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Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants
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In this article we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch,
Phys. Rev. C 86, 044904 (2012); 91, 027901 (2015)]. We will discuss the limitations of the methods presented in
these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency
distributions. We will discuss the most simple and straightforward methods to implement those corrections.
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I. INTRODUCTION

Cumulants of conserved charges, such as the baryon
number, are important observables in the search for a possible
phase structure in the QCD phase diagram [1,2], and first
measurements of the net-proton and net-charge cumulants
up to fourth order have been carried out by the STAR
collaboration [3–5]. As pointed out in [6] finite detection
efficiencies give rise to fluctuations of the measured particle
number and need to be corrected for. These corrections can be
included in a straightforward manner if the efficiency follows
a binomial distribution [6]. Appropriate formulas for a phase
space dependent (binomial) efficiency have also been derived
[7–9]. These corrections can be sizable as seen in the recent
preliminary data by the STAR collaboration [10].

So far, however, all efficiency corrections have assumed that
the efficiency (in a given phase space bin) is constant for a given
centrality class, i.e., it does not depend on the multiplicity of
particles under consideration. Furthermore, all the corrections
have been carried out assuming that the detection efficiency
follows a binomial distribution.

In reality, the efficiency does depend on the multiplicity of
particles (see, e.g., Fig. 1 in [10]). Also it is not at all obvious
if a binomial distribution correctly describes the detection
probability. In the following we want to address both these
issues and discuss methods how to improve the efficiency
corrections. We demonstrate our points for proton cumulants,
i.e., we neglect antiprotons, which is well justified at lower
energies.

Let us start by defining more precisely what we mean by
an “efficiency distribution”. For simplicity, we will restrict
ourselves to one kind of particles, such as protons, and ignore
antiparticles. The extension to net-particles distributions is
straightforward following the discussion in [6,7]. Let us denote
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the number distribution of the produced particles by P (N ) and
that of the observed particles by p(n).1 Then the observed
distribution is given by

p(n) =
∑
N

B(n,N ; ε)P (N ), (1)

where B(n,N ; ε) denotes the probability to observe n particles
if N particles are produced. The probability B(n,N ; ε) depends
on the detection efficiency ε. It is this probability B(n,N ; ε)
that we call efficiency distribution. The detection efficiency,
ε, is given by the ratio of mean number of observed
particles, 〈n〉, over the mean number of produced particles,
〈N〉, ε = 〈n〉/〈N〉. Obviously, ε by itself, does not define
the entire efficiency distribution. In practice however, B is
typically assumed to be a binomial distribution

B(n,N ; ε) = N !

n!(N − n)!
εn(1 − ε)N−n, (2)

in which case the knowledge ε is sufficient to characterize the
distribution. To which extent such an assumption is valid can
only be verified by a detailed simulation of a given detector
system.

Usually, the efficiency ε is assumed to be constant, i.e.,
independent of N , the number of particles under consideration.
In this case, assuming a binomial efficiency distribution,
factorial moments of the produced and observed particles are
simply related by [6]

fi = εiFi, (3)

where the factorial moments are defined by

Fi =
∑
N

P (N )
N !

(N − i)!
, fi =

∑
n

p(n)
n!

(n − i)!
. (4)

1Throughout this paper we will use lower case characters to refer
to observed particles and upper case characters to refer to produced
particles.
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Given the above relation for the factorial moments, efficiency
corrections for the various cumulants are readily derived
[6]. However, in reality the efficiency may depend on the
multiplicity of particles under consideration. For example, in
the case of the STAR measurement of net proton cumulants,
the centrality is determined by the number of charged particles
other than protons and antiprotons. The efficiency, on the other
hand depends on all charged particles, including protons and
antiprotons. Therefore, even for the tightest centrality cuts, the
number of charged particles, and thus the efficiency, fluctuates
from event to event in a given centrality class, simply because
the number of produced protons and antiprotons fluctuate. In
this case, as already pointed out in [11], the above relation
between the factorial moments, Eq. (3), is not valid anymore.
In addition, as already mentioned, the efficiency distribution
may not be exactly binomial. In these cases, the above simple
formula (3) will not hold and, as we will show in this paper,
may lead to wrong conclusions.

