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Relativistic generalization of hydrodynamic theory has attracted much attention from a theoretical point of
view. However, it has many important practical applications in high energy as well as astrophysical contexts.
Despite various attempts to formulate relativistic hydrodynamics, no definitive consensus has been achieved. In
this work, we propose to test the predictions of four types of first-order hydrodynamic theories for nonperfect
fluids in the light of numerically exact molecular dynamics simulations of a fully relativistic particle system
in the low density regime. In this regard, we study the propagation of density, velocity, and heat fluctuations
in a wide range of temperatures using extensive simulations and compare them to the corresponding analytic
expressions we obtain for each of the proposed theories. As expected, in the low temperature classical regime
all theories give the same results, consistent with the numerics. In the high temperature extremely relativistic
regime, not all considered theories are distinguishable from one another. However, in the intermediate regime, a
meaningful distinction exists in the predictions of various theories considered here. We find that the predictions
of the recent formulation due to Tsumura, Kunihiro, and Ohnishi are more consistent with our numerical results
than the traditional theories: the Meixner, modified Eckart, and modified Marle-Stewart theories.
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I. INTRODUCTION

The special relativistic generalization of Newtonian hy-
drodynamics has attracted much attention in both statistical
physics and high energy physics since its early days [1–7],
and has found applications in a wide range of physical
processes from astrophysical phenomena [8–10], to the hy-
drodynamic description of the high temperature quark-gluon
(QG) plasma in the heavy-ion collision experiments at CERN
and BNL [11,12], to the recent studies on graphene [13–16].
Indeed, the growing interest in relativistic hydrodynamics
(RH) is not restricted to the hydrodynamics of perfect
fluids [7,17] but also extends to dissipative description of
relativistic systems [8,18–23]

Despite its long history and wide usage, there are still
disagreements on the fundamental postulates and definitions
of the theory, specifically in the presence of dissipative effects.
One key source of the ambiguity is the definition of the basic
variables of the theory such as the hydrodynamic velocity
four-vector, the dissipative part of energy-momentum tensor,
as well as the constraints that should be placed on them.
Another source of disagreements is the derivatives expansion
of the entropy current in terms of hydrodynamic variables.
In what is referred to as first-order theories, entropy current
contains terms that are first order in terms of thermodynamic
fluxes [2,7,8]. The responses to deviations from equilibrium
states in these theories are considered to be linearly propor-
tional to thermodynamic forces and hence are instantaneous in
nature (i.e., no relaxation times are assumed). These features
give rise to unphysical instabilities [24] especially in the
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Eckart frame and/or a parabolic set of hydrodynamic equations
which lead to causality problems [8]. It should be noted that
while the former problem seems to be due to the choice
of frame, the latter issue is a fundamental pitfall which is
also present in classical hydrodynamics. Nevertheless, both
issues were historically the main motivations for adopting
nonrelativistic [4,25] and relativistic [26–28] extended second-
order theories [8].

In addition to extended theories, attempts have also been
made in the context of first-order theories [29–32] to address
or resolve the first two drawbacks associated with RH: namely
the ambiguities in definition of fundamental variables and
the unstable features that arise in the Eckart frame. The
relativistic extension of Meixner’s idea (MX) [29,33,34], the
modified Eckart theory (ME) [17,30], the modified version of
the Marle-Stewart original proposal (MMS) [5], and the recent
rigorous approach on the basis of the renormalization group
(RG) method presented by Tsumura, Kunihiro, and Ohnishi
(TKO) [31] are examples of these efforts that we intend to
investigate in this work.

Despite the difficulties associated with the general class
of the first-order theories, it is important to realize that such
theories provide a minimal theoretical model which is believed
to provide fairly accurate description of relativistic fluids
in the long-wavelength hydrodynamic limit (where causality
becomes less relevant) and a static background (where the
above-mentioned theories are known to be stable [35]).
However, we note that there exist other first-order theories [32]
which are stable in a generic frame and will not be discussed
in the present work.

The precision of various second-order theories has been
tested in the context of numerical solution of the relativistic
Boltzmann equation [36–39]. However, here we propose to
study the accuracy of the above-mentioned first-order theories
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in the light of the microscopic approach of molecular dynamics
of a hard-sphere gas, which to the best of our knowledge, has
not been done before. Also, since each of these theories is
based on a different set of assumptions, a test of their accuracy
can also provide a prospective for their basic assumptions.
To achieve our goal, we focus on propagation of fluctuations
and obtain analytical expressions which can then be used to
calculate how such fluctuations propagate according to various
theories. Such predictions are then compared to the predictions
of numerically exact results obtained from our model in a wide
range of temperatures. Our results indicate that MX is the least
accurate theory, and while the predictions of ME and MMS
are fairly accurate (and the same), it is the recently proposed
TKO theory that provides the best fit to the data for a wide
range of temperature regimes.

