
PHYSICAL REVIEW C 94, 064903 (2016)

Non-boost-invariant dissipative hydrodynamics

Wojciech Florkowski,1 Radoslaw Ryblewski,1 Michael Strickland,2 and Leonardo Tinti3
1Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland

2Department of Physics, Kent State University, Kent, Ohio 44242, USA
3Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland

(Received 28 September 2016; published 14 December 2016)

The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during
the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic
hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane
but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity
dependence of various hydrodynamical observables. We compare the results obtained using several formulations
of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the
large initial pressure anisotropy in a nonperturbative fashion. The results obtained with second-order viscous
hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the
latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous
hydrodynamics agree for the central hot part of the system, however, they differ at the edges where the approach
of anisotropic hydrodynamics helps to control the undesirable growth of viscous corrections observed in standard
frameworks.
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I. INTRODUCTION

The ultimate goal of the ultrarelativistic heavy-ion collision
experiments at the BNL Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC) is to in-
vestigate the properties of nuclear matter at extreme conditions
of very high temperature and energy density. The collective
behavior observed in these experiments has been described,
at first, using perfect-fluid relativistic hydrodynamics. Later,
relativistic viscous hydrodynamics was used based on general
arguments that the shear viscosity to entropy density ratio is
bounded from below [1]. The causal theory of second-order
viscous hydrodynamics resulted in better agreement between
hydrodynamic predictions and the experimental data.

In contrast to the basic assumption of small deviations from
perfect-fluid hydrodynamics, which is used in the derivation
of viscous hydrodynamic equations, the rapid longitudinal
expansion, typically found in relativistic heavy-ion collisions,
is the source of large pressure anisotropies. To address such
large pressure corrections more accurately, a new framework
called anisotropic hydrodynamics has been developed [2,3].
The predictions of anisotropic hydrodynamics have been com-
pared with the exact solutions of the Boltzmann equation for
longitudinally boost invariant and transversely homogeneous
systems. It has been shown that anisotropic hydrodynamics
describes the dynamics more accurately than standard viscous
frameworks [4,5]. Very similar results have been found also
for the Gubser type of expansion [6–8]. Also recently, it
has been shown that anisotropic hydrodynamics shows better
agreement with the data for a completely different physical
system, namely, an ultracold Fermi gas [9–12].

Longitudinal boost invariance seems to be a reasonable
approximation for the midrapidity region during the initial
stages of collisions [13,14], but it must be broken at large
rapidities, because of the finite size of the expanding fireball

(finite available energy). The gradients in the rapidity direction
provide a new source of pressure corrections that affect
the hydrodynamical evolution. In this paper, we investigate
how different formulations of viscous hydrodynamics and
anisotropic hydrodynamics deal with such corrections. We
consider the Müller-Israel-Stewart (MIS) formulation of the
second-order viscous hydrodynamics [15–17] that is most
common in phenomenological studies [18–23], as well as
two alternative approaches, namely, the modified 14-moment
expansion developed by Denicol et al. [24–26] (DNMR) and
the gradient expansion presented in Ref. [27] (BRSSS). For
the anisotropic hydrodynamics framework, we choose the
latest construction of the leading-order terms, which is based
on the anisotropic matching principle [28]. Below, we shall
refer to this framework as AHYDRO. For sake of simplicity,
we consider all formulations in the conformal limit, with
the kinetic coefficients obtained from the kinetic theory in
the relaxation time approximation (RTA) [29] with classical
statistics.

The non-boost-invariant one-dimensional expansion of
matter produced in heavy-ion collisions has been already
studied for perfect-fluid [30,31], viscous [32], as well as
anisotropic hydrodynamics [33,34], see also [35]. In Ref. [30]
the convective stability of matter was analyzed in the case with
finite baryon number density. In Ref. [32] the emphasis was
placed on the reduction of the longitudinal pressure due to the
viscous effects as compared to perfect-fluid case [31], with
consequences for the estimates of the initial energy density of
the system created in heavy-ion collisions.

