
PHYSICAL REVIEW C 94, 064902 (2016)

Minimizing statistical and systematic bias in transverse momentum correlations
for relativistic heavy-ion collisions

R. L. Ray and P. Bhattarai
Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 1 July 2016; revised manuscript received 31 October 2016; published 12 December 2016)

Two-particle correlation measurements and analysis are an important component of the relativistic heavy-ion
physics program. In particular, particle pair-number correlations on two-dimensional transverse momentum (pt )
allow unique access to soft, semihard, and hard scattering processes in these collisions. Precise measurements of
this type of correlation are essential for understanding the dynamics in heavy-ion collisions. However, transverse
momentum correlation measurements are especially vulnerable to statistical and systematic biases. In this paper
the origins of these large bias effects are explained and mathematical correlation forms are derived from mean-pt

fluctuation quantities in the literature. Monte Carlo simulations are then used to determine the conditions, e.g.,
multiplicity and collision centrality bin widths, where each correlation form is minimally biased. The ranges
of applicability for each correlation quantity are compared. Several are found to reproduce the assumed input
correlations with reasonable fidelity over a wide range of conditions encountered in practical analysis of data.
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I. INTRODUCTION

High-energy collisions between hadron and/or atomic
nuclei produce multiparticle final states for which single-
and two-particle number distributions have been measured
[1–3]. Two-particle correlations, constructed from these dis-
tributions, have been shown to be sensitive to the underlying
dynamics in the collision process. Parton fragmentation into
jets [4], hadronization from soft processes in quantum chromo-
dynamics (QCD) [5], identical particle quantum interference
[6], parton collectivity (flow) [7], parton-parton quantum
interference [8,9], resonance decays, and conservation law
effects are among the many dynamical processes predicted
to contribute to two-particle correlations. The majority of
two-particle correlation measurements reported for relativistic
heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) and at the Large Hadron Collider (LHC) are an-
gular correlations on subspaces (φ1,φ2), (η1,η2), (φ1 − φ2),
(η1 − η2), or (η1 − η2, φ1 − φ2), where φ and η are the azimuth
and pseudorapidity1 of arbitrary particles 1 and 2. Particles are
selected within fixed pt ranges depending on the physics goals
of the analysis.

In this paper the complementary correlations on transverse
momentum (pt1,pt2) for a fixed (η,φ) binning scale (bin size)
and acceptance range [10,11] are considered. Measurements
of two-particle correlations on (pt1,pt2) have been reported
by experiments NA49 [12,13], CERES [14], and STAR
[13,15,16]. In general, this type of correlation depends on the
angular (η,φ) bin scale, acceptance range, and location in (η,φ)
space as discussed in Refs. [11,17,18]. Here, the (η,φ) bin scale
is fixed at �φ = 2π,�η = 2 for |η| � 1 corresponding to the
STAR experiment’s time projection chamber (TPC) tracking
detector acceptance [19,20] at the RHIC.

1Pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the
polar scattering angle relative to the beam direction.

For symmetric collision systems, e.g., Au+Au and Pb+Pb,
near mid-rapidity the correlations are approximately constant
with respect to coordinate (η1 + η2) [21]. For unpolarized
ion + ion collisions the correlations are invariant on coordinate
(φ1 + φ2). Two-particle correlations for these conditions can
therefore be considered four-dimensional (4D) functions of
variables pt1, pt2, η1 − η2, and φ1 − φ2. Two-dimensional
measurements on (η1 − η2,φ1 − φ2) as a function of 2D
(pt1,pt2), in principle, contain all of the two-particle cor-
relation information. However, as discussed in this paper,
angular correlations include an undetermined constant off-
set [22] and are therefore incomplete. We will use the
relation between two-particle correlations on 2D (pt1,pt2)
space and non statistical fluctuations in mean pt [18,23] to
determine the overall, absolute magnitude of the correla-
tions on (pt1,pt2) and thus resolve the above indeterminacy
and allow access to all the information in 4D two-particle
correlations.