This paper is organized as follows: Sec. II provides a
theoretical background to our work, presenting the essen-
tial concepts of hydrodynamic theory and its relativistic
generalizations to special relativity. In Sec. III, the details
of our numerical experiments are presented. The analytical
predictions are compared to simulation data in Sec. IV and we
shall conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Hydrodynamic equations of a relativistic fluid

Hydrodynamic description of a fluid is appropriate when
observation time and length scales are much larger than the
mean free time (MFT) and mean free path. In such a case
the system is described in terms of a few functions, defined
at each point in space and time. For a single-component
fluid in low energy regimes, for example, these functions
correspond to the mass density ρ(r,t), the velocity field
v(r,t), and two thermodynamic variables, e.g., pressure P(r,t)
and temperature T (r,t). In the extension of the classical
hydrodynamics to special relativity, the fluid velocity, v, is
replaced by the Lorentz covariant four-vector, uμ := dxμ/dτ ,
which satisfies the normalization condition, uμuμ = −1 with
τ denoting the fluid proper time.

In response to small perturbations, the evolution of the
fluid towards its equilibrium state is governed by the so called
hydrodynamic equations which are in fact balance equations
for conserved quantities including mass, momentum and
energy densities. For the special case of a perfect fluid, one may
define particle current, J μ = ρuμ, and energy-momentum
tensor, Eμν = (e + P)uμuν + Pgμν , obeying the conservation
laws, ∂μJ μ = 0 and ∂μEμν = 0, in analogy with classical
hydrodynamics. The basic equations of a relativistic perfect
fluid are then given by

∂μ(ρuμ) = 0 continuity, (1)

ρhaν + �μ
ν ∂μP = 0 Euler, (2)

uμ∂μe + ρh� = 0 energy balance, (3)

in which e and ρh = e + P are, respectively, total energy and
enthalpy densities, aν := uμ∂μuν denotes the hydrodynamic
acceleration, � := ∂μuμ is the relativistic counterpart of the
classical fluid expansion scalar, �μν = gμν + uμuν defines

the projection operator in the direction perpendicular to the
hydrodynamic velocity, and gμν = diag(−1,1,1,1) represents
the metric tensor [8]. Together with the equation of state of
the fluid, the above equations give a complete description of a
relativistic perfect fluid.

The extension to the hydrodynamic equations of a non-
perfect (NP) fluid is achieved by adding the contribution of
viscosity and thermal-conductivity effects to the fundamental
variables previously defined for a perfect (P) fluid, i.e., J μ =
J μ

P + J μ
NP and Eμν = Eμν

P + Eμν
NP . Derivation of these terms

in a relativistically consistent manner, however, is far from a
straightforward procedure. The reason can be traced back to
the ambiguities associated with the fundamental definitions
as well as the postulates of the theory. For instance, a unique
bulk velocity, and thus a well-defined frame comoving with the
fluid, cannot be introduced in the presence of viscosity and heat
conduction, since in this case the local rest frame velocity does
not coincide with the mean macroscopic velocity. Therefore,
it is traditionally admitted to base the theory on either the
Eckart or Landau definition of hydrodynamic velocity. The
former, also known as particle frame, assumes that the velocity
four-vector is parallel to the particle current and thus the
dissipative parts of particle current and energy-momentum
tensor satisfy the conditions uμuνEμν

NP = 0, uμJ μ
NP = 0, and

�μνJ ν
NP = 0 [40,41]. In the Landau energy frame, the first

two constraints hold without change while the third one is
replaced by uμ�νλEμν

NP = 0, indicating the four-velocity is
the eigenvector of the energy-momentum tensor. Note that
these two definitions of velocity four-vector are related to
one another through a heat current vector in general and
they are equal in the perfect fluid picture where nondiagonal
terms are absent in the energy-momentum tensor [8,17]. To
complete our list, it is worthwhile to mention a different set
of constraints, proposed by Marle and Stewart [5], in the
Eckart particle frame, ENP

μ
μ = 0, uμJ μ

NP = 0, �μνJ ν
NP =

0, which requires the energy-momentum tensor to be
traceless.

A careful study on the microscopic origins and phys-
ical meaning of these assumptions calls for fundamental
approaches to derive the phenomenological hydrodynamic
equations from the microscopic equations as is done in
derivation of the relativistic Boltzmann equation [3,5,6,40]
using the Chapman-Enskog method [42] or Grad’s fourteen-
moment method [43]. In a recent systematic approach on
the basis of the RG method [31], the authors introduce a
wider class of frames in which particle frame (Eckart) and
energy frame (Landau) are regarded as special cases. Their
analysis reveals that the resulting equations in the energy
frame are consistent with Landau-Lifshitz constraints, while
in the particle frame the constraints by Marle and Stewart,
as opposed to those by Eckart, must be used. However, the
resulting hydrodynamical equation which manifestly satisfies
the second law of thermodynamics is similar to neither that of
Eckart nor to that of Marle and Stewart. We next briefly discuss
various possible hydrodynamic formalisms in the Eckart
particle frame and compare the resulting set of hydrodynamic
equations obtained.