In Refs. [33,34] the first formulations of anisotropic hydro-
dynamics for non-boost-invariant systems were introduced.
Compared to these works, the AHYDRO framework used in
this work is based on the more recent approach [28], that
agrees with DNMR and BRSSS for systems approaching
local thermal equilibrium. In fact, it has been recently
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demonstrated that the gradient expansions of DNMR, BRSSS,
and AHYDRO agree up to the second order in gradients for
boost-invariant systems [36]. More recently, the perturbations
of the baryon number density around the Bjorken solution
were studied in Ref. [37].

In this work we investigate the generation of negative
longitudinal pressure at large space-time rapidity ς which, in
all second-order viscous hydrodynamics considered, results
in matter pile-up and the development of a shock front.
AHYDRO eliminates negative pressures by construction and
delays substantially the formation of a shock (to times much
larger than the typical time span of heavy-ion collisions).
The negative pressures are physically not allowed in the
kinetic calculations used to extract the values of our transport
coefficients, however, they are present at the edges of the
expanding system if standard viscous hydrodynamics is used.
We find that MIS and BRSSS results are very similar and lead
to the largest negative pressures—a change from positive to
negative pressure has the character of a shock, where pressure
as well as the fluid rapidity change very suddenly in a narrow
range of ς . The DNMR prescription works better, leading
to smaller negative values of the pressure. The overall better
performance of DNMR may be related to the fact that the
DNMR equations are directly derived from the underlying
RTA kinetic theory. It should be noted also that different
treatment of the shear-to-shear coupling terms in the evolution
of the shear stress tensor produces, contrary to common
assumptions, a significant difference in the evolution of the
system, especially for the flow profile at the edges of the
system.

AHYDRO regulates the dynamics of the expanding system.
The system’s pressure at large space-time rapidities is positive
(although very close to zero), while the fluid rapidity is
continuous and very close to ς at the system’s edges. This
allows for a continuous and consistent description of the
produced system as consisting of the hot central part together
with a free-streaming halo.

The paper is organized as follows. In Sec. II the general
principles of relativistic hydrodynamics based on the con-
servation laws are introduced. The constraints coming from
a simple (1+1)-dimensional expansion geometry are imple-
mented in Sec. III. Different versions of second-order viscous
hydrodynamics are introduced and discussed in Sec. IV,
while anisotropic hydrodynamics is presented in Sec. V. Our
numerical results are shown and discussed in Sec. VI. We
summarize and conclude in Sec. VII. Throughout the paper we
use natural units with c = � = kB = 1 and the metric tensor
is gμν = diag(1,−1,−1,−1).

II. GENERAL PRINCIPLES

In the present work we neglect conserved charges (such
as baryon number), hence, the main hydrodynamic equations
reflect the conservation of energy and momentum in the
system,

∂μT μν(x) = 0, (1)

where T μν is the energy-momentum tensor. We further use the
Landau definition of the four-velocity Uμ,

Uμ(x)T μν(x) = E(x)Uν(x), (2)

where the eigenvalue E is the proper energy density. Then, we
make use of the most general decomposition of T μν in the
Landau frame

T μν = E UμUν − (P + �)�μν + πμν, (3)

where � is the bulk pressure, πμν is the shear stress tensor
(the space-like, symmetric, and traceless part of T μν), and the
projector �μν reads

�μν = gμν − UμUν. (4)

The distinction between the hydrostatic (equilibrium) pressure
P and the bulk pressure � requires a thermodynamic input.
A very common procedure is to define an effective (point-
dependent) temperature through the Landau matching

E(x) = Eeq(T (x)), (5)

where Eeq(T ) is the energy density of the system at global
equilibrium in the thermodynamic limit. In this way, the hy-
drostatic pressure is defined through the effective temperature,
as the pressure that the system would have in thermodynamical
equilibrium with temperature T , namely,

P(x) = Peq(T (x)). (6)

Since we consider, for mathematical simplicity, only the case
of a conformal fluid, the equation of state takes the form

P(x) = 1
3E(x), (7)

and the bulk viscosity � vanishes

� = 0. (8)

Contracting Eq. (1) with the four-velocity Uν and the projector
�α

ν , respectively, and taking into account the conformal re-
quirement (8), after some straightforward algebra one obtains
the equations

