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A model for the K̄d → πYN reactions with Y = �,� is developed, aiming at establishing the low-lying � and
� hyperon resonances through analyzing the forthcoming data from the J-PARC E31 experiment. The off-shell
amplitudes generated from the dynamical coupled-channels (DCC) model, which was developed in Kamano
et al. [Phys. Rev. C 90, 065204 (2014)], are used as input to the calculations of the elementary K̄N → K̄N and
K̄N → πY subprocesses in the K̄d → πYN reactions. It is shown that the cross sections for the J-PARC E31
experiment with a rather high incoming-K̄ momentum, | �pK̄ | = 1 GeV, can be predicted reliably only when the
input K̄N → K̄N amplitudes are generated from a K̄N model, such as the DCC model used in this investigation,
which describes the data of the K̄N reactions at energies far beyond the K̄N threshold. We find that the data of the
threefold differential cross section dσ/(dMπ�d�pn ) for the K−d → π�n reaction below the K̄N threshold can
be used to test the predictions of the resonance poles associated with �(1405). We also find that the momentum
dependence of the threefold differential cross sections for the K−d → π−�p reaction can be used to examine
the existence of a low-lying J P = 1/2+ � resonance with a pole mass MR = 1457 − i39 MeV, which was found
from analyzing the K−p reaction data within the employed DCC model.

DOI: 10.1103/PhysRevC.94.065205

I. INTRODUCTION

Recently, the spectroscopic study of � and � hyperon res-
onances with strangeness S = −1 (collectively referred to as
Y ∗) has made significant progress. This advance mainly comes
from using sophisticated coupled-channels approaches [1–4]
to perform comprehensive partial-wave analyses of the ex-
isting data of K−p reactions in a wide energy region from
their thresholds to a rather high energy with the invariant mass
W = 2.1 GeV. With this analysis, the systematic extraction of
Y ∗ resonances defined by poles of the scattering amplitudes
in the complex-energy plane was accomplished. It has been
established [5] that the resonance poles can be identified
with the (complex-)energy eigenstates of the Hamiltonian of
the underlying fundamental theory, which are obtained under
the purely outgoing wave boundary condition. Thus, the Y ∗
resonance parameters extracted through the coupled-channels
analyses of Refs. [1–4] have well-defined theoretical meaning,
while it is often not straightforward to interpret the Breit-
Wigner parameters listed by Particle Data Group (PDG) [6].
In addition, attempts [7–9] are being made to develop methods
for relating the meson and baryon resonance poles to the lattice
QCD calculations.

In this work, we consider the dynamical coupled-channels
(DCC) model developed in Ref. [2] for the meson-baryon
reactions in the S = −1 sector. This model was developed
by extending the theoretical framework of Ref. [10], which
was originally formulated to study πN , γN , eN , and νN
reactions in the nucleon resonance region [11–24], to in-
clude the meson-baryon channels with strangeness S = −1.
Within this DCC model, the T -matrix elements for each
partial wave can be obtained by solving a coupled integral

equation [2],

Tβ,α(pβ,pα; W )

= Vβ,α(pβ,pα; W ) +
∑

δ

∫
p2dpVβ,δ(pβ,p; W )

×Gδ(p; W )Tδ,α(p,pα; W ), (1)

with

Vβ,α(pβ,pα; W ) = vβ,α(pβ,pα) +
∑
Y ∗

0,n

�
†
Y ∗

0,n,β
(pβ)�Y ∗

0,n,α
(pα)

W − MY ∗
0,n

,

(2)

where W is the invariant mass of the reaction; the subscripts
α, β, and δ represent the five two-body channels (K̄N , π�,
π�, η�, and K�) and the two quasi-two-body channels
(π�∗ and K̄∗N ) that can decay into the three-body ππ�
and πK̄N channels, respectively; pα is the magnitude of
the momentum of channel α in the center-of-mass (c.m.)
frame; Gδ is the Green’s function of channel δ; MY ∗

0,n
is the

mass of the nth bare excited hyperon state Y ∗
0,n included in

the given partial wave; vβ,α represents the hadron-exchange
potentials derived from the effective Lagrangian that respects
the SU(3) flavor symmetry; and the bare vertex interaction
�Y ∗

0,n,α
(�†

Y ∗
0,n,β

) defines the α → Y ∗
0,n (Y ∗

0,n → β) transition.
The model parameters contained in the potential Vβ,α were
fixed by fitting more than 17,000 data of both unpolarized and
polarized observables of the K−p → K̄N,π�,π�,η�,K�
reactions. As a result, we obtained two distinct sets of the
model parameters, referred to as Model A and Model B.
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Both models describe the existing K−p reaction data equally
well over a wide energy range from the thresholds up to
W = 2.1 GeV. From Model A (Model B), 18 (20) of Y ∗
resonances were extracted in the energy region above the K̄N
threshold and below W = 2.1 GeV. It is found that some of
the extracted low-lying Y ∗ resonances may correspond to one-
and/or two-star resonances assigned by Particle Data Group [6]
or may be new resonances. Furthermore, two JP = 1/2− �
resonances are found below the K̄N threshold in both Model
A and Model B, which is similar to the results from the
chiral unitary models (see, e.g., Refs. [25,26]) and the Jülich
model [27].

Although a number of new and/or unestablished low-lying
Y ∗ resonances were found in the DCC analysis of Refs. [2,3],
their existence and pole-mass values are rather different
between Model A and Model B. This is, of course, attributable
to the fact that the existing K−p reaction data used in
the analysis are incomplete, as discussed in Refs. [2,3]. In
addition, there is a limitation of using the K−p reaction data
for establishing low-lying Y ∗ resonances because the K−p
reactions cannot directly access the energy region below the
K̄N threshold, and also it is practically not easy to measure
precisely the K−p reactions in the energy region just above the
K̄N threshold, where the incoming-K̄ momentum becomes
very low. One of the most promising approaches to overcome
this limitation would be a combined analysis of the K−p
reactions and the K−d → πYN reactions. This is based on
the observation that the two-body πY subsystem in the final
state of the K−d → πYN reactions can be in the energy region
below the K̄N threshold even if the incoming-K̄ momentum
is rather high.

As a first step towards accomplishing such a combined
analysis of the K̄N and K̄d reactions, in this work we apply
the multiple scattering theory [28,29] to predict the differential
cross sections of the K̄d → πYN reaction by using the K̄N
reaction amplitudes generated from the DCC model of Ref. [2].
We focus on the kinematics that the incoming K̄ has a rather
high momentum of | �pK̄ | = 1 GeV and the outgoing nucleon N
is detected at very forward angles with θpN

∼ 0, which is the
same as the setup of the J-PARC E31 experiment [30]. At this
special parallel kinematics, the outgoing N and the outgoing
πY pair are scattered back to back, as illustrated in Fig. 1, and
have almost no correlation in experimental measurements. In
fact, as can be seen from Fig. 2, the forward moving nucleon
momenta (solid curve) become | �pN | > | �pK | = 1 GeV for the
invariant mass of the πY subsystem relevant to our study

FIG. 1. Kinematics of the K̄d → πYN reaction considered in
this work. The outgoing N (outgoing πY pair) momentum is in the
direction (opposite direction) of the incoming-K̄ momentum.
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FIG. 2. The outgoing nucleon momentum pN ≡ | �pN | (solid
curve) as a function of the kinematically allowed πY invariant mass
MπY for the incoming-K̄ momentum | �pK̄ | = 1 GeV. Here the case
that Y = � is presented. Dashed vertical line indicates the π�

invariant mass at the K̄N threshold.