In the Eckart formalism, the particle current is assumed to
be parallel to the velocity four-vector, i.e., J μ = ρuμ, and the
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energy-momentum tensor is defined as

Eμ
ν = euμuν + (P + 	)�μ

ν + πμ
ν + qμuν + uμqν, (4)

where 	, πμ
ν , and qμ are thermodynamic fluxes, respectively

known as viscous bulk pressure, anisotropic shear tensor, and
heat flux. The entropy flux is also generalized toSμ = ρsuμ +
1
T
Rμ, with Rμ accounting for dissipative effects. It turns out

that Rμ = qμ in first-order theories while it might include
higher-order terms in the extended theories [8]. The condition
of positive entropy production, ∂μSμ � 0, together with the
continuity equations obtained from conservation laws, would
then lead to the constitutive equations [8]:

	 = −ζ�, (5)

πμ
ν = −2ησμ

ν , (6)

qμ = −λT (Dμ ln T + aμ), (7)

where σμ
ν = 1

2 (Dμuν + Dνu
μ) − 1

3��μ
ν is the relativistic

shear tensor and Dμ = �νμ∂ν . The new parameters, ζ , η,
and λ, respectively denote bulk viscosity, shear viscosity, and
thermal conductivity whose explicit expressions are derived
from an appropriate kinetic theory such as Boltzmann theory.
This would thereby close the set of hydrodynamic equations
for a nonperfect fluid.

The appearance of the fluid acceleration as a driving force
in the expression of heat flux leads to nonzero heat flux in the
absence of temperature gradient. It is this purely relativistic
effect in Eckart’s theory which gives rise to exponential growth
of small fluctuations [24]. In the following, we shall briefly
discuss some of the attempts that have been made to alleviate
these unphysical instabilities in the context of first-order
theories in a static background.

The first widely used proposal to make a stable theory
out of the pioneering work of Eckart is to approximate the
acceleration term by a pressure gradient using the Euler
equation [Eq. (2)]. This would lead to what is called the
“modified Eckart” formulation [17,30] with the following
expression for the heat flux:

qμ = −λT

(
Dμ ln T − 1

ρh
DμP

)
, (8)

which considering the equation of state of an ideal fluid,
P = ρT , is representable in the form of a Fourier law, q =
−κ∇T , thus revealing the parabolic nature of the theory [44].
However, it leads to a set of hydrodynamic equations with
stable equilibrium in a static background (see next section for
more details).

The second approach is referred to as Meixner’s formal-
ism [29] and differs from the original Eckart theory in its
definition of the energy-momentum tensor, which reads as

Eμ
ν = euμuν + (P + 	)�μ

ν + πμ
ν . (9)

This formalism is actually a relativistic generalization of
Newtonian hydrodynamic equations [33] in which the heat
energy is not included in the Navier-Stokes equation but
appears in the energy balance equation. The heat flux is
therefore derived solely by a temperature gradient, qμ =
−λTDμ ln T , as is the case in Newtonian hydrodynamics.

The other two constitutive equations are the same as Eqs. (5)
and (6), leading to stable set of equations [30].

The third formalism is the Marle-Stewart proposal which
requires one to change the original constraint on the energy-
momentum tensor used by Eckart to ENP

μ
μ = 0. Consequently

the new energy momentum tensor in this formalism is given
by

Eμ
ν = (e + 3	)uμuν + (P + 	)�μ

ν + πμ
ν + qμuν + uμqν,

(10)

with the bulk viscous pressure given by 	 = +ζ (3γ − 4)−1�,
in which γ = cP/cV and cV (cP ) denotes the heat capacity
at constant volume (pressure). The anistropic shear tensor
and heat flux are the same as given in Eqs. (6) and (7). In
analogy with modified Eckart formalism, one may resolve
the instabilities caused by the acceleration term using Euler
equation, and in this sense the resulting stable theory should
be named the “modified” Marle-Stewart theory.

The final approach is proposed by Tsumura et al. [31],
where the set of constraints on the current and energy-
momentum are shown to be the same as that of Marle and
Stewart while the constitutive equations to be substituted in
Eq. (10) are given as 	 = −ζ (3γ − 4)−2�, πμ

ν = −2ησμ
ν

and qμ = −λTDμ ln T . Note that although the heat energy
is included in the energy-momentum tensor, the acceleration
term is absent in the heat flux expression, giving rise to a stable
set of hydrodynamic equations [45].

B. Propagation of fluctuations

The above mentioned hydrodynamic theories give different
mechanisms for propagation of perturbations in the fluid. We
intend to provide a realistic numerical laboratory to test the
predictions of such theories in this regard. In this section we
describe how such perturbations are formulated. To achieve
this, we use a frame comoving with the fluid in which the mean
hydrodynamic four-velocity is ūμ = u

μ
0 = (1,0) and the basic

state variables are chosen to be ρ, T , and uα with α = 1,2,3.
Introducing small perturbations about the equilibrium state
A = A0 + δA (i.e., ρ = ρ0 + δρ,T = T0 + δT ,uα = δuα) in
the hydrodynamic equations and keeping the linear terms with
respect to deviations [8,17] would lead to dynamical equations
for the evolution of fluctuations. After a standard Fourier-
Laplace transform with respect to space and time,