Two-particle correlations on transverse momentum may
provide access to dynamical processes beyond that which
can be studied with angular correlations alone. For exam-
ple, in thermodynamic models, event-wise fluctuations in
the final-state temperature of the observed collision system
produce fluctuating slopes of the event-wise single-particle
pt distributions resulting in a saddle shape in the (pt1,pt2)
correlation [16]. Fluctuating slopes would not produce an-
gular correlations unless they originate in regions with a
characteristic angular scale. Another example is the frag-
mentation of minimum-bias jets [22] which occurs within a
characteristic angular scale and within a relatively local pt

range at intermediate momentum of order 1–4 GeV/c [4].
Fluctuations in the number of minimum-bias jets and/or the
number of charged hadrons per jet cause the intermediate pt

distribution to fluctuate resulting in positive correlations in
(pt1,pt2) along the pt1 = pt2 diagonal. Angular correlations
from minimum-bias jets [22] determine only the average
number of correlated particle pairs from these processes.
Together, angular and (pt1,pt2) correlations provide access
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to independent information (i.e., averages and variances)
about the event-wise number of correlated particle pairs from
dynamical processes such as jet fragmentation which tend to
be localized in both angular and transverse momentum spaces.

In the RHIC and the LHC experiments correlations are
measured as functions of global properties of the collision
events. Typically events are grouped according to an ex-
tensive, event-wise observable such as total charged-particle
multiplicity, number of neutrons at zero-degree scattering
angle, total transverse energy, etc., which serve as proxies
for the degree of overlap, or centrality, between the colliding
heavy ions. In order to achieve sufficient statistical accuracy
events must be collected into finite width bins (e.g., centrality
bins) in the extensive observable within which the number
of produced particles in the collision, or multiplicity, as
well as the shape of the single-particle distribution vary.
These variations over finite width centrality bins can bias,
or distort the measurements. This bias is inconsequential
for angular correlations2 [22] but can be quite severe for
(pt1,pt2) correlations [24], being comparable to or larger than
the intrinsic correlation structures of interest. The purposes
of this work are to derive candidate (pt1,pt2) correlation
measures from nonstatistical mean-pt fluctuation quantities in
the literature, estimate the severity of the measurement bias for
each form, and determine the range of centrality, multiplicity
and kinematics where each correlation quantity is minimally
biased.

In the present context bias refers to any effect which
causes the measured correlation to be nonzero when the
true correlations vanish, or which distorts the correlation
measurement in the presence of true correlations. For example,
consider a typical correlation measurement where particle
pairs from the same event (sibling pairs) are binned on
variable x (e.g., the above coordinate variables) in histogram
N sib(x) and mixed-event pairs (the two particles are taken from
different events) are collected in Nmix(x). Both histograms
are averaged over the events. Event-averaged particle pair
densities are given by the ratio of the histograms to bin area.
Correlation quantity r(x) − 1 [22] is given by

r(x) − 1 = N sib(x) − Nmix(x)

Nmix(x)

= N (N − 1)N̂ sib(x) − N̄2N̂mix(x)

N̄2N̂mix(x)

=
(
N (N − 1)/N̄2

)
N̂ sib(x) − N̂mix(x)

N̂mix(x)

= (1 + ξ )

(
N̂ sib(x) − N̂mix(x)

N̂mix(x)

)
+ ξ, (1)

2Referring to Eq. (1), statistical bias mainly adds a constant offset (ξ )
to angular correlations and does not affect the analysis of correlation
structure. Systematic bias caused by changes in the shape of the
single-particle distribution or acceptance within a centrality bin, e.g.,
dependence of the raw pseudorapidity distribution on collision vertex
position within the fiducial volume of the detector, can be minimized
by requiring event mixing within narrow sub-bins.

where N̄ is the mean multiplicity, N (N − 1) is the mean
number of sibling pairs, “hat” symbols denote unit-normalized
histograms, e.g.,