DE = −(E + P)θ + πμνσ
μν (9)

and

(E + P)DUα = ∇αP − �α
μ∂νπ

μν (10)

with D = Uμ∂μ being the convective derivative, θ = ∂μUμ

the expansion scalar, ∇μ = �μν∂ν the spatial gradient, and
σμν the shear flow tensor

σμν = ∂ 〈μUν〉. (11)

Here we make use of the notation

A〈μν〉 = �
μν
αβ Aαβ,

where

�
μν
αβ = 1

2

(
�μ

α�ν
β + �ν

α�
μ
β − 2

3
�μν�αβ

)
.
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III. IMPLEMENTATION OF (1+1)D
NON-BOOST-INVARIANT EXPANSION

Due to translational invariance in the transverse plane of
the systems we study in this work, the considered evolution
of matter becomes effectively (1+1)-dimensional [(1+1)D].
Hence, each scalar quantity must depend only on the laboratory
frame time t and on the laboratory frame longitudinal direction
z. It is convenient, however, to change at this point to the
(longitudinal) proper time τ and the space-time rapidity ς ,

τ =
√

t2 − z2, ς = 1

2
ln

(
t + z

t − z

)
, (12)

where t > |z|. Because of the rotational and translational
invariance in the transverse plane, the four-velocity vector Uμ

must have vanishing components in the transverse direction.
Therefore, the four-velocity of the fluid can be written as

Uμ = (cosh(ς + θ‖),0,0, sinh(ς + θ‖)) (13)

with θ‖(τ,ς ) being a scalar function. In the limit θ‖ = 0,
we recover the boost-invariant four-velocity profile. It is
convenient now to fix a complete orthonormal basis [38–40]. In
addition to the time-like four-velocity vector Uμ, we introduce
the longitudinal-direction four-vector

Zμ = (sinh(ς + θ‖),0,0, cosh(ς + θ‖)), (14)

and two arbitrary four-vectors in the transverse plane, Xμ and
Yμ, which can be, without loss of generality, identified with
the unit vectors along the x and y directions in the laboratory
frame. In the local rest frame (LRF) the basis vectors read

Uμ = (1,0,0,0), Xμ = (0,1,0,0),

Y μ = (0,0,1,0), Zμ = (0,0,0,1). (15)

We can therefore write the projector (4) in the following way:

�μν = gμν − UμUν = −XμXν − YμY ν − ZμZν

= −
∑

I

IμI ν, (16)

where the sum, hereafter, is meant to run over the space-like
basis vectors, I = X,Y,Z.

The directional derivatives read

D = Uμ∂μ = cosh θ‖∂τ + sinh θ‖
τ

∂ς ,

Xμ∂μ = ∂x, Yμ∂μ = ∂y, (17)

DL = Zμ∂μ = sinh θ‖∂τ + cosh θ‖
τ

∂ς .

Making use of Eqs. (13) and (17), the four-acceleration DUμ

reads

DUμ =
(

Dθ‖ + sinh θ‖
τ

)
Zμ. (18)

We note that in the limit θ‖ → 0 we recover the Bjorken result,
DUμ = 0. In the next step, we construct the expansion tensor

θμν = 1

2
�μα�νβ(∂αUβ + ∂βUα) = −

∑
I

θI IμI ν, (19)

where

θI = Uμ(I ν∂ν)Iμ =
{

cosh θ‖
τ

+ DLθ‖ I = Z,

0 I = X,Y.
(20)

Then, we find the expansion scalar

θ = ∂μUμ = �μν∂μUν

= �μνθμν = θZ = cosh θ‖
τ

+ DLθ‖, (21)

and the shear flow tensor

σμν = θμν − θ

3
�μν =

∑
I

σI IμI ν (22)

with

σI = θ

3
− θI =

{− 2
3θ I = Z,

1
3θ I = X,Y.