Recent preliminary results by the STAR collaboration [10]
at the lowest available BNL Relativistic Heavy Ion Collider
energies show that the efficiency corrections play a crucial role
in a proper interpretation of data. Therefore, it is essential that
the correct unfolding procedure is applied. It is the purpose of
this article to discuss various corrections and modifications to
the unfolding procedure, and we should point out that we will
only discuss the most simple and straightforward unfolding
methods and apply them to cumulants. There are other, more
refined, methods used to correct multiplicity distributions
(see, e.g., [12–16]). While in Ref. [16] the Bayes unfolding
procedure of [12] has been successfully tested in a model
calculation for net-charge cumulants, we are not aware that
these methods so far have been applied to actual data, and
we hope that this article may motivate some work in applying
these other methods to cumulant measurements.

This paper is organized as follows. In the next section we
will show how the dependence of the efficiency on the number
of particles changes the results. After that we will discuss the
effect of non-binomial efficiency distributions by studying a
few alternative distributions. Then we will discuss the simplest
unfolding procedure. We will finish with a few comments and
conclusions.

II. MULTIPLICITY DEPENDENT EFFICIENCY

In most experiments, the efficiency depends on the number
of particles in the detector. This is also the case for the
STAR experiment, where the efficiency does depend on the
total number of charged particles, and thus may also depend
on the number of particles under consideration, N , such as
protons. While this does not preclude the distribution B from
having the binomial form, Eq. (2), we now have an efficiency
ε(N ) that depends on the number of produced particles,
N . To illustrate this point, consider the case of protons at
midrapidity. As already eluded to in the Introduction, the
centrality selection, which determines the mean efficiency,
involves cuts on charged particles other than protons at
midrapidity. Otherwise, fluctuation measurements would be
biased by the centrality selection and autocorrelation effects.
Therefore, in events with more protons than the average (in a

given centrality class), N > 〈N〉, the multiplicity of all charged
particles including protons is larger than the average, and,
consequently the efficiency for these events is different from
the mean efficiency. Obviously this effect is largest at low
energies, where the protons represent a significant fraction of
all charge particles. Furthermore, this correction cannot be
removed by ever tighter centrality cuts as they do not affect
the fluctuations of the proton number.2 Given the dependence
of the efficiency on N, ε(N ) the relation between the factorial
moments,

fi =
∑

N
εi(N )P (N )

N !

(N − i)!
, (5)

is not as simple as in Eq. (3) [11]. Furthermore, the unfolding
derived in [6] and used by the STAR collaboration [5] will
not be possible anymore, even for a binomial efficiency
distribution B.

In order to estimate the effect of a multiplicity dependent
efficiency, let us consider a simple example based on a
Poisson distribution for the produced particles and assume
that the efficiency depends linearly on the number of produced
particles N ,

P (N ) = 〈N〉N
N !

e−〈N〉,

ε(N ) = ε0 + ε′(N − 〈N〉), (6)

where ε0 is the average efficiency ε0 = ∑
N P (N )ε(N ). In this

case, the true cumulants ratios K4,5,6/K2 equal 1. Using Eq. (5)
the factorial moments of the observed distribution are then

f1 = 〈N〉(ε0 + ε′),

f2 = 〈N〉2[(ε0 + 2ε′)2 + 〈N〉(ε′)2],

f3 = 〈N〉3[(ε0 + 3ε′)3 + 〈N〉(ε′)2(3ε0 + 10ε′)],

f4 = 〈N〉4
[
(ε0 + 4ε′)4 + 〈N〉(ε′)2

(
6ε2

0 + 52ε0ε
′ + 113(ε′)2

+ 3〈N〉(ε′)2
)]

, (7)

and more complicated formulas for f5 and f6. Now we can
correct using constant efficiency Fi = fi/ε

i
0, as described in

Ref. [6] and calculate all cumulants. The obtained results
are presented in Fig. 1, where we show K4/K2,K5/K2,
and K6/K2 as a function of ε′. Obviously for ε′ = 0 our
procedure is exact, ε(N ) = ε0, and we obtain K4,5,6/K2 = 1.
Interestingly even a very small ε′ leads to substantial deviation
from unity.