∑
x N̂ sib(x) = 1, and ξ ≡ N (N − 1)/N̄2 −

1 where |ξ | � 1 if N̄ � 1 and the range of event-wise
multiplicities is �N̄ . The algebraic steps used in going
from the first to second line in Eq. (1) are explained in
the next section [see Eq. (8)] where, for this example, it
is assumed that the shapes of the densities do not vary
with event multiplicity. Variable ξ is nonzero due to pair
counting statistics, a statistical bias, where factor (1 + ξ ) is a
multiplicative bias, and constant factor ξ on the right-hand side
(RHS) of the last line of Eq. (1) is an additive bias. Variations
in the shape of the single-particle distributions within the
centrality bin will also cause the numerator in Eq. (1) to
not vanish in the absence of true correlations, a systematic
bias. The advantage of (pt1,pt2) correlations for constraining
the 4D correlation measurements is negated by the additive
bias ξ . For (pt1,pt2) correlations reported as the number of
correlated pairs per final-state particle [22] the additive bias
introduces large, shape distortions in the correlation structures
as shown below. A major goal of this paper is to derive (pt1,pt2)
correlation measures for which additive bias effects are
negligible.

This paper is organized as follows. In Sec. II charge-
identified (CID) (pt1,pt2) correlation quantities are derived
from both simple definitions and from mean-pt fluctuation
quantities from the literature. In Sec. III analytic leading-order
bias contributions are derived which are due to system-
atic variations in single-particle distributions and correlation
shapes within the finite-width centrality bin. In Sec. IV a
Monte Carlo simulation model is described which was used
to estimate bias effects corresponding to realistic analysis
of RHIC data. Simulation results are presented and dis-
cussed in Sec. V. A summary and conclusions are given in
Sec. VI.

II. TRANSVERSE MOMENTUM CORRELATIONS

Correlation quantities based on conventional definitions
used in angular correlation analysis are discussed first. In
Refs. [16,25] it was shown that a measure of nonstatistical,
event-wise fluctuations in mean-pt is proportional to the
pt -weighted integral of a two-particle, transverse momentum
correlation. This is an example of the general relationship be-
tween correlations and nonstatistical fluctuations [10,18,25].
Multiple definitions of mean-pt fluctuation measures can be
found in the literature [23,26–30]. Those which are advocated
by experimental collaborations at the CERN Super Proton
Synchrotron (SPS), the RHIC, and the LHC are considered
here where in each case the corresponding two-particle,
transverse momentum correlations for like-sign (LS) and
unlike-sign (US) charged-particle pairs are derived.

A. Simple definitions

Many of the definitions of correlations in the literature
[21,22,31] arbitrarily assume total pair normalization where
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correlation quantity (rpair − 1) on binned space x is given by

rpair(x) − 1 = Nmix

N sib

hsib(x)

hmix(x)
− 1

= Nmix

N sib

[huncorr(x) + hcorr(x)]

hmix(x)
− 1 (2)

= Nmix

N sib

hcorr(x)

hmix(x)
+

[
Nmix

N sib

huncorr(x)

hmix(x)
− 1

]
.

(3)

In these equations hsib(x) and hmix(x) are histograms of
sibling and mixed-event particle pairs, respectively, in bin x (x
may represent bins in 1D or 2D angular or pt subspaces),
hsib(x) = huncorr(x) + hcorr(x) corresponding to the number
of uncorrelated (random) and correlated pairs, and the total
pair counts are given by N sib = ∑

x hsib(x) and Nmix =∑
x hmix(x).
The conventional definition of the unit-normalized two-

particle density [32,33], ρ̂(x1,x2), is given by

ρ̂(x1,x2) = ρ̂(x1)ρ̂(x2) + C(x1,x2), (4)

where the one-particle density, ρ̂(x1), is the marginal dis-
tribution of the two-particle density, ρ̂(x1) = ∫

dx2ρ̂(x1,x2),
and C(x1,x2) is the two-particle correlation density. From this
definition we find that∫

dx2C(x1,x2) =
∫

dx1C(x1,x2) = 0. (5)

However, the integral of C(x1,x2) over a reduced portion of
the full space (e.g., the detector acceptance �x), given by∫

�x

dx2C(x1,x2) �= 0, (6)

does not vanish in general. For the bin counts in Eqs. (2)
and (3) the preceding nonvanishing integral requires that

∑
x hcorr(x) �= 0 and therefore

∑
x huncorr(x) �= N sib. It follows

that the factor in square brackets in Eq. (3) does not vanish in
general and is approximately a constant λ over the domain of
x, where |λ| � 1 if hcorr(x) � huncorr(x). Both quantities on
the RHS of Eq. (3) are small (�1), but may be comparable;
i.e., the arbitrary λ could be of the order of the correlation
amplitude.

