAL RESULTS

To determine the quark mass dependence in the EFT, we
utilize the HAL QCD results in SU(3) symmetric limit [5]
with three lightest quark masses, which we denote HAL-1,
HAL-2, and HAL-3. To estimate the systematic uncertainty, we
examine two cases in the flavor singlet channel: the “contact”
model where the coupling to the bare field is switched off
(g = 0), and the “bare H” model which includes both the
contact interaction and the bare H term. All the coupling
constants are given at the fixed cutoff � = 300 MeV/c.

A. Baryon masses

To connect the SU(3) limit with the physical point, we first
determine α and β by mass differences at physical point, and
then determine M0 and σ combining with the lattice results of
the baryon masses in the SU(3) limit. The best fit values are
obtained as

M0 = 0.948 [GeV c−2], α = −0.754 [GeV−1c2],

β = −0.644 [GeV−1c2], σ = 0.0826 [GeV−1c2]. (32)

The baryon masses with these parameters are compared
with the experimental data and the lattice results in Fig. 1.
Physically, we expect that the coefficients in front of ml and ms

should be positive, because the baryon mass should increase
along with the quark mass. This is guaranteed when α, β,
and σ are all negative. Although we obtain the solution with
σ > 0, it is confirmed that all the baryon masses increase with
the quark masses, except for the ms dependence of the nucleon
mass.
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Σ
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FIG. 1. Baryon masses with Eq. (32). Horizontal bars show the
central values of the experimental data and the lattice results from
Ref. [5].

B. Coupling constants in singlet channel

We first present the parameters in the flavor singlet channel.
In the contact model where g = 0, we determine the coupling
constants λ

(1)
0 and λ

(1)
1 by the scattering lengths in the SU(3)

limit obtained by the HAL QCD collaboration [5,26]. The best
fit values are obtained as

λ
(1)
0 = −88.5 [GeV−2c3], λ

(1)
1 = −163 [GeV−4c7]. (33)

The resulting scattering lengths (thick solid line) are compared
with the lattice results (circles) in Fig. 2. The lattice results
of the scattering lengths are well reproduced. We note that
both λ

(1)
0 and λ

(1)
1 are negative in Eq. (33). Namely, the

singlet interaction is attractive, while the scattering lengths
are positive. In fact, we find a bound state as summarized in
Table I. While the existence of the bound state is qualitatively
consistent with lattice QCD, the binding energies deviate from
the lattice results, in particular in the heavier quark mass
case. Because the contact interaction model is reliable at the

-4

-2

0

2

a(F
)  [

fm
]

0.90.80.70.60.50.4
MNG [GeV/c

2
]

1

8

27
 Lattice

 EFT 1 (contact)
 EFT 1 (bare H)
 EFT 8
 EFT 27

FIG. 2. Scattering lengths of the baryon-baryon scattering in the
SU(3) limit by the lattice QCD simulation [5,26] and by the EFT.
Circles (solid lines), squares (dotted line), and crosses (dashed line)
denote the lattice (EFT) results in the flavor 1 channel, 8 channel,
and 27 channel, respectively. In the singlet channel, thick (thin) line
represents the result in the contact (bare H ) model.

TABLE I. Binding energies in the flavor singlet channel in units
of MeV c−2. Lattice results are taken from Ref. [5].

Data Lattice [5] Contact model Bare H model

HAL-3 38 89 38
HAL-2 34 57 33
HAL-1 26 26 27

threshold energy, it is reasonable to determine the coupling
constants by the scattering lengths.

In the bare H model, the applicable energy region is slightly
increased by the presence of the pole term. Because there
are three additional parameters, g, MH,0, and σH , we use the
binding energies obtained by the HAL QCD collaboration [5]
to determine the parameters. We set λ

(1)
1 = 0 so that the quark

mass dependence is governed by the bare H term. We then
obtain

λ
(1)
0 = −12.8 [GeV−2c3], g2 = 2350 [GeV−1c2],

MH,0 = 19.8 [GeV c−2], σH = −1.53 [GeV−1c2].