(horizontal axis), which means that the momentum of the πY
pair is in an opposite direction to �pN . Consequently, it is the
best for examining Y ∗ resonances through their decays into πY
states. In addition, because the forward moving nucleon carries
high energy and momentum, the recoiled πY pair can be even
below the K̄N threshold, which is also illustrated in Fig. 2.
We thus can make predictions for investigating low-lying Y ∗
resonances, including the long-standing problem associated
with �(1405) that was also the focus of Refs. [31–34]. The
data from the J-PARC E31 experiment [30] can then be used
to test our results. In particular, we would like to examine
how the predicted cross sections can be used to distinguish the
resonance parameters extracted within Model A and Model B
employed in our calculations.

Following the previous works [31–33] and justified by
the special kinematics mentioned above, we assume that the
scattering amplitude for K̄d → πYN includes the single-
scattering (impulse) term and the K̄-exchange term, as
illustrated in Fig. 3. While such a perturbative approach
neglects the higher-order scattering processes in a recent
calculation [34] based on the Alt-Grassberger-Sandhas type of
three-body scattering formulation [36], it is supported by many

FIG. 3. Diagrammatical representation of the K̄d → πYN re-
action processes considered in this work: (a) the impulse process;
(b) the K̄-exchange process. The deuteron wave function (open
circles) is taken from the one constructed with the Argonne V18
potential [35], while the off-shell amplitudes describing the meson-
baryon subprocesses (solid squares) are taken from our DCC model
developed in Ref. [2].
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FIG. 4. Total cross sections for K−p → πY reactions near the threshold. The blue solid curves are Model B in Ref. [2], the green dot-dashed
curves are the E-dep. model in Ref. [34], and the black dotted curves are from the model developed in Ref. [38] that was used for the calculation
in Refs. [31–33].

earlier studies of intermediate- and high-energy reactions on
deuteron; see, for example, a recent study of γ d → πNN of
Ref. [37]. Thus, it is reasonable to assume that our results
as well as the results of Refs. [31–33] account for the main
features of the K̄d → πYN reaction and can be used to
explore the feasibility of using the experiment at J-PARC to
investigate the low-lying hyperon resonances.

An essential difference between this work and the previous
works [31–34] is that we employ the (off-shell) K̄N reaction
amplitudes generated from the DCC model developed in
Ref. [2]. This DCC model describes the K̄N reaction data
over a very wide energy range from the thresholds up to
W = 2.1 GeV. However, the models for the meson-baryon
subprocesses employed in Refs. [31–34] were constructed
by fitting only the K−p reaction data just near the K̄N
threshold. To see how these K̄N models can be used in the
calculations, it is instructive here to examine the kinematics of
the K̄-exchange mechanism illustrated in Fig. 3(b). The range
of the invariant mass of the outgoing πY system (MπY ) we are
interested in is mπ + mY � MπY � 1.5 GeV, where mπ (mY )
is the mass of π (Y ). Thus, the K̄exN1 → πY amplitudes used
for calculating the K̄-exchange mechanism must be generated
from models which can reproduce well the data near the K̄N
threshold. As seen in Fig. 4, the models used in Refs. [31,32,34]
and the DCC models employed in our calculations are all valid
for this calculation in the invariant mass MπY covered by the
J-PARC E31 experiment shown in Fig. 2.

The situation is very different for the calculations of
K̄N2 → K̄exN amplitudes in Fig. 3(b). In the bottom panel
of Fig. 5, we show the ranges of the invariant mass (W ex

1st) of
the K̄N2 → K̄exN subprocess, which can be formed from the
incoming-K̄ momentum | �pK | = 1 GeV, the scattering angle
of outgoing N θpN

= 0, and the momentum of initial nucleon
N2 with | − �p| < 0.2 GeV within which the deuteron wave
function is large. We see that for a rather high incoming-K̄
momentum with | �pK | = 1 GeV, the allowed ranges for W ex

1st
are in the well above the K̄N threshold region. In the
top panel of Fig. 5, we see that only the DCC model can
describe the data in the whole range. Thus, the models used
in Refs. [31,32,34] have large uncertainties in calculating
the K̄N2 → K̄exN amplitudes for predicting K̄d → πYN at
| �pK̄ | = 1 GeV to compare with the data from the J-PARC E31
experiment [30]. In this work, we will also discuss how these
uncertainties associated with the K̄N2 → K̄exN amplitudes
affect the resulting K̄d → πYN reactions cross sections.

In Sec. II, we first give the notations for kinematical
variables and the cross section formulas necessary for the
presentation of this work. We then give the formula for
calculating the impulse and K̄-exchange amplitudes of the
K̄d → πYN reactions. The predicted results for the K̄d →
πYN reaction from our model are presented in Sec. III. The
comparisons with the results from using the S-wave K̄N
models are also given there. A summary and the prospect
for future works are given in Sec. IV.
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FIG. 5. (Top) Total cross section for K−p → K̄0n in the energy
region relevant to the K̄N2 → K̄exN subprocess in the K̄-exchange
process [Fig. 3(b)]. The blue solid curve is Model B in Ref. [2], the
green dot-dashed curve is the E-dep. model in Ref. [34], and the black
dotted curve is from the model developed in Ref. [38] that was used
for the calculation in Refs. [31–33]. (Bottom) Allowed ranges of the
invariant mass W ex

1st for the K̄N2 → K̄exN subprocess as p ≡ | − �p|
is varied. Here the incoming-K̄ momentum and the scattering angle
of outgoing N are fixed as | �pK̄ | = 1 GeV and θpN

= 0, respectively.

II. FORMULATION

In this section, we present the formulas for the calculations
of the differential cross sections for K̄ + d → π + Y + N
that can be used to compare with the data from the J-PARC E31
experiment.