It is conventional [18,22] to report angular correlations as a
normalized covariance (Pearson’s normalized covariance [34])
by multiplying [rpair(x) − 1] in Eq. (2) by a single particle
quantity or histogram,

√
ρref(x), where√

ρref(x)[rpair(x) − 1] =
√

ρref(x)
Nmix

N sib

hcorr(x)

hmix(x)
+ λ

√
ρref(x).

(7)

For angular correlations from symmetric collision systems
(e.g., p+p, Au+Au, Pb+Pb) at mid-rapidity the prefactor,√

ρref(x) (see also Sec. II H), is approximately constant and is
given by d2Nch/dηdφ [22] where Nch is the charged-particle
multiplicity. Factor λ

√
ρref(x) contributes an unknown, con-

stant offset to the angular correlations meaning that only
the nonconstant angular correlation structures are physically
significant as explained in Ref. [22].

For transverse momentum correlations the prefactor is
given by

√
(d2Nch/dpt1dη1)(d2Nch/dpt2dη2) which varies

exponentially with (pt1,pt2). This correlation per final-state
particle measure provides much greater visual access to the
correlation structures at low and intermediate pt less than a
few GeV/c. In this case the structure of the unknown factor
λ
√

ρref(pt1,pt2) may be comparable to or larger than the true
correlations, making the (pt1,pt2) pair-normalized correlations
unreliable. Equation (7) and bias factor λ apply to both LS and
US charged particle pairs.

Another correlation definition, referred to in the Introduc-
tion, invokes event averaging where the sibling pair histogram
is given by

N sib(x) = 1

ε

ε∑
j=1

nsib
j (x) =

∑
m

εm

ε

1

εm

εm∑
j=1

nsib
jm(x) =

∑
m

εm

ε
n̄sib

m (x)

=
∑
m

εm

ε
m(m − 1) ˆ̄nsib

m (x) ≈
∑
δm

εm

ε
(N̄ + δm)(N̄ + δm − 1) ˆ̄nsib(x)

≈ [
N̄ (N̄ − 1) + σ 2

N

]
ˆ̄nsib(x), (8)

where in the first line ε is the number of collision events, j is the event index, nsib
j (x) is the number of sibling pairs in event

j in bin x, m is an event multiplicity value within the centrality range, εm is the number of events which have multiplicity m,
and n̄sib

m (x) is an average over all events with multiplicity m. In the second line event-wise pair count m(m − 1) includes both
permutations of particles 1 and 2, ˆ̄nsib

m (x) is normalized to unity where ˆ̄nsib
m (x) = n̄sib

m (x)/
∑

x n̄sib
m (x), N̄ = ∑

m(εm/ε)m is the
mean multiplicity, m = N̄ + δm, and in the last line σ 2

N is the variance of the multiplicity distribution of the ε events given by∑
m(εm/ε)(m − N̄ )2. In the second line of Eq. (8) the possible multiplicity dependence of the shape of ˆ̄ns

m(x) was neglected.
The mixed-event pair histogram is given by

Nmix(x) = 1

εmix

∑
j �=j ′

[nj (x1)nj ′(x2)](x) = N̄2[ ˆ̄n(x1) ˆ̄n(x2)](x), (9)

where εmix is the number of pairs of mixed events used in the summation, nj (x1) and nj ′ (x2) are the binned single-particle counts in
events j and j ′ where j �= j ′, and notation [ ˆ̄n(x1) ˆ̄n(x2)](x) means that all mixed-event particle pairs which contribute to pair-wise
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bin x are included in the summation. For transverse momentum correlations this factor is explicitly given by ˆ̄n(pt1) ˆ̄n(pt2) where
in this context pt1 and pt2 represent pt bins.