The results of the scattering length and the binding energy
are shown in Fig. 2 and Table I. In the bare H model, both
quantities are well reproduced. The large value of MH,0 is
worth mentioning; the constraint from the lattice QCD data
excludes the existence of the bare H field near the two-baryon
threshold. Because it is an order of magnitude larger than 2M�,
in the low-energy region, the pole term of the bare H state only
produces a smooth energy dependence. Thus, the pole term in
the bare H model can be regarded as a higher-order correction
to the four-point contact term.

C. Coupling constants in 8 and 27 channels

We determine the coupling constants λ
(F )
0 and λ

(F )
1 for F =

8 and 27 by the scattering lengths in the SU(3) limit obtained
by the HAL QCD collaboration [5,26]. The best fit values are
given by

λ
(8)
0 = 54.2 [GeV−2c3], λ

(8)
1 = −23.7 [GeV−4c7],

λ
(27)
0 = −58.2 [GeV−2c3], λ

(27)
1 = 45.3 [GeV−4c7].

In the flavor 8 channel, the scattering lengths are relatively well
reproduced, as shown in Fig. 2. We check that these parameters
provide repulsive (attractive) interaction in the flavor 8 (27)
channel, λ

(8)
0 + λ

(8)
1 B0(2ml + ms) > 0 [λ(27)

0 + λ
(27)
1 B0(2ml +

ms) < 0] in the quark mass region of the lattice data. This
is consistent with the absence of the bound state in these
channels.

D. �� scattering in the SU(3) limit

Using the parameters determined above, we study the quark
mass dependence of the �� scattering. We first discuss the ��
scattering amplitude in the SU(3) symmetric limit at HAL-1.
In the SU(3) limit, the �� scattering amplitude is given by
the linear combination of the amplitudes in the SU(3) basis as

f ��(E) = 1
8f (1)(E) + 1

5f (8)(E) + 27
40f (27)(E). (34)
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 Re fΛΛ (contact)
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FIG. 3. �� scattering amplitude in the contact model in the
SU(3) limit.

The scattering amplitude of the contact model is shown in
Fig. 3. In the SU(3) limit, the bare H model gives the almost
identical amplitude in the energy region of Fig. 3, because the
scattering length are fitted to the same data in both cases. We
note that the �� scattering length in Eq. (16) is attractive,

a�� =
{−2.31 [fm] (contact, SU(3) limit)

−2.32 [fm] (bare H, SU(3) limit)
, (35)

while there is a bound state below the threshold at E = −26
(−27) MeV in the contact (bare H ) model. The result is
qualitatively consistent with the calculation by the HAL QCD
collaboration with the lattice QCD potential (see Fig. 8 in
Ref. [5]).

At first glance, the attractive scattering length in Eq. (35) is
somehow counterintuitive, because the scattering length would
be repulsive if there is a shallow bound state, according to the
low-energy universality [18]. Let us consider the origin of this
structure. From Eq. (34), the amplitude f ��(E) should have
a bound state at the energy of the bound state in the singlet
amplitude f (1)(E). On the other hand, the linear combination
in Eq. (34) puts the largest weight in f (27)(E), which has
a large attractive scattering length as shown in Fig. 2. This
leads to the negative �� scattering length. This means that
f ��(E = 0) > 0 and limε→+0 f ��(−B + ε) → −∞, where
B > 0 is the binding energy.

As a consequence, between the threshold and the bound
state pole, there is an energy at which the amplitude vanishes.
The zero of the scattering amplitude is called the Castillejo-
Dalitz-Dyson (CDD) pole [38]. Because the effective range
expansion is the expansion of the inverse amplitude [f (E)]−1,
its convergence radius cannot go beyond the closest CDD
pole from the threshold. In this way, the attractive scattering
length at threshold can coexist with the shallow bound state
below the threshold, thanks to the CDD pole between them.
We emphasize that this structure is caused by the mixing of
the amplitude with a bound state (flavor 1 channel) and that
with an attractive scattering length (flavor 27 channel). In other
words, the coupled-channel effect plays an important role for
the appearance of the CDD pole near the threshold.
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 Re fNΞ (contact)
 Im fNΞ (contact)

FIG. 4. N� scattering amplitude in the contact model in the
SU(3) limit.