(23)

We note that the vorticity ωμν vanishes for the type of
expansion considered in this work

ωμν = 1
2�μα�νβ(∂αUβ − ∂βUα) = 0. (24)

The forms of the four-acceleration (18) and the directional
derivatives (17), as well as the symmetry in the transverse
plane, imply that only the Zα projection of Eq. (10) is not
trivially satisfied, namely,

−(E + P)

(
Dθ‖ + sinh θ‖

τ

)
= DLP − Zμ∂νπ

μν. (25)

The symmetry of the system constrains further possible forms
of πμν . Indeed, in the {U,X,Y,Z} basis, the tensor πμν must
be diagonal and with equal values of the X and Y components

πμν =
∑

I

πI IμI ν

= πs(τ,ς )

2
(XμXν + YμY ν) − πs(τ,ς ) ZμZν. (26)

Here πX = πY = πs/2 and πZ = −πs . The scalar πs com-
pletely defines the shear pressure corrections in the (1+1)D
expansion.

Besides the components of the shear stress tensor, it is con-
venient to introduce the transverse and longitudinal pressure,1

namely PT and PL, that are defined by the expressions

PT = XμXνT
μν = YμYνT

μν = P + πs

2
, (27)

PL = ZμZνT
μν = P − πs. (28)

In this way, Eqs. (9) and (25) reduce to the compact form

DE = −(E + PL)θ, DLPL = −(E + PL)θL, (29)

1We make use of the conformal equation of state. In the nonconfor-
mal case one has to include the bulk pressure � in the two definitions.
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where the divergence of the vector Zμ reads

θL = ∂μZμ = gμν∂μZν = (UμUν + �μν)∂μZν

= UμDZμ = −ZμDUμ = Dθ‖ + sinh θ‖
τ

. (30)

Since in viscous hydrodynamics the shear pressure πμν

(and bulk pressure � in the nonconformal case) corrections are
treated as independent variables, it is convenient to explicitly
maintain these variables in Eqs. (29),

DE = −(E + P − πs)θ, (31)

DL(P − πs) = −(E + P − πs)θL. (32)

IV. SECOND-ORDER VISCOUS HYDRODYNAMICS

The system of equations (31) and (32) is clearly not closed,
having two independent equations for three independent
variables: the effective temperature T [giving both the energy
density E and the hydrostatic pressure P through Eqs. (5)
and (7)], the relative fluid rapidity θ‖ (the only independent
component of the four-velocity), and πs (expressing the shear
pressure correction). In second-order viscous hydrodynamics,
this system is closed with additional dynamic equations for
the shear stress tensor which is treated as a new hydrodynamic
variable.

A. Müller-Israel-Stewart approach

Since the original works by Müller in 1967 [15] and Israel
and Stewart in 1976 [16,17], second-order hydrodynamics has
been gradually evolving into a more and more complete theory
that includes various terms determining the dynamics of the
bulk pressure and the shear stress tensor. One popular version
of this theory, used in many phenomenological applications
and denoted below as MIS, is based on the formula [18–20]

Dπ 〈μν〉 + πμν

τπ

= 2βπσμν − πμν Tβπ

2
∂ρ

(
1

Tβπ

Uρ

)
. (33)

Here τπ is the shear relaxation time, while βπ = η/τπ is the
ratio of the first-order transport coefficient and its respective
relaxation time. In the particular case of the (1+1)D non-
boost-invariant expansion considered in this work, Eqs. (33)
reduce, as expected, to three degenerate equations for πI ’s

DπI + πI

τπ

= 2βπσI − πI

Tβπ

2
∂μ

(
1

Tβπ

Uμ

)
, (34)

or, equivalently, to a single equation for πs

Dπs + πs

τπ

= 4

3
βπθ − πs

Tβπ

2
∂μ

(
1

Tβπ

Uμ

)
. (35)

A closer examination of Eq. (35) shows that it includes higher-
order terms in gradients (see the Appendix for the details). If
they are neglected, Eq. (35) reduces to the form

Dπs + πs

τπ

= 4η

3τπ

θ − 4

3
θπs. (36)

Summing up, given the symmetry constraints, the three MIS
equations for the hydrodynamical evolution are the energy
and momentum conservation equations (31)–(32), and the
relaxation-type equation (36).