The normalized, event-averaged correlation is given by

√
ρref(revent − 1) =

√
d2Nch

dpt1dη1

d2Nch

dpt2dη2

N sib(pt1,pt2) − Nmix(pt1,pt2)

Nmix(pt1,pt2)
. (10)

Multiplying N sib(x) by N̄/(N̄ − 1) removes the trivial pair counting difference between sibling and mixed-event pairs [see
Eqs. (8) and (9)]. Equation (10) can then be reexpressed as

√
ρref(revent − 1) =

√
d2Nch

dpt1dη1

d2Nch

dpt2dη2

N̄
N̄−1N sib(pt1,pt2) − Nmix(pt1,pt2)

Nmix(pt1,pt2)

≈
√

d2Nch

dpt1dη1

d2Nch

dpt2dη2

[ ˆ̄nsib(pt1,pt2) − ˆ̄n(pt1) ˆ̄n(pt2)
ˆ̄n(pt1) ˆ̄n(pt2)

+ σ 2
N

N̄ (N̄ − 1)

ˆ̄nsib(pt1,pt2)
ˆ̄n(pt1) ˆ̄n(pt2)

]
. (11)

In the absence of true correlations ˆ̄nsib(pt1,pt2) equals
ˆ̄n(pt1) ˆ̄n(pt2). However, (revent − 1) is not zero in that limit
due to the additive bias term proportional to σ 2

N which is
determined by the multiplicity or centrality bin width. The bias
is approximately

√
ρref(σN/N̄ )2 and can be much larger than

the typical correlations as shown in Sec. V where for heavy-ion
collisions | ˆ̄nsib(pt1,pt2)/[ ˆ̄n(pt1) ˆ̄n(pt2)] − 1| is of order 10−3

to 10−2 [16]. Alternatively, the ratio r = N sib(x)/Nmix(x)
could be normalized by the factor N̄2/[N̄ (N̄ − 1) + σ 2

N ] which
produces the same result and possible distortion as found for
the above pair-normalization method. Equation (11) directly
applies to non-charge-identified particle-pairs and to LS pairs.
For US pairs statistical bias persists where σ 2

N/[N̄ (N̄ −
1)] in Eq. (11) is replaced with cov[(n+ − N̄+)(n− −
N̄−)]/(N̄+N̄−), the normalized covariance between positive
and negative charged-particle number fluctuations.

B. Correlation derived from �σ 2
pt :m

Several authors have proposed mean-pt fluctuation quan-
tities which minimize statistical bias, all of which rely on
the scale invariance (i.e., angular bin-size invariance), in the
absence of correlations, of the quantity mσ 2

〈pt 〉, where m and
σ 2

〈pt 〉 are respectively the multiplicity and variance (defined be-
low) of mean-pt fluctuations within the angular bin. This scale
invariance is a consequence of the central limit theorem (CLT)
[25,35]. Nonstatistical fluctuations, which correspond to cor-
relations, break this scale invariance causing the difference
[(mσ 2

〈pt 〉)δx2
− (mσ 2

〈pt 〉)δx1
] to be nonzero, where subscripts δx1

and δx2 refer to different angular bin sizes, or scales. However,
there is not a unique method for implementing this scale
difference quantity in the definitions of nonstatistical mean-pt

fluctuation measures. For example, difference [(mσ 2
〈pt 〉)δx2

−
(mσ 2

〈pt 〉)δx1
] can be multiplied by arbitrary powers of m in order

to minimize bias due to the m dependence in the nonstatis-

tical fluctuations. A linear width difference,
√

(mσ 2
〈pt 〉)δx2

−√
(mσ 2

〈pt 〉)δx1
, could also be used. This ambiguity allows

multiple forms for mean-pt fluctuation quantities to be defined.
In Refs. [13,36] Liu, Trainor, and Reid proposed the

quantity �σ 2
pt :m based directly on the above variance

difference. This quantity was used by the STAR Collaboration
in the analysis of Au+Au collisions at

√
sNN = 130 GeV

[23]. Subscript pt : m emphasizes that this quantity measures
non-statistical fluctuations of transverse momentum with
negligible contribution from fluctuations in multiplicity (m)
[23]. This quantity was designed to eliminate bias when
[(mσ 2

〈pt 〉)δx2
− (mσ 2

〈pt 〉)δx1
] varies as (f0 + mf1) in the pres-

ence of nonstatistical fluctuations. For non-charge-identified
particles this quantity at the acceptance scale is given by