We also calculate the N� scattering amplitude in the SU(3)
limit at HAL-1, which is given by

f N�(E) = 1
2f (1)(E) + 1

5f (8)(E) + 3
10f (27)(E) (36)

in the SU(3) basis. The results of the contact model are shown
in Fig. 4. The existence of a bound state is seen in Fig. 4, which
originates in the bound state in the amplitude f (1)(E) in the
same way as the �� scattering amplitude. The real part of the
N� amplitude is a small positive value at E = 0. Therefore,
a small attractive scattering length is obtained as

aN� =
{−0.23 [fm] (contact, SU(3) limit)

−0.24 [fm] (bare H, SU(3) limit)
. (37)

As seen in the �� scattering, the large contribution from the 27
channel makes the N� scattering length attractive. The small
attractive scattering length of the N� channel is consistent
with HAL QCD results [26].

E. �� scattering at physical point

Next, we calculate the �� scattering amplitude at the
physical point. We use the physical values of the pion and
kaon masses m

phys
π,K to calculate the baryon masses and the

coupling constants. The results are shown in Fig. 5. While the
quantitative deviation of the two models is now evident, the
qualitative behavior of the amplitude is similar with each other.
In both cases, we have checked that no bound state is found
below the threshold, and the scattering length is attractive2:

a�� =
{−3.22 [fm] (contact, physical point)

−4.71 [fm] (bare H, physical point)
. (38)

This is consistent with the absence of the bound H dibaryon at
the physical point, along the same line with the experimental
results, and previous studies of the chiral extrapolation of the
lattice QCD data in Refs. [5,20–23]. A large magnitude of
the scattering length supports the validity of the extrapolation

2The result presented in Ref. [33] is obtained only with the singlet
component. By adding the 8 and 27 components, we obtain the result
of the bare H model in Eq. (38).
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FIG. 5. �� scattering amplitude at the physical point. Thick
(thin) lines represent the results in the contact (bare H ) model.

using the pionless EFT framework. While the magnitude of
the scattering length is larger than expected (for instance,
a�� = −(0.6–0.7) fm in next-to-leading order ChPT [24]),
the attractive nature of the scattering length is qualitatively
reproduced.

We also call attention to the structure near the N�
threshold.3 The imaginary part of the amplitude shows a
small peak structure. Associated with this structure, there is a
resonance pole in the complex energy plane with the Riemann
sheet unphysical for the �� channel and physical for the
other channels (hereafter called II-I-I sheet). The pole position
is found at E = 37 − 0.6i MeV in the contact model and
E = 35 − 1.3i MeV in the bare H model. It turns out that the
residue of this pole in the �� channel is so small that the peak
structure on the real axis is not very prominent, even though
the pole locates in the vicinity of the real axis. In contrast,
the residue in the N� channel is much larger than that in the
�� channel as seen in the N� scattering amplitude shown in
Fig. 6. The N� scattering amplitude has a large peak structure,
and gives a scattering length,

aN� =
{

3.86 − 0.30i [fm] (contact, physical point)

3.08 − 0.30i [fm] (bare H, physical point)
(39)

with a complex number because of the existence of the
open �� threshold. This indicates the interpretation of this
resonance as a N� quasibound state. We compare the present
results with previous works of the chiral extrapolation. In
Refs. [22,23], the bound state in the unphysical quark mass
region is shown to become unbound at the physical point.
However, the fate of the bound state at the physical point
depends on the choice of the lattice constraints; the HAL
QCD results indicate that the resonance disappears, while
the NPLQCD result shows the N� quasibound state. In this
way, the chiral extrapolation of the lattice results still suffers
from systematic uncertainties. We note that, in contrast to the