B. Denicol-Niemi-Molnar-Rischke approach

In the recent works [24–26], starting from kinetic theory,
Denicol, Niemi, Molnar, and Rischke (DNMR) have derived
equations for viscous hydrodynamics in an expansion con-
trolled by the Knudsen number and the inverse Reynolds
number. In the conformal case and the relaxation time approx-
imation (RTA) for the collisional kernel, this approach leads
to the evolution equations which are equivalent to the ones
resulting from the modified Chapman-Enskog prescription
proposed by Jaiswal [41,42]. The situation in the DNMR case
is similar to that seen previously for MIS, however, some terms
appearing in the final DNMR equation for πs are different
from those used in MIS, namely, the DNMR approach in the
conformal limit, with vorticity neglected once again, yields

Dπs + πs

τπ

= 4η

3τπ

θ − δππ θ πs − 1

3
θ τππ πs + φ7

2τπ

π2
s .

(37)

The quantities δππ , τππ , and φ7 are second-order coefficients.
In order to compare uniformly various approaches we use the
values obtained from the RTA kinetic theory in the conformal
case:

δππ = 4
3 , τππ = 10

7 , φ7 = 0. (38)

This allows us to simplify Eq. (37) to

Dπs + πs

τπ

= 4η

3τπ

θ − 38

21
θ πs. (39)

C. Baier-Romatschke-Son-Starinets-Stephanov approach

The Baier-Romatschke-Son-Starinets-Stephanov (BRSSS)
approach [27] uses arguments of conformal symmetry to
construct the shear stress tensor out of gradients of the
hydrodynamic variables T and Uμ (up to the second order
in gradients). To obtain the dynamic equation for πμν the
Navier-Stokes (NS) equations are used. This procedure leads
to a structure similar to Eq. (37), namely,

Dπs + πs

τπ

= 4η

3τπ

θ − 4

3
θ πs − λ1

2τπη2
π2

s , (40)

where [43]

λ1 = 5ητπ

7
. (41)

V. ANISOTROPIC HYDRODYNAMICS FORMALISM

Equations (29) must be fulfilled by any hydrodynamic
approach, since they describe energy and momentum conser-
vation. Within the anisotropic hydrodynamics framework, we
express the energy density, the longitudinal pressure, and the
transverse pressure by the formulas

E = Eeq(�)R(ξ ) = 3Peq(�)R(ξ ),

PL = Peq(�)RL(ξ ), (42)

PT = Peq(�)RT (ξ ),

where the functions R, RL, and RT have been defined in
Ref. [3]. The quantity � is the transverse momentum scale,
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while ξ is the anisotropy parameter. In the limit ξ → 0, the
transverse momentum scale � may be identified with the
temperature of the system in local equilibrium.

The two nontrivial equations (29) that follow from the
energy-momentum conservation can be written in this case
as

R(ξ )D lnPeq(�) + R′(ξ )Dξ + 2
3 [RT (ξ ) + RL(ξ )]θ = 0,

(43)

RL(ξ )DL lnPeq(�) +R′
L(ξ )DLξ + 2[RT (ξ ) +RL(ξ )]θL= 0.

(44)

The primes in R′ and R′
L denote the partial derivative with

respect to the argument ξ .
It has been demonstrated in Ref. [28] that extra dynam-

ical equations for anisotropic hydrodynamics can be most
optimally derived from the exact equation for the shear
stress tensor, which is obtained directly from the Boltzmann
equation (this procedure requires however a truncation of the
expansion of the phase-space distribution function and keeping
the leading anisotropic term only). The method proposed in
Ref. [28] yields the best agreement with the exact solutions
of the Boltzmann equation in the case of a one-dimensional,
longitudinally boost-invariant flow [although the very same
method can be applied to derive anisotropic hydrodynamics
equations in a general (3+1)D case].

In this work we use the results obtained in Ref. [28]. It is
straightforward to check that for anisotropic hydrodynamics
the five independent equations for the shear stress tensor re-
duce to a single independent equation for πs = 2(PT − PL)/3,
in the similar way as it happens in viscous hydrodynamics.
Thus, one can take, without loss of generality, the longitudinal
projection of Eq. (40) in Ref. [28] as a supplementary equation.
The latter reads

D(PT − PL) + 1

τeq
(PT − PL)

= θPeq(�){2
√

1 + ξ ∂ξ [
√

1 + ξ RT (ξ )]