A. Kinematics and cross sections

We perform calculations in the laboratory (LAB) frame in
which the incoming K̄ is in the quantization z direction and the
outgoing N is on the x-z plane. The momenta for the K̄ + d →
π + Y + N reaction, denoted as pa (a = K̄,d,π,Y,N ), can
then be written as

pK̄ = (EK̄ ( �pK̄ ),0,0,| �pK̄ |), (3)

pd = (md,�0), (4)

pπ = (Eπ ( �pπ ), �pπ ), (5)

pY = (EY ( �pY ), �pY ), (6)
pN = (EN ( �pN ),| �pN | sin θpN

,0,| �pN | cos θpN
), (7)

where Ea( �pa) = (m2
a + �p2

a)1/2 is the relativistic energy for a
particle a with mass ma and momentum �pa . It is convenient
to introduce the momentum �qπ of the outgoing π in the c.m.
frame of the final πY subsystem. For a given invariant mass
MπY of the πY subsystem, the magnitude of �qπ is given by

|�qπ | = 1

2MπY

√
λ
(
M2

πY ,m2
π ,m2

Y

)
, (8)

where λ(a,b,c) is the Källen function defined by λ(a,b,c) =
a2 + b2 + c2 − 2ab − 2bc − 2ac. For given MπY and cos θpN

,
| �pN | is obtained by solving EK̄ ( �pK̄ ) + md = EN ( �pN ) + EπY ,

where EπY =
√

M2
πY + �P 2

πY and �PπY ≡ �pπ + pY = �pK̄ −
�pN . The momenta �pπ for the outgoing π and �pY for the
outgoing Y can then be given by

�pπ = �qπ +
�PπY

MπY

[ �PπY · �qπ

EπY + MπY

+ Eπ (�qπ )

]
, (9)

�pY = −�qπ +
�PπY

MπY

[
−

�PπY · �qπ

EπY + MπY

+ EY (�qπ )

]
. (10)

With the above formulas, the kinematical variables [Eqs. (3)–
(7)] are completely fixed by the incoming-K̄ momentum �pK̄ ,
the solid angle �pN

= (θpN
,φpN

≡ 0) of the outgoing N on the
x-z plane, the solid angle �qπ

= (θqπ
,φqπ

) of the outgoing π
in the πY c.m. frame, and the πY invariant mass MπY .

With the normalization 〈 �p′| �p〉 = δ( �p′ − �p) for the plane-
wave one-particle state, the unpolarized differential cross
sections investigated in this work are given by

dσ

dMπY d�pN

=
∫

d�qπ

dσ

dMπY d�pN
d�qπ

, (11)

dσ

dMπY d�pN
d�qπ

= (2π )4 EK̄ ( �pK̄ )

| �pK̄ |
Eπ ( �pπ )EY ( �pY )EN ( �pN )|�qπ || �pN |2

|[EK̄ ( �pK̄ ) + md ]| �pN | − EN ( �pN )| �pK̄ | cos θpN
|

1

(2Jd + 1)

∑
spins

|TπYN,K̄d |2, (12)

where d�p = dφpd cos θp; Jd = 1 is the spin of the deuteron;
and TπYN,K̄d is the T -matrix element for the K̄d → πYN
reaction.

B. Model for K̄ d → πY N reaction

As discussed in Sec. I, the cross section for the K̄d → πYN
reaction will be calculated from the mechanisms illustrated
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in Fig. 3. The T -matrix element TπYN,K̄d appearing in Eq. (12) is given as a sum of contributions from the impulse (T imp
πYN,K̄d

)

and K̄-exchange (T K̄-ex
πYN,K̄d

) processes:

TπYN,K̄d = T
imp
πYN,K̄d

+ T K̄-ex
πYN,K̄d

. (13)

The T -matrix element for the impulse process [Fig. 3(a)] is given by

T
imp
πYN,K̄d

=
√

2〈π ( �pπ,I z
π ); Y ( �pY ,Sz

Y ,I z
Y ); N ( �pN,Sz

N ,I z
N )|tπY,K̄N1

|�(Md )
d ; K̄( �pK̄,I z

K̄
)〉

=
√

2
∑
Sz

N1

Tπ(I z
π )Y (Sz

Y ,I z
Y ),K̄(I z

K̄
)N1(Sz

N1
,−I z

N )( �pπ, �pY ; �pK̄, − �pN ; W imp)�(Md )
d (− �pN,Sz

N1
, − I z

N ; �pN,Sz
N ,I z

N ), (14)

where I z
a (Sz

a) is the quantum number for the z component of the isospin Ia (the spin Sa) of the particle a; and Md is that of
the deuteron spin. The factor

√
2 comes from the antisymmetry property of the deuteron wave function given by the following

standard form:

�
(Md )
d ( �p,ms1,mt1; − �p,ms2,mt2) =

(
1

2
mt1,

1

2
mt2

∣∣∣∣00

) ∑
LMLMs

(LML,1Ms |1Md )

(
1

2
ms1,

1

2
ms2

∣∣∣∣1Ms

)
YLML

(p̂)RL(| �p|). (15)

Here (l1m1,l2m2|lm) is the Clebsch-Gordan coefficient for l1 ⊗ l2 → l; YLM (p̂) is the spherical harmonics; and RL(| �p|) is the
radial wave function. The radial wave function is normalized as∑

L=0,2

∫ ∞

0
p2dp|RL(p)|2 = 1. (16)

In this work, the radial wave function, RL(| �p|) with L = 0,2, is taken from Ref. [35].
The half-off-shell K̄N1 → πY scattering in Eq. (14) can be related to the one in its c.m. frame by

Tπ(I z
π )Y (Sz

Y ,I z
Y ),K̄(I z

K̄
)N1(Sz

N1
,−I z

N )( �pπ, �pY ; �pK̄, − �pN ; W imp)

=
√

Eπ (�qπ )EY (−�qπ )EK̄ (�qK̄ )EN (−�qK̄ )

Eπ ( �pπ )EY ( �pY )EK̄ ( �pK̄ )EN (− �pN )
T c.m.

π(I z
π )Y (Sz

Y ,I z
Y ),K̄(I z

K̄
)N1(Sz

N1
,−I z

N )(�qπ , − �qπ ; �qK̄, − �qK̄ ; W imp), (17)

where �qK̄ is the momentum of the incoming K̄ in the c.m. frame of the final πY system; the Lorentz-boost factor appears in the
right-hand side1; and the invariant mass W imp for the K̄N1 → πY subprocess is defined by

W imp = MπY . (18)

Furthermore, the partial-wave expansion of the amplitude in the c.m. frame is expressed as

T c.m.
π(I z

π )Y (Sz
Y ,I z

Y ),K̄(I z
K̄

)N1(Sz
N1

,−I z
N )(�qπ , − �qπ ; �qK̄, − �qK̄ ; W imp) =

∑
JLJ zLz

f Lz
i

∑
II z

YLLz
f
(q̂f )Y ∗

LLz
i
(q̂i)(LLz

f ,SY Sz
Y |JJ z)(LLz

i ,SN1S
z
N1

|JJ z)

× (IπI z
π ,IY I z

Y |II z)
(
IK̄I z

K̄
,IN1 − I z

N |II z
)
T

(IJL)
πY,K̄N1

(qπ ,qK̄ ; W imp).

(19)

As already mentioned, in this work we take the partial-wave amplitudes T
(IJL)
πY,K̄N1

(qπ ,qK̄ ; W imp) from the DCC model developed
in Ref. [2].