To put things in perspective, for the STAR measurement
at

√
s = 7.7 GeV, ε′ � −0.1/250 � −4 × 10−4 so that the

correction for the ratio of K4/K2 is about 30% and much
larger for K6/K2.3 In this paper we are mostly interested in

2Moreover, selecting a very tight phase-space bins can still lead to
sizable fluctuations of the multiplicity in the involved detector parts.
The detector lives in geometric space (θ − φ) meaning that tracks
belonging to very different phase-space (y − pt ) bins can still cross
the same detector segment. How severe this is depends on a given
detector.

3We note that better results are obtained when we use an effective
constant efficiency Fi = fi/(ε0 + iε ′)i , as can be seen from Eq. (7).
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FIG. 1. Kn/K2, n = 4, 5, 6, as a function of ε ′ when corrected
using average, multiplicity independent, efficiency, ε0, where in
reality efficiency depends on the number of produced protons, ε(N ) =
ε0 + ε ′(N − 〈N〉). In this calculation ε0 = 0.65 and 〈N〉 = 40 which
are roughly the numbers for the STAR measurement at low energies.

lower energies where the net-proton number is dominated by
protons and corrections are relatively easy to estimate. For
higher energies things are more involved since a change in
the net-proton not necessarily changes the number of charged
particles or tracks. The same applies to net-charge cumulants
as measured by PHENIX [17] and STAR [5].

While the 30% correction for K4/K2 may not seem like
much, we should keep in mind that we have used a simple
Poisson distribution to illustrate things. In reality, especially
if we are close to a critical point, the true distribution will be
far from Poisson and we need to be able to unfold in a reliable
way. As already mentioned, the analytic methods described
in [6] cannot be applied the moment we have a multiplicity
dependent efficiency. In Sec. III, we will explore other means
of unfolding the probability distribution.

A. Nonbinomial distributions

Next let us explore what happens if the efficiency does not
follow a binomial distribution. To this end we will calculate
the factorial moments and subsequent cumulants for other
nonbinomial distributions. Here we chose the hypergeometric,
the beta-binomial, and the Gaussian distributions. The first
two have limits corresponding to the binomial distribution,
allowing us to study the deviations from binomial systemati-
cally. Our choice of nonbinomial distributions is by no means
motivated by any possible detector design or effect, but simply
to estimate the effect of a possible nonbinomial distribution.
Our strategy is to calculate the factorial moments fi using
Eq. (1) with these nonbinomial distributions B(n,N ) and un-
fold them using the formula for the binomial distribution with
constant efficiency, Fi = fi/ε

i . As “input” distribution for the
produced particles we chose again a Poisson distribution, with
〈N〉 = 40. Therefore, the fact that we unfold a nonbinomial

distribution using formulas based on the binomial distribution
will be reflected by deviations from Kn/K2 = 1. In order to
isolate nonbinomial effects from issues related to multiplicity
dependant efficiency, which we have discussed previously,
we ensure that for the nonbinomial B(n,N ) distributions the
effective efficiencies given by

ε(N ) = 〈n〉N
N

= 1

N

∑
n

nB(n,N ) = constant (8)

do not depend on N .

1. Hypergeometric distribution

As the first example we consider the hypergeometric
distribution. Suppose we have an urn with Nw white balls
and Nb black balls. For each produced particle we sample a
ball, if it is white we accept a particle and if it is black we
reject. In the case of the binomial distribution we return balls
to the urn and for the hypergeometric distribution balls are not
returned. In this case once we accept a particle (a white ball is
removed from the urn) the probability to accept the next one
is a bit smaller. The initial probability to accept a particle is
given by Nw/(Nw + Nb). The probability to accept n particles
at a given produced N is given by (N � Nw + Nb)

B(n,N ) = 1(
Nw+Nb

N

)
(

Nw

n

)(
Nb

N − n

)
, (9)

where we chose

Nw = 2αN, Nb = αN. (10)

In this case
〈n〉N
N

= Nw

Nw + Nb

= 2

3
(11)

for each value of N , which corresponds to ε = 2/3 for the
binomial distribution. We note that in the limit of α → ∞ the
hypergeometric distribution approaches a binomial.4 In Fig. 2
we show several curves for different values of α and fixed
N = 40. As seen the hypergeometric distribution results in a
narrower distribution than binomial.5

Finally we compute p(n) using Eq. (1) and calculate the
factorial moments fi . Next we correct them Fi = fi/ε

i and
obtain the values presented in Table I.