Âk(ω) =
∫ ∞

0
exp(−ωt)dt

∫
δA(r,t) exp(ik · r)dr, (11)

and decomposing hydrodynamic velocity to longitudinal (par-
allel to k) and transverse (perpendicular to k) components,
the set of hydrodynamic equations can be cast in the form
Ôk(ω) = M−1(k,ω)Ok , relating the state vector Ôk(ω) :=
[ρ̂k(ω),T̂k(ω),û‖

k(ω),û⊥
k (ω)] to its initial value Ok through

the hydrodynamic matrix M. The dispersion relations for
the hydrodynamic collective modes are determined by the
complex roots of the equation det M = 0, which in the most
general case would give two identical transverse modes,
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TABLE I. Fundamental equations and relevant parameters for different first-order theories. The thermal diffusivity, χ = λ/(ρcP ), is
identical in all formalisms. The transport coefficients λ,η,ζ for hard-sphere gas are given in [17] and the equation of state we have used is
P(υ − b) = T with b = 2πd3/3 and υ = V/N . Thermal expansion coefficient and isothermal compressibility are respectively given by β =
κT βV and κT = − 1

V
(∂V/∂P)T . Other coefficients are bi = (3ζi + 4η)/3ρh (with i = 0,1,2), ζ0 = ζ , ζ1 = −ζ/(3γ − 4), ζ2 = ζ/(3γ − 4)2,

LT = λT (1 + βT/ρhκT ), Lρ = λT/(ρhκT ), γ = cP/cV , cP = cV + T .

Theory Basic equations Sound attenuation parameter

ME Eμ
ν = euμuν + (P + 	)�μ

ν + πμ
ν + qμuν + uμqν , � = 1

2

[
b0 + LT

ρT cV

(
1 − 1

γ
− βT

κT ρh

) + Lρ

ρ

(
β

cP
− 1

h

)]
qμ = −λT (Dμ ln T − 1

ρh
DμP), 	 = −ζ0�, πμ

ν = −2ησμ
ν

MX Eμ
ν = euμuν + (P + 	)�μ

ν + πμ
ν , � = 1

2 [b0 + χ (γ − 1)]
qμ = −λTDμ ln T , 	 = −ζ0�, πμ

ν = −2ησμ
ν

MMS Eμ
ν = (e + 3	)uμuν + (P + 	)�μ

ν + πμ
ν + qμuν + uμqν , � = 1

2

[
b1 + LT

ρT cV

(
1 − 1

γ
− βT

κT ρh

) + Lρ

ρ

(
β

cP
− 1

h

) − 3βζ1
ρ2cV κT h

]
qμ = −λT (Dμ ln T − 1

ρh
DμP), 	 = −ζ1�, πμ

ν = −2ησμ
ν

TKO Eμ
ν = (e + 3	)uμuν + (P + 	)�μ

ν + πμ
ν + qμuν + uμqν , � = 1

2

[
b2 + λ

ρcV

(
1 − 1

γ
− βT

κT ρh

) − 3βζ2
ρ2cV κT h

]
qμ = −λTDμ ln T , 	 = −ζ2�, πμ

ν = −2ησμ
ν

ωt = −ηk2/ρh, and three longitudinal modes: namely one
thermal mode, ω0 = −χk2, and two sound modes, ω± =
±icsk − �k2, all damping out by viscous and thermal dis-
sipative processes characterized by thermal diffusivity, χ ,
and sound attenuation parameter, �. This becomes evident
by considering the dynamical equations for the evolution of
longitudinal modes [46],

ρk(t)

ρk(0)
= γ − 1

γ
e−χk2t + 1

γ
e−�k2t cos(cskt), (12)

u
‖
k(t)

u
‖
k(0)

= e−�k2t cos(cskt), (13)

Qk(t)

Qk(0)
= e−χk2t , (14)

where we have kept terms up to zeroth order of k in amplitude,
which is an appropriate assumption in the hydrodynamic limit
(see the Appendix for first-order corrections). Equation (14)
has been obtained by defining heat energy density as Q(r,t) :=
e(r,t) − hρ(r,t), [8,47] and using the thermodynamic relation,
δQ = − TβV

ρ
δρ(r,t) + ρcV δT (r,t), to write down “heat energy

density” fluctuations as a function of temperature and density
fluctuations, with βV = (∂P/∂T )ρ being the thermal pressure
coefficient.

Equation (13) consists of two acoustic waves moving with
sound speed cs in opposite directions from the center. The
sound attenuation parameter, �, controls the width of the
sound peaks whose functional form depends on the underlying
hydrodynamic equations (see Table I). Equation (14), on the
other hand, demonstrates the purely diffusive propagation of
heat fluctuations throughout the fluid. It is a single peaked
function centered at zero whose width is proportional to the
thermal diffusivity parameter, χ = λ/(ρcP ), which is identical
in all formalisms discussed in Sec. II A. The propagation of
perturbations in density, as inferred from Eq. (12), occurs
through a combination of diffusive (thermal) and wavelike
(acoustic) modes that are respectively referred to as Rayleigh
and Brillouin peaks in the density correlation spectrum. Table I
shows the fundamental equations and relevant parameters in
each of the theories considered in the present work.