3The physical N� threshold is at E = 25 MeV, while it appears at
E = 40 MeV in the present calculation. This difference is caused
by the simple linear extrapolation formulas of baryon masses in
Sec. III A.
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FIG. 6. N� scattering amplitude at the physical point. Same
convention as Fig. 5.

present study, the 8 and 27 interactions are constrained by
the experimental data of baryon scattering in Refs. [22,23].
The inclusion of the baryon scattering data in the present
framework will be an interesting future direction.

In the �� scattering amplitude in Fig. 5, between the
resonance peak and the N� threshold, there is a point where
both the real and imaginary parts of the amplitude vanish. This
occurs when the phase shift passes through δ = π , because
the s matrix at this point cannot be distinguished from the
noninteracting scattering with δ = 0. If the s-wave phase shift
crosses δ = π at sufficiently low energy where the higher
partial waves are negligible, the total cross section should
almost vanish, like the Ramsauer-Townsend effect [39]. It is
an interesting possibility that the �� scattering undergoes
the Ramsauer-Townsend effect below the N� threshold. As
we discussed in the previous subsection, the vanishing of the
amplitude is also attributed to the CDD pole. In contrast to the
SU(3) limit case, here the CDD pole appears in the physical
scattering region E > 0. The Ramsauer-Townsend effect is
also discussed in the ππ scattering near the f0(980) resonance
in Ref. [40]. A similar behavior of the π� → π� amplitude
near the K̄N threshold is discussed in connection with the
structure of the �(1405) resonance [41] (see also Refs. [42–44]
for the π� → π� amplitude).

F. Interpolation of physical point and SU(3) limit

Combining with the bound H dibaryon in the SU(3) limit,
the absence of the bound state at the physical point result
indicates the existence of the unitary limit of the �� scattering
between the physical point and the SU(3) limit. To illustrate
this, let us make an interpolation of the physical point and the
HAL-1 point in the SU(3) limit by

mπ,K (x) = xm
phys
π,K + (1 − x)mHAL-1

π,K , (40)

where x = 0 (x = 1) corresponds to the SU(3) limit (physical
point). The �� scattering length as a function of x is shown
in Fig. 7. We see that the unitary limit is indeed realized at
x ∼ 0.4 in the contact model and x ∼ 0.5 in the bare H model
where the scattering length diverges.

Next question is whether the resonance near the N�
threshold at the physical point originates in the bound state in
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FIG. 7. �� scattering length as a function of the interpolation
parameter x in Eq. (40). x = 0 (x = 1) corresponds to the HAL-1
data in the SU(3) limit (physical point). Thick (thin) lines represent
the results in the contact (bare H ) model.

the SU(3) limit. For this purpose, we now study the trajectory
of the pole in the analytically continued scattering amplitude,
which represents the eigenstate of the Hamiltonian. As already
mentioned, we have a bound state at x = 0 in the SU(3) limit.
The corresponding pole is on the physical Riemann sheet for
all the channels (I-I-I sheet). The behavior of the eigenenergy
as a function of x is shown in Fig. 8. As we increase x, the
binding energy reduces, and eventually vanishes at the unitary
limit. The pole then turns into a virtual state on the II-I-I
sheet where the �� channel is unphysical, in accordance
with the general threshold scaling law [25]. As we further
increase x, the pole stays below the threshold up to x = 1.
Next, we follow the resonance pole in the II-I-I sheet at the
physical point by decreasing x. The real and imaginary parts
of the eigenenergy are shown by the solid and dashed lines in
Fig. 9. With the decrease of x, the real part of the eigenenergy
decreases and the magnitude of the imaginary part increases.
We note that the energy of the N� threshold measured from
the �� threshold also decreases, as indicated by the dotted