2. Beta-binomial distribution

The beta-binomial distribution is obtained from the bino-
mial one when the binomial success probability is random
and follows the beta distribution. Another interpretation (for
positive integer α and β being the numbers of white and
black balls, respectively) is similar to the hypergeometric
distribution however in this case once a white ball is drawn
two white balls are returned to the urn (and similar for black

4For Nw/N → ∞ and Nb/N → ∞ the fact that balls are not
returned to the urn is irrelevant.

5By expressing B(n,N ), Eq. (9), in terms of � functions, one is not
restricted to integer values for Nb and Nw allowing to consider rather
narrow distribution such as the example of α = 0.6 discussed here.
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FIG. 2. The hypergeometric distribution for different values of α

compared with the binomial distribution (black points). Here N = 40
and ε = 2/3.

balls). The resulting distribution of n at a given N is broader
than binomial and is given by

B(n,N ) =
(

N

n

)
Beta(n + α,N − n + β)

Beta(α,β)
, (12)

where

Beta(x,y) =
∫ 1

0
tx−1(1 − t)y−1 dt = �(x)�(y)

�(x + y)
(13)

is the beta function or Euler integral of the first kind. Taking

β = α
1 − ε

ε
, (14)

we obtain

〈n〉N
N

= ε, (15)

that is the efficiency does not depend on N . When α → +∞
the beta-binomial distribution goes into binomial. In Fig. 3 we
present four curves for N = 40, ε = 0.7 and different values
of α.

Assuming the beta-binomial distribution we compute p(n)
using Eq. (1) with P (N ) given by Poisson and calculate the
factorial moments fi . Using Fi = fi/ε

i we obtain the values
presented in Table II.

TABLE I. The obtained values of Kn/K2 for the hypergeometric
distribution, using Fi = fi/ε

i with ε = 2/3, for different values of α

as presented in Fig. 2.

Hypergeometric α = 0.6 α = 1.0 α = 2.0 α = 5.0

K3/K2 1.16 1.12 1.07 1.03
K4/K2 0.66 0.88 0.98 1.00
K5/K2 2.19 1.68 1.23 1.05
K6/K2 − 3.99 − 1.38 0.31 0.89

FIG. 3. The beta-binomial distribution for different values of α

compared with the binomial distribution (black points). Here N = 40
and ε = 0.7.

3. Gaussian distribution

As the last example we consider the Gaussian distribution

B(n,N ) = N (N,ε,α) exp

(
−α

(n − Nε)2

2Nε(1 − ε)

)
�(N − n),

(16)

whereN is a normalization factor ensuring
∑N

n=0 B(n,N ) = 1
and we enforce B(n,N ) = 0 for n > N . For this distribution
we approximately have (provided α is not too small)

〈n〉N
N

� ε, (17)

except for small values of N (which is of no interest since
we consider 〈N〉 = 40). In Fig. 4 we present four curves
for different values of α and in Table III we show the
corresponding values of cumulant ratios.

To summarize nonbinomial distributions result in Kn/K2

which are different from one, as expected. However it is
somewhat surprising and of course encouraging that for small
deviations from binomial the effect on K4/K2 is rather weak,
especially if distributions are narrower than binomial. We note
that we also checked distributions for the produced particles
other than Poisson and found qualitatively similar effects.

TABLE II. The obtained values of Kn/K2 for the beta-binomial
distribution, using Fi = fi/ε

i with ε = 0.7, for different values of α

as presented in Fig. 3.

beta binomial α = 30 α = 60 α = 150 α = 1000

K3/K2 1.28 1.24 1.13 1.02
K4/K2 0.82 1.45 1.35 1.07
K5/K2 − 1.11 1.15 1.63 1.16
K6/K2 5.71 − 0.44 1.80 1.32
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FIG. 4. The Gaussian distribution for different values of α

compared with the binomial distribution (black points). Here N = 40
and ε = 0.7.

III. UNFOLDING METHODS

Obviously the analytic formulas of Ref. [6] are rather
limited and for the more general case of either multiplicity
dependent efficiency or nonbinomial efficiency distributions,
we need different methods to unfold the measured distribu-
tions and/or cumulants. In this section we demonstrate that
the simplest unfolding method, based on solving triangular
equations, result in correct cumulants even though the obtained
multiplicity distribution, P (N ), is usually unphysical.