III. MODEL AND METHOD

Our model system [48] consists of N identical impenetrable
spherical particles of diameter d and mass m confined in a box
of volume V = LxLyLz, with periodic boundary conditions.
The particles move freely in space until they contact at distance
d where they experience a purely repulsive binary interaction,

U (r) =
{+∞, r � d,

0, r > d.
(15)

This hard-core potential model mimics the strong repulsion
between the atoms and molecules at small distances and
is appropriate to study many features of fluids in and out
of equilibrium [49]. Recently, employing relativistic particle
dynamics, it has been shown that the model is an ideal one
to simulate and investigate the thermostatistical properties of
a relativistic gas due to the unique characteristics of hard-
sphere interaction [44,48,50,51]. First, it is a contact potential
that overcomes the difficulties associated with interacting
relativistic particles [52] and therefore lets us have a fully
relativistic model. Second, it is specifically a good model to
simulate hadronic particles which are shown to have constant
cross section in a wide range of energies [40].

In order to obtain the spatiotemporal correlation function
(or correlation profile), we coarse-grain the space in the
x direction by dividing the system into Ns equal slabs of
size LyLz�x and measure the fluctuation of a thermody-
namic parameter, �A, in each slab using the following
definition:

�A(xi,t) =
∫ xi+ �x

2

xi− �x
2

A(x,t)dx − Ā, (16)

where xi ∈ [ − Lx

2 , + Lx

2 ] is the midpoint of the ith slab and
Ā denotes the global average of the quantity A(x,t). The
normalized correlation between the fluctuation in the reference
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slab (which is the middle slab in our simulations) and the effect
it induces at another position and at a later time is defined as

CA(xi,t) = 〈�A(xi,t)�A(0,0)〉
〈�A(0,0)�A(0,0)〉 − Cinh, (17)

in which 〈· · · 〉 represents the averaging over the equilibrium
distribution of fluctuations. The constant, Cinh = 1/(1 − Ns),
is the inherent correlation generated in micro-canonical
ensembles due to the fact the A is a conserved quantity
and

∑
i �A(xi,0) = 0, which is different from the causal

correlation we are interested in and thus should be sub-
tracted [53]. We note that the simulation method used is the
well-known event driven method [54] with the cell linked-list
tool [49] implemented to reduce the computational time. The
spatial and temporal distances are respectively rescaled with
the diameter of spherical particles, d, and the shortest time
scale in the system, i.e., t∗ = d/c, while we choose to set
m = d = c = kB = 1 for convenience.

IV. RESULTS

We have performed extensive numerical simulations study-
ing the propagation of fluctuation [via Eq. (17)] for different
thermodynamic variables and various temperature regimes, as
a function of time. The obtained results are then compared
to the back Fourier transform of the analytical correla-
tion function, CA(k,t) = 〈Ak(t)A−k(0)〉/〈Ak(0)A−k(0)〉 [46].
Assuming that k is in the x direction, one obtains the

corresponding correlation functions as below:

Cρ(x,t) = 1

2
√

π

[
γ − 1

γ

1√
χt

e− x2

4χt

+ 1

2γ

1√
�t

(
e− (x−cs t)2

4�t + e− (x+cs t)2

4�t

)]
, (18)

Cu(x,t) = 1

4
√

π
√

�t

(
e− (x−cs t)2

4�t + e− (x+cs t)2

4�t

)
, (19)

CQ(x,t) = 1

2
√

π
√

χt
e− x2

4χt . (20)

In the following we shall first present a detailed discussion
of our results in the low temperature regime and then proceed
to the intermediate and relativistic regimes in order to test the
accuracy of different relativistic formalisms.

1. Low temperature Newtonian regime

Figure 1 shows density (a), momentum density (b), and
heat correlation (c) profiles for a system of average density ρ =
0.04, temperature T = 0.01, and mean free time MFT = 33.8.
The measurements have been made at t = 600 (blue triangles),
t = 1400 (red squares), and t = 2800 (green circles) in
rescaled time units to show the temporal evolution of the
correlation functions in addition to their spatial dependence.
The analytical correlation functions (solid lines) are given
by Eqs. (18)–(20) in which the amplitudes up to “zeroth

x
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FIG. 1. Analytical correlation functions up to zeroth order in terms of amplitudes (solid black lines) for (a) density, (b) velocity, and (c)
heat fluctuations are compared to numerical results (symbols) for a system with ρ = 0.04, T = 0.01, and MFT = 33.8 at t = 600, 1400, and
2800 in rescaled time units. (d)–(f) show first-order correlation profiles (dashed red lines) compared to their zeroth-order counterparts (solid
gray lines) at t = 600. Note that the correlation functions in all theories coincide in the low-temperature limit and we have chosen to plot
TKO’s theory as a representative.
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order” with respect to the wave number (k) are taken into
account. For the sake of comparison, we have also plotted the
“first-order” correction to the correlation functions (dashed
lines) for t = 600 that will be discussed below. Note that in the
low temperature regime the hydrodynamic equations as well as
the consequent correlation profiles reduce to their Newtonian
counterparts in all formalisms.