-30

-25

-20

-15

-10

-5

0

5

E
ne

rg
y 

[M
eV

]

1.00.80.60.40.20.0
x [dimensionless]

 E (bound, contact)
 E (virtual, contact)
 E (bound, bare H)
 E (virtual, bare H)

FIG. 8. Behaviors of the eigenenergies as functions of the
interpolation parameter x in Eq. (40). The bound (virtual) state is
shown by the solid (dashed) line. Thick (thin) line represents the
result in the contact (bare H ) model.
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FIG. 9. Behaviors of the eigenenergies as functions of the
interpolation parameter x in Eq. (40). The real (imaginary) part is
shown by the solid (dashed) line. Thick (thin) line represents the
result in the contact (bare H ) model. The dotted line stands for the
energy of the N� threshold.

line in Fig. 9. Around x ∼ 0.17, the N� threshold becomes
lower than the real part of the eigenenergy. At x = 0, the pole
remains above the threshold in the II-I-I Riemann sheet. In
this way, we find that the bound state in the SU(3) limit is not
continuously connected to the resonance found at the physical
point.

The pole trajectories in the complex energy plane are
illustrated in Fig. 10. At x = 0, we have a bound state pole
below the threshold in the I-I-I sheet and a pole above the
threshold in the II-I-I sheet. As we increase the parameter
x, the former evolves to a virtual state while the latter
becomes a resonance near the N� threshold. Relatively large
�� scattering lengths in Eq. (38) can be understood by the
existence of a virtual pole below the threshold. It should be
noted that the pole in the II-I-I sheet with x = 0 is not identified
as a resonance state, because the most adjacent Riemann sheet
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FIG. 10. Trajectories of the poles in the �� scattering in the
contact model with a variation of the interpolation parameter x in
Eq. (40). The arrows indicate the direction of the pole movement with
the increase of the parameter x. The bound state (virtual and resonance
state) pole is on the I-I-I (II-I-I) sheet. Bound and virtual poles are
slightly shifted from the real axis for the purpose of illustration.
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FIG. 11. Behaviors of the energies of the CDD pole as functions
of the interpolation parameter x in Eq. (40). Thick (thin) line
represents the result in the contact (bare H ) model.

to the real axis in the SU(3) limit is the II-II-II sheet where no
resonance pole is found. Rather, we may identify the pole in the
II-I-I Riemann sheet as a shadow pole of the bound state in the
SU(3) limit [45]. At x = 1, the pole appears in the II-I-I sheet
together with its shadow pole, as observed in the Nc scaling
analysis of the �(1405) [46,47]. Similar pole trajectories
with Fig. 10 are expected in the extrapolation performed in
Ref. [5] where the hadron masses are extrapolated to the
physical values with the lattice potential in the SU(3) limit.
Unfortunately, the complex scaling method used in Ref. [5]
cannot find the virtual state pole and the pole below the N�
threshold in the unphysical Riemann sheet.

The behavior of the CDD pole (zero of the �� amplitude)
is also worth investigating. In the SU(3) limit, the CDD pole
exists below the �� threshold, and it appears above the ��
threshold at the physical point. By continuously varying the
parameter x, we find that these poles are indeed connected
with each other, as shown in Fig. 11. We thus conclude that
the CDD pole in the SU(3) limit is the origin of the vanishing
of the �� amplitude near the N� threshold at the physical
point.