− 2√
1 + ξ

∂ξ [(
√

1 + ξ )3RL(ξ )]}−θ (PT − PL)+2θPL,

(45)

which can be further simplified dividing both sides by the
positive quantity Peq. After some algebra, the last equation
can be rewritten as

[RT (ξ ) − RL(ξ )]

[
D lnPeq(�) + 1

τeq

]

+ [R′
T (ξ ) − R′

L(ξ )][Dξ − 2(1 + ξ )θ ] = 0. (46)

VI. NUMERICAL RESULTS

Dealing with the conformal case, one obtains three inde-
pendent equations, for example, for T , θ‖, and πs (in the case
of viscous hydrodynamics) or for �, θ‖, and ξ (for anisotropic
hydrodynamics). The appropriate selection of equations is

Eqs. (31), (32), and (36) for MIS; Eqs. (31), (32), and (39)
for DNMR; Eqs. (31), (32), and (40) for BRSSS, and, finally,
Eqs. (43), (44), and (46) for AHYDRO.

In all cases the relaxation time depends inversely on
the temperature τπ = τeq = 5η̄/T , where η̄ = η/s is the
shear viscosity to entropy density ratio. We use the values
4πη̄ = 1 and 4πη̄ = 3, which correspond to the range of
present experimental estimates. We initialize the energy
density with a Gaussian space-time rapidity profile E(τ0,ς ) =
E0 exp(−ς2/(2a2)), where a = 0.9 and E0 = 100 GeV/fm3

at the initial proper time τ0 = 0.3 fm. The initial pressure
is taken in the equilibrium (conformal) form P(τ0,ς ) =
E(τ0,ς )/3. The temperature is obtained from the relation
α T 4 = E , where α = 15.63. The initial longitudinal rapidity
is very close to the Bjorken formula, namely, θ‖(τ0,ς ) =
bς with b = 10−10. We start with a practically isotropic
pressure in the system, taking πs(τ0,ς ) = cP(τ0,ς ), where
c = 10−10. The initial anisotropy parameter for anisotropic
hydrodynamics calculations is extracted from the equation
πs(τ0,ς )/P(τ0,ς ) = 1 − RL(ξ (τ0,ς ))/R(ξ (τ0,ς )).

In Figs. 1 and 2 we present the relative fluid rapidity θ‖
(left) and the ratio r = πs/P (right) as functions of space-
time rapidity at different values of the proper time, τ = 1 fm
(top), τ = 5 fm (middle), and τ = 10 fm (bottom), obtained
within perfect-fluid hydrodynamics (thin solid black lines),
MIS (dashed purple lines), BRSSS (dotted blue lines), DNMR
(dashed dotted green lines), and AHYDRO (solid red lines).
In Fig. 1 we use the lower bound value of η̄ = 1/(4π ), while
in Fig. 2 the value η̄ = 3/(4π ) is used.

In the central rapidity region we observe that matter
is accelerated outwards in the forward/backward rapidity
directions during the entire considered evolution time. This
property is qualitatively similar for all considered formalisms.
On the other hand, at large values of rapidity, |ς | > 5, due
to long relaxation times (being inversely proportional to
the temperature of the system, τeq ∼ 1/T ), large dissipative
corrections are quite quickly being built up. In the various
dissipative hydrodynamics formalisms these large dissipative
corrections are handled in different ways, according to the
specific evolution equations used for πs . It turns out that in all
approaches, except for AHYDRO, the dissipative corrections
lead to the values of r = πs/P exceeding unity. One should
stress here that, according to Eq. (28), in second-order viscous
hydrodynamics having r > 1 is equivalent to the generation of
a negative longitudinal pressure in the system. This situation
has no physical interpretation in the kinetic theory background,
which all formalisms considered are based on, unless there are
fields in the system (which are explicitly neglected in all cases).
By construction, the AHYDRO prescription does not allow for
negative pressures, thus it regulates dissipative phenomena at
large values of ς .