The generic behavior observed in (a)–(c) is that the
agreement between theory and simulation improves as one
goes further into the hydrodynamic regime by increasing the
observation times from t = 600 to t = 2800. For observation
times above t = 2000 (or t ≈ 60 MFT) our system indicates a
good agreement between analytical results and numerical data
(as expected) and thus confirms the accuracy of our model and
simulation methods in the low density regime. At smaller time
scales (e.g., t = 600), some deviations from analytical results
are observed. The reason goes back to the contribution of high
frequency short wavelength modes at these time scales, whose
effects are not taken into account in Eqs. (12)–(14), where
we have only kept the first lowest-order terms. It is possible to
account for the contribution of such short wavelength effects by
adding successive corrections to the zeroth-order correlation
functions.

Figures 1(d)–1(f) compare the zeroth-order correlation
profiles (solid gray lines) with the corresponding first-order
expressions (dashed red lines) at t = 600. The latter is obtained
by keeping the first leading-order term in Eqs. (12)–(14) that
has been discussed in more detail in the Appendix. As Fig. 1(d)
clearly shows, first-order correction to the density profile
slightly pushes the Brillouin peaks towards the center and thus
improves the agreement between theory and simulation data.
Nevertheless, such correction has negligible effect on velocity
profile [panel (e)] and (as expected) does not change the heat
profile. It appears that the role of short wavelength corrections
is more important in the propagation of density fluctuations,
where thermal and sound modes are coupled together, than
velocity and/or heat fluctuations in which information purely
propagates through acoustic or thermal modes. Besides this
subtle issue the difference between zeroth- and first-order
correlation functions diminishes in all profiles by increasing
time scales and reaching the hydrodynamic regimes (not shown
here to preserve the clarity in figures).

Having checked the accuracy of our numerical simulations
in different time scales in the low temperature limit, we now
turn to the more interesting regime of intermediate and high
temperatures.

2. Intermediate and extremely relativistic regimes

In this section, we only discuss results for density
fluctuations, as it suffices to discriminate between various
hydrodynamic theories considered in this work. To this end we
calculate Eq. (18) for various formalisms and compare them
to the corresponding numerical density correlation spectrum
obtained via Eq. (17). Figure 2 shows the result for a system
of ρ = 0.04 and T = 3. The chosen observation time (t ≈
90 MFT) is large enough to ensure that hydrodynamic as-
sumptions are applicable and thus the zeroth-order correlation
functions (that we are using from here on) are able to give

x

C
ρ
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,t)
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FIG. 2. Analytical correlation profile of density fluctuations
obtained from TKO, MMS, ME, and MX theories (colored lines)
are compared to simulation results (black dots) for a system with
ρ = 0.04, T = 3, MFT = 5.79, and t = 500. Note that the difference
between ME, MMS, and TKO theories is almost negligible at T = 3
and cannot be observed in this figure.

a good description of the system. It is observed that ME,
MMS, and TKO theories provide good fit to numerical data
while the prediction of the MX formalism shows a significant
deviation from the simulation data in the Brillouin peaks
which characterize the acoustic (or sound) modes. This result
which is also observed in velocity correlations spectrum (not
shown here) would certainly disqualify the latter theory as
an acceptable description of relativistic fluids; however, other
theories are essentially identical for such a parameter regime
(T = 3), and thus need to be studied in a wider range of
thermodynamic parameters.

One may seek to find the condition of largest deviation
between various theories by focusing on the Brillouin peaks,
which are expected to behave differently in various formalisms
through the sound attenuation parameter, �, as discussed in
Sec. II B. Figure 3 depicts the height of the right-moving peak
[Cρ(x = cst,t)] as a function of temperature for a system of
ρ = 0.04 at two different observation times, t = 300 and t =
700 in rescaled time units. One notes that different formalisms
agree very well in the low temperature Newtonian limit
(as expected) while they behave differently as temperature
increases. In MX theory a monotonic decrease at intermediate
temperatures (0 < T < 1) is followed by a saturating behavior
at extremely relativistic regimes (T � 1), in contrast to TKO,
MMS, and ME theories which display a shallow dip at interme-
diate temperatures and interestingly converge to a single value
in the high temperature regime. The largest deviation between
the latter theories is observed at intermediate temperatures
where the equilibrium velocity distribution of a relativistic
gas undergoes a morphological phase transition [55,56]. We
note that this interesting coincidence between the critical
temperature of a relativistic gas (TC = 0.2) and the behavior
of the Brillouin peak in intermediate temperatures calls for a
deeper investigation, which is out of the scope of this work.
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FIG. 3. Height of the Brillouin peak in the density correlation
profile is plotted as a function of temperature for different formalisms
for a system with ρ = 0.04, at two different times.