�σ 2
pt :m = 1

ε

ε∑
j=1

nj (〈pt 〉j − p̂t )
2 − σ 2

p̂t
, (12)

where nj is the multiplicity within the acceptance for event j ,
and event-wise mean-pt , inclusive mean-pt , and inclusive pt

variances are respectively given by

〈pt 〉j = 1

nj

nj∑
i=1

pt,ji , (13)

p̂t = 1

εN̄

ε∑
j=1

nj∑
i=1

pt,ji , (14)

σ 2
p̂t

= 1

εN̄

ε∑
j=1

nj∑
i=1

(pt,ji − p̂t )
2. (15)

The inclusive pt variance represents (mσ 2
〈pt 〉)δx1

in the limit of
very small bin sizes where occupied bins contain exactly one
particle and only occupied bins are included in the summations
[13,23,36]. In this paper angle brackets “〈 〉” denote event-
wise averages and overlines denote averages over an event
collection.

In the absence of nonstatistical fluctuations �σ 2
pt :m equals

zero, where

�σ 2
pt :m =

∑
m

εm

ε
m

1

εm

εm∑
j=1

(〈pt 〉j − p̂t )
2 − σ 2

p̂t

=
∑
m

εm

ε
mσ 2

〈pt 〉 − σ 2
p̂t

→ 0 (16)
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using the CLT result mσ 2
〈pt 〉 = σ 2

p̂t
where σ 2

〈pt 〉 is the variance
of the distribution of event-wise mean-pt for events with
m particles in the angular bin. The expression for �σ 2

pt :m
in Eq. (12) can be expanded in terms of particle pairs by
substituting the definitions in Eqs. (13)–(15), collecting terms
proportional to sums of pairs of particles from the same event
(siblings) and sums of pairs of particles from different events
(mixed-event pairs), and assuming a large number of events
ε � 1. The result is given by

N̄�σ 2
pt :m = 1

ε

ε∑
j=1

N̄

nj

nj∑
i �=i ′=1

pt,jipt,j i ′

− N̄ − 1

N̄

1

εmix

∑
j �=j ′

nj∑
i=1

nj ′∑
i ′=1

pt,jipt,j ′i ′

+ 1

ε

ε∑
j=1

(
N̄

nj

− 1

) nj∑
i=1

p2
t,j i . (17)

The last term in Eq. (17) is a self-pair term which is nonvan-
ishing when average p2

t is correlated with event multiplicity,
but vanishes otherwise. It may contribute to the fluctuation
measure but does not contribute to the correlation.

The particle sums, when binned on 2D transverse momen-
tum, can be expressed as

nj∑
i �=i ′=1

pt,jipt,j i ′ =
∑
k,l

pt,kpt,ln
sib
j,kl, (18)

nj∑
i=1

nj ′∑
i ′=1

pt,jipt,j ′i ′ =
∑
k,l

pt,kpt,lnjknj ′l , (19)

where subscripts k,l are transverse momentum bin indices, pt,k

and pt,l are the average pt within those bins (approximately pt

at the bin centers), nsib
j,kl is the number of sibling pairs in 2D bin

(k,l) in event j , and njk and nj ′l are the number of particles in
pt bins k and l in events j and j ′, respectively. By substituting
Eqs. (18) and (19) into Eq. (17) and omitting the self-pair term,
the relationship between the mean-pt fluctuation measure and
the two-particle correlation for this case can be expressed as

N̄�σ 2
pt :m ≈

∑
k,l

pt,kpt,l�Nkl,�σ 2 , (20)

�Nkl,�σ 2 = 1

ε

ε∑
j=1

N̄

nj

nsib
j,kl − N̄ − 1

N̄

1

εmix

∑
j �=j ′

njknj ′l .

(21)

For like-sign charged-particle pairs (++ and −−) the preced-
ing equation can immediately be written as

�N±±
kl,�σ 2 = 1

ε

ε∑
j=1

N̄±

n±
j

nsib±±
j,kl − N̄± − 1

N̄±
1

εmix

∑
j �=j ′

n±
jkn

±
j ′l . (22)

From Ref. [23] the mean-pt fluctuation measure for unlike-
sign charged-particle pairs is

�σ 2,US
pt :m = 1

ε

ε∑
j=1

√
n+

j n−
j (〈p±

t 〉j − p̂±
t )(〈p∓

t 〉j − p̂∓
t ).