Let us first see what happens when we try to unfold
the entire multiplicity distribution for the binomial efficiency
distribution.

A. Multiplicity distribution

Our starting relation is

p(n) =
∞∑

N=n

P (N )
N !

n!(N − n)!
εn(1 − ε)N−n, (18)

which can also be cast in matrix form

p(n) = B(n,N )P (N ), (19)

where elements of B are given by Eq. (2). p is the measured
distribution and P is the true one. To make analytical

TABLE III. The obtained values of Kn/K2 for the Gaussian
distribution, using Fi = fi/ε

i with ε = 0.7, for different values of
α as presented in Fig. 4.

Gaussian α = 5.0 α = 2.0 α = 1.0 α = 0.6

K3/K2 1.00 1.12 1.24 1.33
K4/K2 0.54 0.93 1.58 2.22
K5/K2 1.40 1.77 2.30 0.57
K6/K2 − 1.97 − 0.46 3.31 − 14.3

calculations we assume that ε does not depend on N . Later on
we show numerical calculations with ε depending on N . So the
problem of unfolding the multiplicity distribution is equivalent
to inverting the above equation. We note, that although we will
assume here that B(n,N ) is given by binomial our discussion
is valid for other choices as well, as long as B(n,N ) is not a
singular matrix.

Suppose that in our experiment we measure n from n = 0
to n = M , where M is sufficiently large so that P (N ) � 0 for
all N > M . In this case the matrix gets finite and for example
if M = 4 we have

⎛
⎜⎜⎜⎝

p(0)
p(1)
p(2)
p(3)
p(4)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 1 − ε (1 − ε)2 (1 − ε)3 (1 − ε)4

0 ε 2ε(1 − ε) 3ε(1 − ε)2 4ε(1 − ε)3

0 0 ε2 3ε2(1 − ε) 6ε2(1 − ε)2

0 0 0 ε3 4ε3(1 − ε)
0 0 0 0 ε4

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

P (0)
P (1)
P (2)
P (3)
P (4)

⎞
⎟⎟⎟⎠. (20)

Our goal is to solve Eq. (19) and obtain P (N ). One
immediate problem is that the matrix B is practically singular
in realistic situations. Indeed, the determinant of the triangular
matrix B is given by a product of its diagonal elements. We
obtain

det(B) =
i=M∏
i=0

B(i,i) =
i=M∏
i=0

εi = ε0+1+···+M−1+M

= εM(M+1)/2. (21)

For example for ε = 0.7 and M = 100 we obtain det(B) ∼
10−782, which is zero for all practical purposes. Consequently
solving Eq. (19) usually leads to unphysical P (N ). However
we will show later that even though P (N ) is usually unphysical
the obtained cumulants are correct.

In the case when B is given by a binomial distribution the
inverse relation can be given analytically,

P (N ) =
∞∑

n=N

p(n)
n!

N !(n − N )!

1

εn
(−1 + ε)n−N, (22)

or in other words, the inverse of the binomial matrix is given
by

B−1(N,n) = n!

N !(n − N )!

1

εn
(−1 + ε)n−N, (23)
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FIG. 5. The calculated P (N ) using the exact Eq. (22) and the
exact p(n) given by Eq. (18) multiplied by (1 + δn), where δn is a
random number very close to zero. The solid red line represents the
Poisson distribution, which is our input. The blue crosses represent
negative P (N ) and are shown as −P (N ). Positive P (N ) are shown
as black open squares. As discussed in the main text this unphysical
P (N ) results, with a very good accuracy, in correct cumulants.

so that6

P (N ) = B−1(N,n)p(n), (24)

or, explicitly, the first few terms,

⎛
⎜⎜⎜⎜⎜⎜⎝

P (0)

P (1)

P (2)

P (3)

P (4)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ε−1
ε

(ε−1)2

ε2
(ε−1)3

ε3
(ε−1)4

ε4

0 1
ε

2(ε−1)
ε2

3(ε−1)2

ε3
4(ε−1)3

ε4

0 0 1
ε2

3(ε−1)
ε3

6(ε−1)2

ε4

0 0 0 1
ε3

4(ε−1)
ε4

0 0 0 0 1
ε4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p(0)

p(1)

p(2)

p(3)

p(4)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(25)

As seen from Eq. (22), P (N ) is prone to large errors since
we add many terms of alternating sign. This is the main
reason why P (N ) is usually unphysical. This is especially
problematic since p(n) will only be known within statistical
uncertainties. However, as we will argue below the resulting
cumulants are usually correct (within statistical errors) even if
P (N ) is unphysical.