At this point it should be noted that, in the present study, the
break down of standard viscous hydrodynamics formalisms
at large rapidities is expected. In fact, already in the region
|ς | > 3, both the Knudsen number, Kn = τπθ , as well as
the inverse Reynolds number, R−1

π = √
πμνπμν/P signal the

break down of the hydrodynamic description, giving Kn > 2
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FIG. 1. Pseudorapidity profiles of the relative flow rapidity θ‖ (left) and the ratio r = πs/P (right) at the proper time τ = 1 fm (top),
τ = 5 fm (middle), and τ = 10 fm (bottom) obtained within perfect fluid hydrodynamics (thin solid black lines), MIS (dashed purple lines),
BRSSS (dotted blue lines), DNMR (dashed dotted green lines), and AHYDRO (solid red lines) with η̄ = 1/(4π ).

and R−1
π > 1.2 In the spirit of [44], in the subsequent discussion

we accept the break down of the studied viscous hydrodynamic
approaches considered herein as inevitable and explore its
possible consequences.

In all formalisms considered, the phenomena taking place
at small and large space-time rapidities lead eventually to the
creation of a shock-wave in both θ‖ and πs . This shockwave
can cause problems in numerical simulations due to the large
spatial gradients induced. As a result, for our numerical
simulations we use the weighted LAX (wLAX) algorithm

2As a matter of fact the ratio r = πs/P is directly related to
Reynolds number through R−1

π = √
3/2r ≈ 1.2r .

with λLAX = 0.01 to handle spurious oscillations arising when
using center-differences schemes in high-gradient regions
[39].3 For temporal updates, we use standard fourth-order
Runge-Kutta. We would like to stress here that although
the shockwaves are sometimes expected natural phenomena,
their creation in the presented results strongly depends on
the formalism used. Therefore, their creation may affect
the interpretation of the final results and increase numerical
difficulties, especially if event-by-event fluctuations in rapidity
are considered. Based on the observed behavior, we may

3We note here that, without wLAX smoothing, all codes, except for
AHYDRO, crash within the evolution time.
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FIG. 2. Same as Fig. 1 but with η̄ = 3/(4π ).

state that the time needed for creation of a shock-wave
is ordered as follows: τBRSSS

shock < τMIS
shock < τDNMR

shock � τAHYDRO
shock .

Moreover, comparing Figs. 1 and 2 we find that larger times
are required to build up a shock-wave in the case with larger
viscosity.

In Figs. 3 and 4 we show the ratio πs/P calculated along
the freeze-out curve of constant temperature of T = 0.15
GeV (by the freeze-out curve we mean the projection of the
freeze-out 3D hypersurface on the plane with fixed transverse
coordinates). We observe differences between the values of
r obtained with different hydrodynamics frameworks at large
rapidities. Such differences grow with increasing viscosity.
We note that differences in the freeze-out curves introduce
uncertainties in the spectra of the particles emitted at large
rapidities.

It is interesting to plot the freeze-out curves in the space-
time diagram spanned by the ς and τ coordinates, which is
shown for the case 4πη̄ = 3 in Figs. 5 and 6 for MIS and
AHYDRO, respectively. One can notice that the extracted
freeze-out curve for MIS goes very closely to the region
with unphysical negative pressure; note the red dashed lines
corresponding to the boundary value where r = 1. In this
case, small perturbations may push the freeze-out curve into
unphysical region, leading to unphysical results. On the other
hand, the freeze-out curves obtained with AHYDRO, see
Fig. 6, do not suffer from such problems, as the longitudinal
pressure in the system smoothly approaches zero in this
framework (being always positive).

An interesting result of our numerical analysis at large
rapidities is that the BRSSS formulation, as compared to
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FIG. 3. Ratio πs/P calculated for the case 4πη̄ = 1 along the
freeze-out hypersurface of constant temperature of T = 0.15 GeV.

DNMR, is closer to MIS. The difference between Eqs. (36),
(37), and (40) resides in the terms governed by τππ in Eq. (37)
and by λ1 in Eq. (40). Both of them correspond to a shear-shear
second-order coupling which is missing in the MIS approach.
These terms are supposed to give a significant contribution far
off equilibrium. In our case, although we start from a local
equilibrium state, the rapid expansion of the system produces
flow and pressure anisotropy very quickly and, especially at
the edges of the system, both the shear flow tensor σμν and the
shear stress tensor πμν become significantly large.