For the K̄-exchange process [Fig. 3(b)], the corresponding T -matrix element is expressed as

T K̄-ex
πYN,K̄d

=
√

2〈π ( �pπ,I z
π ); Y ( �pY ,Sz

Y ,I z
Y ); N ( �pN,Sz

N ,I z
N )|t̂πY,K̄exN1

ĜK̄exNN1
t̂K̄exN,K̄N2

|�(Md )
d ; K̄( �pK̄,I z

K̄
)〉

=
∑

Sz
N1

Sz
N2

∑
I z
K̄ex I z

N1
I z
N2

∫
d �pK̄exTπ(I z

π )Y (Sz
Y ,I z

Y ),K̄ex(I z
K̄ex )N1(Sz

N1
,I z

N1
)( �pπ, �pY ; �pK̄ex , �p; W ex

2nd)
1

E−EK̄ex ( �pK̄ex )−EN ( �pN )−EN1 ( �p)+iε

×TK̄ex(I z
K̄ex )N(Sz

N ,I z
N ),K̄(I z

K̄
)N2(Sz

N2
,I z

N2
)

( �pK̄ex , �pN ; �pK̄, − �p; W ex
1st

)
�

(Md )
d

( �p,Sz
N1

,I z
N1

; − �p,Sz
N2

,I z
N2

)
, (20)

where �p = �pπ + �pY − �pK̄ex = �pK̄ − �pN − �pK̄ex ; and E is the
total scattering energy in the LAB frame. W ex

1st and W ex
2nd are

1Strictly speaking, the Wigner rotations also take place for the
particle spins through the Lorentz boost. However, those are omitted

respectively the invariant mass for the K̄N2 → K̄exN and

here because those do not affect the unpolarized differential cross
sections considered in this work.
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FIG. 6. Threefold differential cross section dσ/(dMπ�d�pn ) for the K−d → π�n reactions at | �pK− | = 1 GeV and θpn = 0. Solid curves
(dashed curves) are the full results for which the off-shell partial-wave amplitudes of Model A (Model B) of our DCC model [2] are used for
the two-body meson-baryon subprocesses. Dotted vertical lines indicate the π� invariant mass at the K̄N threshold.

K̄exN1 → πY subprocesses that describe the first and second
meson-baryon interaction vertices [solid squares in Fig. 3(b)]
in the K̄-exchange process. The explicit forms of W ex

1st and
W ex

2nd are given by

W ex
1st =

√
[EK̄ ( �pK̄ ) + md − EN1 ( �p)]2 − ( �pN + �pK̄ex )2, (21)

W ex
2nd = MπY . (22)

Again, the off-shell plane-wave amplitude for the K̄N2 →
K̄exN and K̄exN1 → πY subprocesses are constructed with
the partial-wave amplitudes generated from the DCC model [2]
in a way similar to Eqs. (17) and (19).

III. RESULTS AND DISCUSSION

With the model described in the previous section, we can
use Eqs. (11) and (12) to calculate the differential cross
sections for the K−d → πYN reactions. We will first present
our predictions for using the forthcoming data from the J-
PARC E31 experiment to examine the low-lying Y ∗ resonances
that were extracted [3] from the two DCC models, Model A
and Model B, of Ref. [2]. We then discuss the differences
between our results with those given in Refs. [31,32,34].

A. Predictions for J-PARC E31 experiment

To make predictions for the J-PARC E31 experiment, we
consider the kinematics that the momentum of the incoming
K− is set as | �pK−| = 1 GeV and the momentum of the outgoing
N is chosen to be in the K− direction with θpN

= 0. We
perform calculations using the K̄N → K̄N and K̄N → πY
amplitudes generated from both of the DCC models (Model
A and Model B) constructed in Ref. [2]. The predicted K−d
results are denoted as Model A and Model B accordingly.

First of all, we observe that the impulse process [Fig. 3(a)]
gives negligible contribution at the considered kinematics
with | �pK−| = 1 GeV and θpN

= 0, and the cross sections are
completely dominated by the K̄-exchange process [Fig. 3(b)].

This is expected because the impulse amplitude (14) contains
the deuteron wave function �d (− �pN, �pN ), which becomes
very small in the considered kinematics where the momentum
�pN is very high, | �pN | ∼ 1.2 GeV, as indicated in Fig. 2.
Therefore, in the following, our discussions are focused on
the K̄-exchange process.

Figure 6 shows the predicted threefold differential cross
section dσ/(dMπ�d�n) for the K−d → π�n reactions.
There are two noticeable features. First, there is a significant
enhancement of the cross section at Mπ� ∼ 1.45 GeV. Second,
a varying structure, partly attributable to the cusp from the
opening of the K̄N channel, appears in the considered Mπ�

region, and its shape depends on the model and the charge
state of the final π� system. We analyze their origins in the
following.

The enhancement of the cross section in Fig. 6 at
Mπ� ∼ 1.45 GeV is mainly attributable to the fact that
the meson-baryon amplitudes are, in general, the largest
at the on-shell kinematics and the deuteron wave function
�d ( �p, − �p) is the largest at | �p| = 0. At Mπ� ∼ 1.45 GeV, all
of the meson-baryon subprocesses and three-body propagator
in the K̄-exchange process become almost on-shell when
the momenta of the nucleons inside the deuteron are near
| �p| = 0 in the integrand of Eq. (20). Thus, the magnitude of
K̄-exchange amplitude |T K̄-ex

πYN,K̄d
| gets a large enhancement at

Mπ� ∼ 1.45 GeV. This is similar to what was discussed in
Ref. [34]. In fact, we confirm that the enhancement disappears
if we omit the contribution from the | �p| < 0.2 GeV region in
the loop integration in Eq. (20).

We now examine the varying structure of dσ/(dMπ�d�pn
)

in Fig. 6. For this purpose, we first observe in Fig. 7 that the
results (solid squares) from keeping only the S wave of the
K̄exN1 → π� amplitude agree almost perfectly with the full
results (solid curves). This indicates that the K̄exN1 → π�
subprocess is completely dominated by the S-wave amplitudes
in the considered kinematics. We note that this explains why a
peak owing to the �(1520)3/2− resonance does not appear at
Mπ� ∼ 1.52 GeV in contrast to the case of the K−p reactions.
In the same figure, we also show the contributions from S01
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FIG. 7. Threefold differential cross section dσ/(dMπ�d�pn ) for the K−d → π�n reactions with | �pK− | = 1 GeV and θpn = 0. Top,
middle, and bottom panels are the results for K−d → π−�+n, K−d → π+�−n, and K−d → π 0�0n, respectively. The results from Model
A (Model B) are presented in left panels (right panels). Each of the curves and points is the full results (solid curves) and the results in which
only the S-wave amplitude (solid squares), the S01 amplitude (dashed curves), or the S11 amplitude (dashed-dotted curves) is included in
K̄exN1 → π� of the K̄-exchange process. Dotted vertical lines indicate the π� invariant mass at the K̄N threshold.

(dashed curves) and S11 (dash-dotted curves) partial waves2 of
the K̄exN1 → π� subprocess. Clearly, the main contributions
to the full results (solid curves) are from the S01 wave that show
the clear cusp structure near the K̄N threshold. However, their
interference with the S11 wave is significant and is constructive
(destructive) for the π−�+ (π+�−) production reactions.
Such interference is absent for the π0�0 production reaction,
because only the S01 wave of the K̄exN1 → π� subprocess
can contribute to the cross section.