G. Extrapolation in the quark mass plane

We finally calculate the �� scattering length with varying
the quark masses ml and ms . By identifying the unitary limit
by the divergence of the �� scattering length, we plot the
unitary limit in the mπ -mK plane (Fig. 12) and in the ml-ms

plane (Fig. 13). Qualitatively, it is a common feature that
the unitary limit is realized between the physical point and
the SU(3) limit. We however find that the location of the
unitary limit in the quark mass plane highly depends on the
model employed, in contrast to the previous results where the
difference of the contact model and the bare H model is not
very prominent. The difference in the extrapolation may have
some significance in the charm sector where the �c�c bound
state is discussed [48]. To clarify the existence of the �c�c

bound state, we need to know the property at physical mπ with
a large mK ∼ 1.87 GeV/c2, which is in the bound (unbound)
region in the contact (bare H ) model. More lattice data in the
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FIG. 12. Unitary limit in the mπ -mK plane in units of GeV.
Thick (thin) line represents the result in the contact (bare H ) model.
Diagonal dotted line represents the SU(3) limit.

wide range of the quark mass plane will be helpful to pin down
the exact location of the unitary limit.

In Fig. 12, we also find the bound state at (mπ,mK ) =
(389,544) MeV, where the simulation of the NPLQCD col-
laboration is performed [2,4]. Although the obtained binding
energy, 0.37 MeV (contact) and 0.046 MeV (bare H ), is
smaller than 13.2 MeV reported by the NPLQCD, it is
qualitatively consistent with the NPLQCD results. We note
that the parameters of the EFT are not fitted to the NPLQCD
results, and the baryon masses given by Eqs. (23)–(26) are
slightly different from those in the NPLQCD simulations.

The H dibaryon in the chiral limit ml = ms → 0 is of
particular interest from the viewpoint of the Skyrmion [49,50].
However, the extrapolation in the present framework to the
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FIG. 13. Unitary limit in the ml-ms plane in units of GeV. Thick
(thin) line represents the result in the contact (bare H ) model.
Diagonal dotted line represents the SU(3) limit.
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chiral limit should be performed with care, because the range
of the NG boson exchange interaction is infinite in the chiral
limit. Although the applicable energy region of the contact
interaction model gradually reduces when we decrease the
quark (NG boson) mass, the value of the scattering length at
zero energy can be used to examine the existence of the bound
state. The absence of the divergence of the scattering length on
the SU(3) symmetric line in Figs. 12 and 13 indicates that the
bound H dibaryon found by the lattice QCD should remain
bounded in the chiral limit.

The realization of the unitary limit in Figs. 12 and 13
urges us to consider the BCS-BEC crossover [17] in the
cold baryonic matter with strangeness under the variation of
quark masses. In the present case, the bosonic bound state to
be condensed in the BEC phase is the H dibaryon. In this
respect, we recall the discussion of the many-body system of
(compact) H dibaryons, the “H -matter” [51,52]. If we regard
the quark masses as controllable parameters (for instance, in
lattice QCD simulation), we can tune them to realize a bound
H dibaryon in the two-body system, which eventually leads to
the Bose-Einstein condensation in the many-body systems. It
is an interesting possibility to consider the appearance of the
“H -matter” in the unphysical quark mass region.

V. SUMMARY

We have studied the H dibaryon in the �� scattering from
the viewpoint of the quark mass dependence. The analysis is
performed with the effective field theory which universally
describes the low-energy scattering. Using the constraints by
the lattice QCD data obtained by the HAL QCD collaboration

to determine the quark mass dependence, we extrapolate the
coupled-channel baryon-baryon scattering amplitude.

The extrapolation to the physical point shows that the
bound state found in the SU(3) limit disappears, and a weak
resonance signal is found just below the N� threshold.
Through the detailed study of the pole trajectory, we find
that the bound state pole remains as a virtual state below the
threshold, while a shadow pole of the bound state evolves
to the resonance. We point out that the vanishing of the
�� scattering amplitude may cause the Ramsauer-Townsend
effect, which originates in the CDD pole found in the
SU(3) limit. It is shown that the coupled-channel effect is
responsible for these nontrivial structures of the �� scattering
amplitude.

The extrapolation to the quark mass plane has various
implications for the charm hadron sector and for the chiral
limit. Among others, we show the existence of the unitary
limit of the �� scattering in between the physical point and
the SU(3) limit. This opens the possibility to realize exotic
phases of the finite density QCD by tuning of the quark
masses.
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