We note that in the derivation of second-order hydrody-
namic equations, the last term in Eq. (40), describing the
π 〈μαπν〉

α correction, is originally a σ 〈μασ ν〉
α second-order term

in the formula for πμν , see Eq. (3.11) in Ref. [27], while
in the DNMR formulation the σ 〈μαπν〉

α term appears from
the beginning as a direct consequence of using the kinetic
theory. For systems being close to equilibrium, one may
argue that the terms π 〈μαπν〉

α and σ 〈μαπν〉
α , if multiplied by

FIG. 4. Same as Fig. 3 but for 4πη̄ = 3.

FIG. 5. Freeze-out curve of T = 0.15 GeV (dotted black line)
shown in the space-time diagram of r(τ,ς ) for MIS with 4πη̄ = 3.

the appropriate kinetic coefficients, become equivalent (if one
uses the first-order NS hydrodynamics approximation, πμα =
2ησμα). This has been recently confirmed by performing the
gradient expansion for these hydrodynamics frameworks [36].
On the other hand, as our numerical calculations illustrate,
in the situations far-off equilibrium, the terms π 〈μαπν〉

α and
σ 〈μαπν〉

α cannot be simply exchanged with the help of the
Navier-Stokes formula. This further indicates that the results
of hydrodynamic equations may depend not only on the values
of the kinetic coefficients but also on the very special choice
of the terms included in the equations. A natural solution to
this problem is the use of the most complete form of such
equations.

FIG. 6. Same as Fig. 5 but for AHYDRO.
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VII. CONCLUSIONS

In this work we have analyzed the non-boost-invariant
hydrodynamic evolution of matter produced in heavy-ion
collisions. The results obtained with several popular imple-
mentations of second-order dissipative hydrodynamics have
been compared. In addition, a newly developed framework of
anisotropic hydrodynamics has been also used.

Our numerical calculations, assuming initial local equi-
librium conditions and gaussian rapidity profiles, indicate
that all hydrodynamic approaches yield consistent results
for the evolution of the central (midrapidity) part of the
created system. On the other hand, they vary substantially
in their predictions for large rapidities. In this region, all
standard formulations of relativistic hydrodynamics predict
the appearance of a large and negative longitudinal pressure,
which may lead to misleading conclusions concerning particle
production. The largest negative pressures appear if one uses
the MIS and BRSSS frameworks. The DNMR prescription
works better, leading to smaller negative values of the pressure.
Such differences may be connected with different treatment of
the shear-shear coupling in various approaches. In all studied
cases, a change from positive to negative pressure has the
character of a shock, where pressure as well as the fluid
rapidity change very suddenly in a narrow range of space-time
rapidity ς . The regions with negative pressure may be also an
obstacle for the determination of the freeze-out hypersurfaces,
especially for event-by-event simulations and small systems.

The approach of anisotropic hydrodynamics is free of
this problem as all the pressure components are positive
by construction in this framework. As a result, anisotropic
hydrodynamics may be used as a practical tool to regulate
unphysical behavior at large rapidities.
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APPENDIX: THIRD-ORDER TERMS IN THE
ISRAEL-STEWART THEORY

In this Appendix we discuss Eq. (35) that, using Eq. (31),
may be cast in the form

−πs

Tβπ

2
∂μ

(
1

Tβπ

Uμ

)

= −πs

θ

2

[
1 +

(E + P
E

) E
T

dT

dE
(

1 + T

βπ

dβπ

dT

)]

+πs

θ

2

(
πs

E
) E

T

dT

dE
(

1 + T

βπ

dβπ

dT

)
, (A1)

where in the last line we singled out the term proportional to
π2

s θ which is of the third-order in gradients, see also [19,23]. In
this case we may use the equilibrium expressionsP = E/3 and
E ∝ T 4. Moreover, for the RTA kinetic equation one obtains
βπ = 4P/5 and τπ = 5η̄/T . Hence, the right-hand side of
Eq. (A1) can be rewritten as

−4

3
πsθ + 5

24

π2
s

P θ. (A2)

This result used in Eq. (35) leads to the equation

Dπs + πs

τπ

= 16

15
Pθ − 4

3
πsθ + 5

24

π2
s

P θ, (A3)

which, after neglecting the last term, reproduces Eq. (36).
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