2The partial wave of the two-body K̄ + N → M(0−) + B( 1
2

+
)

reactions is denoted as LI2J , which means that the partial wave has a
total angular momentum J , a total isospin I , and a parity P = (−)L.

We next examine how the characteristic differences be-
tween Model A and Model B in the shape of the cross sections
below the K̄N threshold (compare solid and dashed curves in
Fig. 6) can be related to resonances in the S01 partial wave of the
K̄exN1 → π� subprocess. For this purpose, we first observe
in Fig. 8 that the cross sections become very small below the
K̄N threshold if we take into account only the nonresonant
contribution for the S01 wave of K̄exN1 → π�. With this
observation, we expect that S01 (JP = 1/2−) � resonances
are actually the main contribution of the cross sections below
the K̄N threshold and are the origin of the difference in its
shape between Model A and Model B. As mentioned in Sec. I,
our DCC analysis of the K−p reactions [2] predicts two S01

(JP = 1/2−) � resonances below the K̄N threshold in both
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invariant mass at the K̄N threshold.

Model A and Model B [3], as shown in Fig. 9. Here, the higher
mass pole (A1 and B1) would correspond to the �(1405)
resonance, while another � resonance with lower mass (A2
and B2) is similar to what was obtained in the chiral unitary
models (see, e.g., Refs. [25,26]) and the Jülich model [27].
Although both Model A and Model B find two � resonances,
their pole positions are rather different. One can see from
Fig. 9 that the pole A1 (B2) has a larger imaginary part
than the pole B1 (A2) and is far away from the real energy
axis. In addition, the products of their coupling strengths
to the π� and K̄N channels, gπ�Y ∗ × gK̄NY ∗ , are rather
different, as seen in Table I. The contribution of a resonance
with complex mass MR in the K̄exN1 → π� subprocess to
the K̄-exchange amplitude T K̄-ex

π�n,K−d can be schematically

expressed at Mπ� = Re(MR) as

T K̄-ex
π�n,K−d ∼

[
F (Mπ�) × gπ�Y ∗gK̄NY ∗

Mπ� − MR

+ · · ·
]

Mπ�=Re(MR )

= F (Re(MR)) × gπ�Y ∗gK̄NY ∗

iIm(MR)
+ · · · , (23)

where F (Mπ�) is a regular function of Mπ� and is expected
not to be much different between Model A and Model B.
The value of |gπ�Y ∗gK̄NY ∗/Im(MR)|2 can therefore be used to
measure the effect of a resonance on the cross section. In the
third column of Table I, we see that |gπ�Y ∗gK̄NY ∗/Im(MR)|2 of
the resonance B1 is larger than that of A1. Thus, B1 has larger
effects than A1 on the cross sections near the K̄N threshold,
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as can be seen from clear peaks in the cross sections at Mπ� ∼
1.42 GeV that appear only in Model B. At lower energy, the
cross sections are influenced by the second resonances A2 and
B2. From Table I, we see that |gπ�Y ∗gK̄NY ∗/Im(MR)|2 of the
resonance A2 is much larger than that of B2. This explains
why the cross sections at Mπ� � 1.4 GeV in Model A are
larger than those in Model B.

We now turn to presenting the predicted cross sections for
K−d → π−�0p and K−d → π−�p at the same kinematics
| �pK̄ | = 1 GeV and θpp

= 0. Because the π−�0 and π−� states
contain only the isospin I = 1 component, these reactions
will be useful for investigating the low-lying � resonances.
It is noted that the data for such reactions can also be
obtained by extending the measurements of the the J-PARC
E31 experiment [39]. Similar to the results for the K−d →
π�n reactions presented above, we find that (a) the impulse
process gives negligible contribution to the cross sections
for both K−d → π−�0p and K−d → π−�p and (b) the
characteristic enhancement appears at MπY ∼ 1.45 GeV, as
seen in Figs. 10 and 11.

For K−d → π−�0p, we find that the K̄exN1 → π�
subprocess is completely dominated by the S11 amplitude.
This is shown in Fig. 10. We see that the results (solid squares)
from the calculations keeping only the S11 amplitude of the
K̄exN1 → π� subprocess agree almost perfectly with the
results (solid curves) from the calculations including all partial
waves. The cross section becomes very small below the K̄N

threshold, and this would be because no resonance exists in the
S11 wave in the corresponding energy region. It is found that
Model B shows the cross section ∼20% smaller than Model A
at its maximum (Mπ� ∼ 1.45 GeV). Because the on-shell S11

amplitudes for the K̄exN1 → π� subprocess are not much
different between the two models at Mπ� ∼ 1.45 GeV [2],
the difference in the magnitude of the K−d → π−�0p cross
section might partly come from that in the off-shell behavior
of the K̄exN1 → π� subprocess.

The predicted differential cross sections for the K−d →
π−�p reaction are given in Fig. 11. By comparing the solid
curves and the solid squares, it is clear that the S11 and P13

waves of the K̄exN1 → π� subprocess completely dominate
the cross section in the region below the K̄N threshold. A
resonance corresponding to �(1385)3/2+ in the P13 wave was
identified in both Model A and Model B. For Model B (the right
panel of Fig. 11), there is a peak at Mπ� ∼ 1.38 GeV, where the
contribution from the S11 amplitude is very weak. However,
we find that in Model A the S11-wave contribution and the
P13-wave contribution from �(1385)3/2+ are comparable and
interfere destructively, and, as a result, a dip is produced at
Mπ� ∼ 1.38 GeV. We find that Model A has another P13

resonance with lower mass than �(1385)3/2+. This is the
origin of the peak at Mπ� ∼ 1.3 GeV in the left panel of
Fig. 11. These kinds of visible differences between Model A
and Model B can occur below the K̄N threshold, because
at present our DCC models for the K̄N reactions have been
constructed by fitting only to the K−p reaction data. We expect
that such a different behavior of the two-body subprocesses
below the K̄N threshold, which cannot be directly constrained
by the K̄N reaction data, needs to be judged by the data
of K̄d reactions. The upcoming data from the J-PARC E31
experiment are thus highly desirable to improve our DCC
models in the S = −1 sector.

We also see in Fig. 11 that above the K̄N threshold, the
P13 wave of the K̄exN1 → π� subprocess is negligible and the
main contribution to the cross section comes from the S11 wave.
However, the behavior of the S11 partial-wave amplitudes for
K̄N → π� is rather different between Model A and Model B
at W � 1.7 GeV (see Fig. 27 in Ref. [2]), and this is the origin
of the the sizable difference in the magnitude of the cross
section above the K̄N threshold. For Model A (left panel),
the difference between the solid and dashed curves is quite
small, and hence the cross section above the K̄N threshold is
almost completely dominated by the S11 wave. However, this
difference is about 30% for Model B (right panel) and is found
to come from a P11 (JP = 1/2+) � resonance with pole mass

TABLE I. The product of coupling strengths gπ�Y ∗gK̄NY ∗ at pole positions for J P = 1/2− � resonances located below the K̄N threshold.
The pole mass MR is presented as (Re(MR), − Im(MR)), and gπ�Y ∗gK̄NY ∗ = |gπ�Y ∗gK̄NY ∗ |eiφ is presented as (|gπ�Y ∗gK̄NY ∗ |, φ). The product
gπ�Y ∗gK̄NY ∗ is defined as the residue of the T -matrix element Tπ�,K̄N at the resonance pole position.