In light of the above results, one would expect that
numerical data at intermediate temperatures (specially at
the critical temperature, TC = 0.2) are able to differentiate
between various theories and thus provide conclusive evidence
to prove (or disprove) the validity of the underlying relativistic
hydrodynamic equations presented in the context of first-
order theories. The density correlation spectrum given in
Fig. 4 for T = 0.2 confirms that TKO theory gives the best
description of our MD simulations. This result, which has also
been confirmed for T = 1 (not shown), provides reasonable
evidence in favor of the TKO formalism due to the fact that our
model is a fully relativistic one without adjustable parameters
and/or probabilistic factors and thus should in principle yield
numerically exact results.

x

C
ρ

(x
,t)

-400 -200 0 200 4000

0.001

0.002

0.003

0.004

TKO
MMS
ME
MX

300 3500.002

0.003

FIG. 4. Analytical density correlation profiles obtained from
TKO, MMS, ME, and MX theories (colored lines) are compared to
simulation results (black dots) for a system with ρ = 0.04, T = 0.2,
and MFT = 8.99, observed at t = 700 in rescaled time units. Inset
shows details.

Before closing our analysis some notes are in order. First,
the height and width of the Rayleigh peak which describes
the thermal mode in propagation of density fluctuations are in
good agreement with analytical predictions in all formalisms
(see middle part of Figs. 2 and 4). This result is repeated in the
heat correlation profile given by Eq. (14) where propagation of
fluctuations is purely diffusive (not shown). It can therefore be
concluded that despite their different definitions of heat flux,
qμ, all formalisms give a good description of the system as far
as thermal mode is concerned.

Second, despite the fundamental differences in their pos-
tulates, ME and MMS formalisms have led to almost similar
curves in the entire temperature regime. This is because the
sound attenuation parameters of the two theories (see Table I)
are nearly equal due to the very small bulk viscosity.

Third, the deviation between numerical results and analyti-
cal curves, observed in the position of Brillouin peaks in highly
relativistic regimes (Fig. 2), should be traced back to the the
errors that have been introduced to the theory via the sound
velocity cs = √

γ /(ρhκT ) due to the approximative equation
of state, heat capacity, and isothermal compressibility that are
adopted for hard-sphere gas (see Table I caption). This effect
disappears in the low energy limit where sound velocity is not
large enough to make a notable deviation (as seen in the inset
of Fig. 4.) Therefore, it seems that the inconsistency in the
position of peaks observed in high temperature regimes is not
a fundamental issue and can be improved by making a more
accurate estimation of cs in the analytical calculations.

Fourth, one might wonder whether the relaxation-time
corrections of the dissipative process, as are discussed in the
context of second-order theories, would affect our results. It
is known that such corrections would generally change the
dispersion relation of the medium [19] and thus the speed and
height of Brillouin peaks, which are our decisive factors to
differentiate various theories. In order to check this, we have
made an estimation of the uncertainty caused by relaxation
time corrections in Appendix B and observed that the effect
does not change the results reported in Fig. 4, and thus the
hydrodynamic limit behavior which is the subject of present
results. Nevertheless, one might observe notable departure
from first-order theories in short time scales (comparable to
such relaxation times), that is out of the scope of this work and
will be discussed elsewhere [57].

V. CONCLUDING REMARKS

Over the past few decades various first-order relativistic hy-
drodynamic theories for nonperfect fluids have been proposed
and studied extensively. Since such theories use distinctly
different set of assumptions, they naturally lead to distinctly
different predictions. A reliable means to test the prediction
of such theories therefore seems of utmost importance. In this
work we have provided a definitive step in this regard by
studying the propagation of perturbations in various theories
and comparing them with results from extensive numerical
simulations of a fully relativistic molecular dynamics model
of a hard-sphere fluid in a wide range of temperature regimes at
low densities. Interestingly, we find that it is in the intermediate
temperature regime where the predictions of such theories
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deviate most from each other. Our main result is that the
recent theory of TKO is more in line with our numerical
simulations than the previously studied theories such as MX,
ME, and MMS. However, we note that, our work has only
considered various first-order theories in a static background
in the hydrodynamic limit. We must note that the consistency
(or lack) of the first-order theories with our numerical results
cannot automatically be extended to higher-order versions of
such theories, as care must be taken in such generalizations.

Finally, our approach could be used to study such systems in
higher densities than studied here, where we would expect that
deviation between TKO and conventional theories becomes
more pronounced. Furthermore, our approach could also be
used to test various second-order theories along the lines of
the present work. Another possible avenue is to check the
accuracy of constitutive equations, e.g., shear or heat flow, by
producing velocity or temperature gradients as in Ref. [44].
Such possibilities are currently under investigation.
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APPENDIX A: FIRST-ORDER CORRECTION TO
CORRELATION FUNCTIONS

The dynamical equations (12)–(14) give a very good
description of the system in the hydrodynamic limit where
high frequency long wavelength modes are considered. In
order to account for the contribution of short wavelength
effects that arise in short time scales one could add suc-
cessive corrections to the aforementioned equations and
thus obtain higher order correlation functions. For example,
considering the first leading-order term in Eq. (12), that
is kDρ exp(−�k2t) sin(cskt), one would get the following
first-order correction to density correlation function in all
formalisms:

C(1)
ρ = Dρ(�,χ )

8
√

π (�t)3/2

(
(x + cst)e

− (x+cs t)2

4�t

− (x − cst)e
− (x−cs t)2

4�t

)
, (A1)

in which Dρ = [χ (γ − 1) + �]/γ cs with χ and � given in
Table I.