B. Cumulants

As already pointed out, the sum in Eq. (22) has subsequent
positive and negative terms and there is a delicate cancellation
between them. As a consequence, even for negligible “noise”
on p(n) we get an incorrect P (N ), unless ε is very close
to unity, ε � 1. This is demonstrated in Fig. 5, where we

6We note that in practical applications inverting a pseudo-singular
matrix B is not advised. Instead, equations should be solved directly
taking advantage of the fact that B is triangular (by definition N � n).

have started out with a Poisson distribution with 〈N〉 = 20
for the produced particles. We then calculate the distribution
of observed particles, p(n) using Eq. (18) for ε = 0.6. We
introduce the “noise” by replacing p(n) with p(n)(1 + δn),
where δn is sampled from the Gaussian distribution, e−δ2

n/2σ 2

with σ = 10−5. Finally we use Eq. (22) to obtain P (N ). Our
result is presented in Fig. 5. The solid red line represents
Poisson, which is our input. The blue crosses represent
negative P (N ) and are shown as −P (N ). Positive P (N ) are
shown as black open squares.

However this problem vanishes once we sum over N .
Indeed the factorial moment Fi is given by

Fi ≡
∞∑

N=i

P (N )
N !

(N − i)!
=

∞∑
N=i

∞∑
x=N

p(x)(1 + δx)

× x!

N !(x − N )!

1

εx
(−1 + ε)x−N N !

(N − i)!

=
∞∑

x=i

p(x)(1 + δx)
1

εi

x!

(x − i)!
� 1

εi
fi, (26)

and the noise δn does not affect the result in a significant way
since we add only positive numbers, as |δn| � 1.

Consequently, while the extracted multiplicity distribution
P (N ) is rather erratic and clearly unphysical, the calculated
cumulant ratio, K4/K2 equals 1 with good accuracy.7

C. Cumulants with multiplicity dependent efficiency

In this section we test the previously discussed method
by using the multiplicity dependent efficiency given by
Eq. (6). We sample the produced particles from a Poisson
distribution P (N ) and we parametrize the efficiency by
ε(N ) = ε0 + ε′(N − 〈N〉). We use the following parameters
for our calculation: 〈N〉 = 40, ε0 = 0.7, ε′ = −0.0005 and
〈N〉 = 20, ε0 = 0.6, ε′ = −0.001.

We first sample N from the Poisson distribution. Next for
each of these N particles we decide whether it is detected or
not with binomial probability ε(N ) = ε0 + ε′(N − 〈N〉). We
run 107 events which allows to calculate the measured p(n).
Our efficiency matrix is given by

B(n,N ) = N !

n!(N − n)!
ε(N )n[1 − ε(N )]N−n. (27)

Next we solve Eq. (19) for the true distribution P (N ). Here
we take advantage of the fact that the matrix B is triangular,
which allows for straightforward backward substitution. We
note there is no need to invert B, which is not advised
for pseudosingular matrices.8 Finally we calculate the true
K4/K2. We repeat this exercise a few thousand times and

7This argument applies only to the situation where an unphysical
P (N ) originates from the noise on p(n). However, even with
δx = 0, P (N ) in Eq. (22) can get unphysical due to numerical errors,
and one has to ensure that the numerical accuracy is able to handle
large terms of alternating signs (especially for small ε).

8We checked that inverting B and using Eq. (24) leads to unphysical
cumulants.
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FIG. 6. Histogram (normalized to unity) of K4/K2 in the case of sampled p(n) (107 events) and analytical matrix given by Eq. (27) with
ε(N ) = ε0 + ε ′(N − 〈N〉). For comparison we also show results with 106 events.

plot histogram of the resulting cumulant ratios K4/K2. This is
presented in Fig. 6

As seen from Fig. 6 the cumulant ratios are centered around
1 with rather small statistical spread (for 107 events in each
experiment). For comparison we also show calculations with
106 events, which obviously results in larger statistical error.