Pole mass MR (MeV) gπ�Y ∗gK̄NY ∗ (MeV−1, deg.) |gπ�Y ∗gK̄NY ∗/Im(MR)|2 (MeV−4)

A1 (1432,75) (15.42 × 10−4, 170) 4.23 × 10−10

B1 (1428,31) (7.94 × 10−4, 102) 6.56 × 10−10

A2 (1372,56) (21.54 × 10−4, −24) 14.79 × 10−10

B2 (1397,98) (13.87 × 10−4, −56) 2.00 × 10−10
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MR = 1457 − i39 MeV [3]. This resonance might correspond
to the one-star �(1480) resonance assigned by PDG [6]. At
present this resonance was found only in Model B, and this
is why the contribution of the P11 wave is negligible in the
K−d → π−�p cross section for Model A.

The above result suggests that the K−d → π−�p cross
section may provide a useful constraint for judging this
unestablished low-lying � resonance with spin-parity JP =
1/2+. To investigate this, we examine the threefold differential
cross sections at different values of the incoming-K̄ momen-
tum. In Fig. 12, we present dσ/(dMπ�d�pp

) at | �pK̄ | = 1 and
0.7 GeV. We find that the interference pattern in the cross
section changes as | �pK̄ | changes. For the cross section at
| �pK̄ | = 1 GeV, the contribution from the P11 wave of the
K̄exN1 → π� subprocess shows a constructive interference
with the other contributions, while at | �pK̄ | = 0.7 GeV, it
shows a destructive interference. This visible difference of
the interference pattern originating from the P11 wave of the
K̄exN1 → π� subprocess will provide critical information for
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FIG. 11. Threefold differential cross section dσ/(dMπ�d�pp )
for the K−d → π−�p reaction at | �pK− | = 1 GeV and θpp = 0. The
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for the K−d → π−�p reaction at θpp = 0, computed with Model B.
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Solid curves are the full results, while dashed curves are the results
in which the P11 amplitude for K̄exN1 → π� in the K̄-exchange
process is turned off. Dotted vertical lines indicate the π� invariant
mass at the K̄N threshold.

judging the unestablished JP = 1/2+ � resonance. Therefore,
it is highly desirable to measure the K−d → π−�p cross
section for several | �pK̄ | values.

B. Comparison with the results from the S-wave K̄ N models

The differential cross sections at | �pK | = 1 GeV are also
predicted in Ref. [34]. We first note that our predicted cross
sections shown in Fig. 6 are much larger than those given
in Fig. 12 of Ref. [34]. We find that it is mainly attributable
to the large difference between the amplitudes used in the
calculations of K̄N2 → K̄exN in the K̄-exchange process
[Fig. 3(b)], where the incoming K̄ has a large momentum.
As seen in Fig. 5, the S-wave K̄N model used in Ref. [34]
underestimates the K̄N → K̄N cross section greatly in the
invariant-mass region around W = 1.8 GeV, which is covered
in the loop integration of Eq. (20) over the momentum of
the nucleon in the deuteron. In such a high-W region far
beyond the K̄N threshold, it is necessary to include the higher
partial-wave contributions. This can be understood from Fig. 5,
where we compare the K−p → K̄0n cross sections from our
DCC model and the two S-wave models of Refs. [34,38].
If we keep only the S-wave part of the amplitude in our
calculation, our results (solid curve) in Fig. 5 are actually
reduced to the values close to the results (dot-dashed and
dotted curves) of the two S-wave models. Accordingly, we
see in Fig. 13 that the magnitude of dσ/(dMπ�d�pn

) for
the K−d → π�n reactions are drastically reduced if we
include only the S-wave amplitudes for K̄N2 → K̄exN in
the K̄-exchange process. This result indicates that the use of
appropriate amplitudes that reproduce the K̄N reactions up to
a very high energy is inevitable for obtaining the K−d reaction
cross sections that are comparable with the experimental data.
The same argument would also apply to the other studies
of the K−d reaction [31–33], where the amplitudes for the
meson-baryon subprocesses are obtained by fitting only to
the near-threshold data of K̄N reactions. It is noted that
the higher-order scattering processes were also taken into
account in Ref. [34]. By performing calculations using their
S-wave K̄N model, however, we confirm that in the considered
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FIG. 13. Threefold differential cross section dσ/(dMπ�d�pn ) for the K−d → π�n reactions at | �pK− | = 1 GeV and θpn = 0. Solid curves
represent the full result, while dashed curves represent the results in which only the S-wave amplitudes are included for K̄N2 → K̄exN of the
K̄-exchange process. Dotted vertical lines indicate the π� invariant mass at the K̄N threshold.

kinematics their results are nearly saturated by the impulse
and K̄-exchange processes and the higher-order effects seem
subdominant. Therefore, the use of appropriate K̄N scattering
amplitudes, which can make the K−d reaction cross sections
order(s) of magnitude larger, seems more important than the
higher-order effects.

We next compare our results at | �pK | = 0.6 GeV with those
given in Ref. [31]. In Fig. 14, we see that our “S-wave only”
results at | �pK̄ | = 0.6 GeV are much smaller than the results in
Ref. [31]. The results in Ref. [31] are even comparable or larger
than our full results in which higher partial waves are also
included. This can be understood from Fig. 15. For the K̄N2 →
K̄exN subprocess, the K−p → K̄0n and K−n → K−n charge
states can contribute. We see that at W ∼ 1.6 GeV, which
corresponds to a typical invariant mass of the K̄N2 → K̄exN
subprocess for | �pK̄ | = 0.6 GeV, the S-wave K̄N model used in
Ref. [31] gives a large cross section for K−n → K−n, which
is even larger than our full results. Because all the K̄N models
give similar cross sections near the threshold, we can conclude
that this is the origin of the large K−d → π�n reaction cross

section found in Ref. [31]. Furthermore, the K−n → K−n
cross sections are larger than K−p → K0n cross sections and
thus have a larger contribution to the K̄-exchange amplitudes.
This is why the result from Ref. [31] has a large cross section
for K−d → π�n at pK = 0.6 GeV. This observation also
indicates that one must use the K̄N amplitudes that are well
tested by the K̄N reaction data up to a high-energy region far
beyond the K̄N threshold.