The first-order correction to four-velocity correlation, C(1)
u ,

has the same functional form as Eq. (A1) with different co-
efficient, Du(�,χ ), that goes to the classical expression Du =
(χ (γ − 1) − �cl.)/cs with �cl. = �MX, in the low temperature
limit. The full expressions of C(1)

u in various formalisms are
straightforward to obtain following the standard methods used
in Sec. II B. Also, the first leading term in the propagation of
heat fluctuations [Eq. (14)] is O(k2) and therefore the resulting
heat correlation function is not changed to first order.

APPENDIX B: RELAXATION TIME EFFECTS

The so called “parabolic view” of the first-order theories is a
reasonable approximation for dissipative processes that occur
on hydrodynamic time scales, thyd. � τrlx.. Nevertheless, if
one considers relaxation time corrections in the context of
second-order theories, the acoustic modes are changed while
the thermal mode remains unaffected. Since, the height of
the former modes is a decisive factor in our arguments,
we calculate the leading-order term due to relaxation time
corrections in the modified Eckart formalism and check
whether it could improve the analytical correlation functions
in this formalism.

In the simplest second-order theory of Israel and Stewart in
Maxwell-Cattaneo form [8,19], the dispersion relation would
read as

ω = ±icsk − �k2 ∓ ifτ k
3 + O(k4), (B1)

with � being the sound attenuation parameter as given in
Table I and fτ a real function of shear/bulk viscosity, thermal
conductivity, and the corresponding relaxation times due to
these dissipative processes in the system (i.e., τπ , τ	, and τq).
In this case the modified density distribution in Fourier space
[corresponding to Eq. (12)] is obtained as follows:

ρ̂k(t)

ρ̂k(0)
= γ − 1

γ
e−χk2t + 1

γ
e−�k2t cos[tk(cs − fτ k

2)], (B2)

whose back Fourier transform gives the spatiotemporal evo-
lution of the density correlation function. Since the exact
analytical expression was not available, we use the long
wavelength approximation to replace the cosine term with the
expression

cos[tk(cs − fτ k
2)] ≈ (

1 − 1
2f 2

τ t2k6) cos(tkcs)

+ fτ tk
3 sin(tkcs) (B3)

and obtain the leading-order corrections to our first-order
theory. In order to simplify the expression we have evaluated
it at (x = cst) and arrived at

Ĉρ(x = cst,t) = 1

4γ
√

π
√

�t

(
1 − 15

16

f 2
τ

�3t

)

× (
e− c2

s t

� + 1
) + e− c2

s t

� F(fτ ,t,�,cs), (B4)

with F(fτ ,t,�,cs) being a polynomial function of its argu-
ments. As one can see, the above equation gives the height of
right-moving Brillouin peak in first-order theories [Eq. (18)]
and the leading-order correction due to the relaxation times,

δĈ(1)
ρ (x = cst,t) = − 1

4γ
√

π
√

�t

(
15

16

f 2
τ

�3t

)
. (B5)

All other terms exponentially decay to zero in the hydrody-
namic limit, t → ∞. As a first estimation of Eq. (B5), we
assumed that all relaxation times are equal (τπ = τ	 = τq =
τ ) and the ratios τ/t = 0.01, 0.02, and 0.03, in a system with
ρ = 0.04 and t = 700. These are reasonable values according
to the the lower limit of shear viscosity (τπ � 4η/[3ρh(1 −
c2
s )] ≈ 0.36) and the estimation given for a massless hard
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FIG. 5. The heights of the Brillouin peak in density correlation
profiles of first-order TKO and ME formalisms are compared to
the second-order ME formalism for three different ratios τ/t =
0.01,0.02,0.03, in a system with ρ = 0.04 and t = 700. Note that
the correction due to finite relaxation time (τ �= 0) does not alter ME
(τ = 0) results in such a way to make it comparable with TKO results.

sphere (τπ = 5/(3n0σ ) ≈ 52.7) in [58]. Figure 5 indicates the
results for the height of the right-moving Brillouin peak as

a function of temperature. As one can see, the inclusion of
relaxation times in the context of Israel-Stewart second-order
theory decreases the value of density correlation at x = cst ,
compared to the first-order ME formalism (except for very
small values of τ/t where it has negligible positive effect in
low temperature regimes). Such a decrease in height could not
improve the analytical results in the modified Eckart formalism
and therefore the results reported in Fig. 4 remain unchanged.
Since the velocity of the Brillouin peak would also increase as a
result of such corrections (particularly in the high temperature
regimes), the second-order formalism might be able to improve
the disagreement observed in Fig. 2 between the position of
Brillouin peaks in analytical and simulation results for some
values of τ/t .

Of course, a reliable argument of this kind would entail an
exact solution of the hydrodynamic equation in the context of
second-order theories as well as a more accurate calculation
of relaxation times for hard-sphere gas, which would be out
of the scope of the present work. Nevertheless, the present
argument suggest that the results reported here would not
change by taking the relaxation times into account. One should,
however, note that our results as well as the above argument are
given in the hydrodynamic limit and should not be generalized
to other conditions such as short time scales (t ≈ τrlx.) in
which hyperbolic second order theories and relaxation time
corrections are expected to become important.
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