One could worry that this method introduces larger errors
than the method with constant efficiency proposed in Ref. [6].
We checked this explicitly and this is not the case. We took
the sampled p(n), calculated fi and corrected them using
a constant average efficiency, ε0, so that Fi = fi/ε

i
0. The

resulting cumulant ratios K4/K2 are shown in Fig. 7 as a
black solid line.

As discussed in Sec. I, K4/K2 comes out too small
(in agreement with Fig. 1). However the statistical error is
comparable to the method with solving triangular Eq. (19).

The obvious advantage of solving Eq. (19) is that we now
obtain the correct cumulant ratio K4/K2. Therefore, as long as

FIG. 7. Histogram (normalized to unity) of K4/K2 calculated
using the sampled p(n) and (i) by solving Eq. (19) and (ii) by
correcting factorial moments using average constant efficiency. Both
methods result in comparable statistical errors.

we know the efficiency matrix and if it is not singular, we can
determine the cumulants of the original distribution of pro-
duced particles, P (N ) within purely statistical uncertainties.

In principle one could simulate the efficiency matrix,
B(n,N ), by careful analysis of a given detector, for example
using GEANT. In this case we would run many simulations
and for each true N we determine the measured probability to
observe n particles resulting in the efficiency matrix B(n,N ),
which should reflect all detector effects (to the extent that they
are properly simulated in GEANT). Unfortunately this method
most likely results in the matrix B being mathematically
singular. The problem is that with growing N it is getting very
unlikely to observe n = N (unless ε is very close to 1) and we
get zeros for some diagonal elements. For a triangular matrix
it means that its determinant vanishes and that it is therefore
singular. One could cut the matrix so that it is nonsingular,
however this results in too small matrix.9

Let us briefly discuss two ways to overcome this difficulty.
First, one could try to fit the simulated matrix B(n,N ) with
some function, for example a binomial distribution with ε
depending on N . Using the analytical form for B we obtain
the full matrix and we can successfully extract true cumulants,
as discussed in the previous section. Of course this method is
model-dependent and relies on a correct extrapolation of B to
higher values of N .

Another way is to keep the simulated (incomplete) B(n,N )
as it is and solve the matrix equation using the singular value
decomposition (Moore-Penrose pseudoinverse). This method
is designed to obtain a solution from an underdetermined set
of equations (less equations than unknowns, which is our
case). We checked empirically that this method reproduces
a distribution of cumulant ratios which is also centered at
K4/K2 = 1, however, with very long tails, so that the width is
not only due to finite statistics.

9Unless we can simulate our detector with very large, currently
impossible, number of events. For example if B is binomial with
ε = 0.7, the diagonal elements are B(n = N,N ) = εN . For instance
it gives roughly 10−10 for N = 65.
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Obviously one may consider alternative methods, such
as the one already employed to extract the charged particle
multiplicity distribution, see, e.g., [13], namely a Bayesian
unfolding method [12], or other refined unfolding methods
[14]. However, we are not aware of any work where this
method has been applied to the determination of higher order
cumulants and it would be worthwhile to assess its suitability.

IV. CONCLUSIONS

(i) We stress that it is very unlikely that a binomial
distribution with constant efficiency is a correct model
for the efficiency distribution. To the very least one
likely has to take into account a multiplicity dependent
efficiency. Given the substantial uncertainties demon-
strated in this article, it appears mandatory that each
experiment wishing to measure higher order cumulants
needs to extract the full efficiency matrix, specific to
this experiment. To which extent this can be done
reliably, remains to be seen. Maybe the only solution
for a credible measurement of higher order cumulants
is to design a dedicated experiment which has an
efficiency very close to 1.

(ii) As already stated in the Introduction, in this article
we studied the most straightforward method for the

determination of the cumulants of the true distri-
bution. However, we are aware that there are more
sophisticated unfolding methods, e.g., those applied
in high-energy physics to various problems (see, e.g.,
[12–15]). To our knowledge these have not yet been
applied to the determination of higher order cumulants,
however, and it would be worthwhile to study their
suitability to do so.
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