IV. SUMMARY AND FUTURE DEVELOPMENTS

Aiming at establishing low-lying Y ∗ resonances through
analyzing the forthcoming data from the J-PARC E31 ex-
periment, we have developed a model for the K̄d → πYN
reaction. At the kinematics of this experiment that the outgoing
nucleon is in the direction of the incoming K̄ , the cross sections
for this reaction are dominated by the K̄-exchange mechanism.
The amplitudes of this K̄-exchange process are calculated in
our approach by using the off-shell amplitudes of K̄N → K̄N
and K̄N → πY generated from the DCC model developed
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FIG. 14. Threefold differential cross section dσ/(dMπ�d�pn ) for the K−d → π�n reactions at | �pK− | = 0.6 GeV and θpn = 0. Solid
curves are the full results from our Model B, while dashed curves are the results from Model B in which only the the S-wave amplitudes are
included for all meson-baryon subprocesses. Dotted curves are the results in Ref. [31], where the S-wave K̄N model developed in Ref. [38]
are used for calculating the meson-baryon subprocesses. Dotted vertical lines indicate the π� invariant mass at the K̄N threshold.
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FIG. 15. (Top) Total cross section for K−p → K̄0n in the energy
region relevant to the K̄N2 → K̄exN subprocess in the K̄-exchange
process [Fig. 3(b)] for the case of | �pK̄ | = 0.6 GeV and θpN

= 0. The
solid (dashed) curve is the full (S-wave only) result from Model B
of Ref. [2], while the dotted curve is from the model developed in
Ref. [38] that was used for the calculation in Refs. [31–33]. (Middle)
Same as the top panel but for K−n → K̄−n. (Bottom) Allowed ranges
of the invariant mass W ex

1st for the K̄N2 → K̄exN subprocess as p ≡
| − �p| is varied. Here the incoming-K̄ momentum and the scattering
angle of outgoing N are fixed as | �pK̄ | = 0.6 GeV and θpN

= 0.

in Ref. [2]. This DCC model was constructed by fitting the
existing data of K−p → K̄N,π�,π�,η�,K� reactions over
the wide energy region from the thresholds up to W = 2.1 GeV.

Most previous works used elementary meson-baryon am-
plitudes that were constructed by fitting only to the K̄N
reaction data near the threshold. However, we have shown that
if the incoming-K̄ momentum is rather high, as in the case of
the J-PARC E31 experiment, the use of such amplitudes would
result in the cross section that is order(s) of magnitude smaller
than the one calculated using the appropriate meson-baryon
amplitudes that reproduce the K̄N reactions in the energy
region far beyond the K̄N threshold. This is because the
meson-baryon subprocess produced by the reaction between
the incoming K̄ and the nucleon inside of the deuteron can
have a very high invariant mass, even if the invariant mass of
the final πY system is quite low.

We have shown that the K̄d → πYN reactions are useful
for studying low-lying Y ∗ resonances. In fact, by comparing
the results between our two models, Model A and Model B,
we have found that the behavior of the threefold differential
cross sections for K−d → π�n [K−d → π−�p] below the
K̄N threshold are sensitive to the existence and position
of the S01 resonance poles including �(1405)1/2− [the
P13 resonance poles including �(1385)3/2+]. We have also
demonstrated that the K−d → π−�p reaction data would
provide useful information for judging the existence of an
unestablished low-lying JP = 1/2+ � resonance with the pole
mass MR = 1457 − i39 MeV, which is currently found only in
Model B.

Here we note that we have followed the previous works
[31–33] to consider only the impulse and K̄-exchange pro-
cesses and ignore other higher-order three-particle final-state
interactions. One possible important correction is the π -
exchange mechanism when the invariant mass of the outgoing
πN state in the final πYN state is near the �(1232) region.
We have found that it has negligible effects to change our
results in the considered special kinematics shown in Fig. 1.
Nevertheless, our results on the differences between Models
A and B should be further quantified by performing the
complete three-particle calculation. This is, however, rather
difficult within the framework using the K̄N amplitudes of
the DCC model of Ref. [2] mainly because of the presence
of multichannel final states, such as π�N , π�N , η�N , and
K�N , and of the nonseparable nature of our meson-baryon
amplitudes, which is different from those used in Ref. [34],
where the separable nature of the two-body amplitudes was a
key to solving the three-body scattering equation. Clearly, this
requires a separated long-term effort.

A necessary and immediate next step towards constructing
a reliable K̄d reaction model that can be used for the
spectroscopic study of low-lying Y ∗ resonances would be to
include the baryon-exchange processes in addition to K̄- and
π -exchange processes, so that we can apply our K̄d reaction
model to a wider kinematical region. Also, the inclusion of
baryon-exchange process would make our model applicable
to the study of YN and YY interactions, where the latter is
quite interesting in relation to a possible existence of the H
dibaryons. Our investigations in this direction will be presented
elsewhere.
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[17] N. Suzuki, B. Juliá-Dı́az, H. Kamano, T.-S. H. Lee, A.

Matsuyama, and T. Sato, Phys. Rev. Lett. 104, 042302 (2010).

[18] N. Suzuki, T. Sato, and T.-S. H. Lee, Phys. Rev. C 82, 045206
(2010).

[19] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato, Phys.
Rev. C 81, 065207 (2010).

[20] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato, Phys.
Rev. D 86, 097503 (2012).

[21] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato, Phys.
Rev. C 88, 035209 (2013).

[22] H. Kamano, Phys. Rev. C 88, 045203 (2013).
[23] S. X. Nakamura, H. Kamano, and T. Sato, Phys. Rev. D 92,

074024 (2015).
[24] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato, Phys.

Rev. C 94, 015201 (2016).
[25] J. A. Oller and U.-G. Meißner, Phys. Lett. B 500, 263 (2001).
[26] Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, and K. Yazaki,

Prog. Theor. Phys. 125, 1205 (2011).
[27] J. Haidenbauer, G. Krein, U.-G. Meißner, and L. Tolos, Eur.

Phys. J. A 47, 18 (2011).
[28] M. L. Goldberger and K. M. Watson, Collision Theory (Wiley

& Sons, New York, 1964).
[29] H. Feshbach Theoretical Nuclear Physics, Nuclear Reactions

(Wiley, New York, 1992).
[30] H. Noumi et al., Spectroscopic study of hyperon res-

onances below K̄N threshold via the (K−,n) reac-
tion on deuteron (J-PARC E31), http://j-parc.jp/researcher/
Hadron/en/pac_1207/pdf/E31_2012-9.pdf

[31] K. Miyagawa and J. Haidenbauer, Phys. Rev. C 85, 065201
(2012).

[32] D. Jido, E. Oset, and T. Sekihara, Eur. Phys. J. A 42, 257 (2009);
49, 95 (2013).

[33] J. Yamagata-Sekihara, T. Sekihara, and D. Jido, PTEP 2013,
043D02 (2013).

[34] S. Ohnishi, Y. Ikeda, T. Hyodo, and W. Weise, Phys. Rev. C 93,
025207 (2016).

[35] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995)

[36] E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167
(1967).

[37] J. J. Wu, T. Sato, and T.-S. H. Lee, Phys. Rev. C 91, 035203
(2015).

[38] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
[39] H. Noumi (private communication).

065205-13

https://doi.org/10.1103/PhysRevC.88.035204
https://doi.org/10.1103/PhysRevC.88.035204
https://doi.org/10.1103/PhysRevC.88.035204
https://doi.org/10.1103/PhysRevC.88.035204
https://doi.org/10.1103/PhysRevC.88.035205
https://doi.org/10.1103/PhysRevC.88.035205
https://doi.org/10.1103/PhysRevC.88.035205
https://doi.org/10.1103/PhysRevC.90.065204
https://doi.org/10.1103/PhysRevC.90.065204
https://doi.org/10.1103/PhysRevC.90.065204
https://doi.org/10.1103/PhysRevC.90.065204
https://doi.org/10.1103/PhysRevC.92.025205
https://doi.org/10.1103/PhysRevC.92.025205
https://doi.org/10.1103/PhysRevC.92.025205
https://doi.org/10.1103/PhysRevC.92.025205
https://doi.org/10.1103/PhysRevD.93.034029
https://doi.org/10.1103/PhysRevD.93.034029
https://doi.org/10.1103/PhysRevD.93.034029
https://doi.org/10.1103/PhysRevD.93.034029
https://doi.org/10.1016/j.nuclphysa.2008.08.003
https://doi.org/10.1016/j.nuclphysa.2008.08.003
https://doi.org/10.1016/j.nuclphysa.2008.08.003
https://doi.org/10.1016/j.nuclphysa.2008.08.003
https://doi.org/10.1119/1.1466817
https://doi.org/10.1119/1.1466817
https://doi.org/10.1119/1.1466817
https://doi.org/10.1119/1.1466817
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevLett.116.082004
https://doi.org/10.1103/PhysRevLett.116.082004
https://doi.org/10.1103/PhysRevLett.116.082004
https://doi.org/10.1103/PhysRevLett.116.082004
https://doi.org/10.1103/PhysRevD.94.056010
https://doi.org/10.1103/PhysRevD.94.056010
https://doi.org/10.1103/PhysRevD.94.056010
https://doi.org/10.1103/PhysRevD.94.056010
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1103/PhysRevC.76.065201
https://doi.org/10.1103/PhysRevC.76.065201
https://doi.org/10.1103/PhysRevC.76.065201
https://doi.org/10.1103/PhysRevC.76.065201
https://doi.org/10.1103/PhysRevC.77.045205
https://doi.org/10.1103/PhysRevC.77.045205
https://doi.org/10.1103/PhysRevC.77.045205
https://doi.org/10.1103/PhysRevC.77.045205
https://doi.org/10.1103/PhysRevC.78.025204
https://doi.org/10.1103/PhysRevC.78.025204
https://doi.org/10.1103/PhysRevC.78.025204
https://doi.org/10.1103/PhysRevC.78.025204
https://doi.org/10.1103/PhysRevC.79.025206
https://doi.org/10.1103/PhysRevC.79.025206
https://doi.org/10.1103/PhysRevC.79.025206
https://doi.org/10.1103/PhysRevC.79.025206
https://doi.org/10.1103/PhysRevC.80.025207
https://doi.org/10.1103/PhysRevC.80.025207
https://doi.org/10.1103/PhysRevC.80.025207
https://doi.org/10.1103/PhysRevC.80.025207
https://doi.org/10.1103/PhysRevC.80.065203
https://doi.org/10.1103/PhysRevC.80.065203
https://doi.org/10.1103/PhysRevC.80.065203
https://doi.org/10.1103/PhysRevC.80.065203
https://doi.org/10.1103/PhysRevLett.104.042302
https://doi.org/10.1103/PhysRevLett.104.042302
https://doi.org/10.1103/PhysRevLett.104.042302
https://doi.org/10.1103/PhysRevLett.104.042302
https://doi.org/10.1103/PhysRevC.82.045206
https://doi.org/10.1103/PhysRevC.82.045206
https://doi.org/10.1103/PhysRevC.82.045206
https://doi.org/10.1103/PhysRevC.82.045206
https://doi.org/10.1103/PhysRevC.81.065207
https://doi.org/10.1103/PhysRevC.81.065207
https://doi.org/10.1103/PhysRevC.81.065207
https://doi.org/10.1103/PhysRevC.81.065207
https://doi.org/10.1103/PhysRevD.86.097503
https://doi.org/10.1103/PhysRevD.86.097503
https://doi.org/10.1103/PhysRevD.86.097503
https://doi.org/10.1103/PhysRevD.86.097503
https://doi.org/10.1103/PhysRevC.88.035209
https://doi.org/10.1103/PhysRevC.88.035209
https://doi.org/10.1103/PhysRevC.88.035209
https://doi.org/10.1103/PhysRevC.88.035209
https://doi.org/10.1103/PhysRevC.88.045203
https://doi.org/10.1103/PhysRevC.88.045203
https://doi.org/10.1103/PhysRevC.88.045203
https://doi.org/10.1103/PhysRevC.88.045203
https://doi.org/10.1103/PhysRevD.92.074024
https://doi.org/10.1103/PhysRevD.92.074024
https://doi.org/10.1103/PhysRevD.92.074024
https://doi.org/10.1103/PhysRevD.92.074024
https://doi.org/10.1103/PhysRevC.94.015201
https://doi.org/10.1103/PhysRevC.94.015201
https://doi.org/10.1103/PhysRevC.94.015201
https://doi.org/10.1103/PhysRevC.94.015201
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1143/PTP.125.1205
https://doi.org/10.1143/PTP.125.1205
https://doi.org/10.1143/PTP.125.1205
https://doi.org/10.1143/PTP.125.1205
https://doi.org/10.1140/epja/i2011-11018-3
https://doi.org/10.1140/epja/i2011-11018-3
https://doi.org/10.1140/epja/i2011-11018-3
https://doi.org/10.1140/epja/i2011-11018-3
http://j-parc.jp/researcher/Hadron/en/pac_1207/pdf/E31_2012-9.pdf
https://doi.org/10.1103/PhysRevC.85.065201
https://doi.org/10.1103/PhysRevC.85.065201
https://doi.org/10.1103/PhysRevC.85.065201
https://doi.org/10.1103/PhysRevC.85.065201
https://doi.org/10.1140/epja/i2009-10875-5
https://doi.org/10.1140/epja/i2009-10875-5
https://doi.org/10.1140/epja/i2009-10875-5
https://doi.org/10.1140/epja/i2009-10875-5
https://doi.org/10.1140/epja/i2013-13095-6
https://doi.org/10.1140/epja/i2013-13095-6
https://doi.org/10.1140/epja/i2013-13095-6
https://doi.org/10.1093/ptep/ptt009
https://doi.org/10.1093/ptep/ptt009
https://doi.org/10.1093/ptep/ptt009
https://doi.org/10.1093/ptep/ptt009
https://doi.org/10.1103/PhysRevC.93.025207
https://doi.org/10.1103/PhysRevC.93.025207
https://doi.org/10.1103/PhysRevC.93.025207
https://doi.org/10.1103/PhysRevC.93.025207
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1103/PhysRevC.91.035203
https://doi.org/10.1103/PhysRevC.91.035203
https://doi.org/10.1103/PhysRevC.91.035203
https://doi.org/10.1103/PhysRevC.91.035203
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5
https://doi.org/10.1016/S0375-9474(98)00170-5