(23)

After multiplying by
√

N̄+N̄− and using the CID versions of
the summations in Eqs. (13), (14), (18), and (19), the unlike-
sign charged-particle pair correlation can be expressed as

�N±∓
kl,�σ 2 = 1

ε

ε∑
j=1

√
N̄+N̄−

n+
j n−

j

nsib±∓
j,kl − 1

εmix

∑
j ′ �=j ′′

[√√√√ N̄±n∓
j ′

N̄∓n±
j ′

+
√√√√ N̄∓n±

j ′′

N̄±n∓
j ′′

−
√

n+
j n−

j

N̄+N̄−

]
n±

j ′kn
∓
j ′′l , (24)

where the overlined quantity in the mixed-event summation
is averaged over all events j = 1,2, . . . ,ε. In obtaining the
second weight factor in the mixed-event expression summation
indices j ′ and j ′′ were interchanged. Including the weight
factors in Eqs. (22) and (24) is essential for eliminating the
finite bin-width statistical bias. Note that all weight factors
equal unity when the CID event multiplicities are constant.

The form of Eq. (21) for nonidentified particles suggests the
following (simple) CID expression where the sibling-pair term
and the single-particle terms with CID labels a,b are written
out as

nsib
j,kl =

∑
a=±

∑
b=±

n
sib,ab
j,kl , (25)

njk =
∑
a=±

na
jk. (26)

The resulting, alternate CID form for the correlation is given
by

�Nab
kl,alt = 1

ε

ε∑
j=1

N̄

nj

n
sib,ab
j,kl − N̄ − 1

N̄

1

εmix

∑
j �=j ′

na
jkn

b
j ′l

(27)

for a,b = ±,±. In Sec. V it will be shown that this correlation
definition is strongly biased; only the charge-nonidentified
form in Eq. (21) is useful.

The CERES Collaboration introduced a mean-pt fluctua-
tion quantity σ 2

pt ,dyn,Ceres in Ref. [29] at about the same time
�σ 2

pt :m was being developed by Liu, Trainor, and Reid. It is
algebraically identical to �σ 2

pt :m/N̄ and therefore leads to the
same correlation quantities given in Eqs. (22) and (24).

C. Correlation derived from � pt

A mean-pt fluctuation width difference quantity pt
[26]

is defined as

pt
=

√
Z2/N̄ − σp̂t

, (28)
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Z2 = 1

ε

ε∑
j=1

nj∑
i,i ′=1

(pt,ji − p̂t )(pt,ji ′ − p̂t )

= 1

ε

ε∑
j=1

n2
j (〈pt 〉j − p̂t )

2. (29)

Direct conversion of pt
into a form proportional to a weighted

integral of the correlation is complicated by the square root
in Eq. (28) and the linear form of pt

which is based on a
fluctuation width difference as opposed to a variance difference
which was used in the preceding sub-section. An approximate
quantity can be defined which depends on variance differences
similar to that used for �σ 2

pt :m. Multiplying Eq. (28) by

(
√

Z2/N̄ + σp̂t
) yields

pt

[√
Z2/N̄ + σp̂t

] = Z2/N̄ − σ 2
p̂t

(30)

and then substituting from Eq. (28) into the factor on the
left-hand side (LHS) results in

pt

[
pt

+ 2σp̂t

] ≡ 2σp̂t
(0)

pt
, (31)

where the RHS defines approximate measure (0)
pt

. For heavy-
ion collisions pt

� σp̂t
[26] and solving Eq. (31) for pt

yields the rapidly converging expansion

pt
≈ (0)

pt

[
1 − (0)

pt

/(
2σp̂t

) + · · · ] (32)

when (0)
pt

� σp̂t
. From Eqs. (29)–(31) we obtain

(0)
pt

= [
Z2/N̄ − σ 2

p̂t

]/(
2σp̂t

)
= 1

2σp̂t
N̄ε

ε∑
j=1

[
n2

j (〈pt 〉j − p̂t )
2 − njσ

2
p̂t

]
. (33)

Equation (33) can be directly applied to like-sign pairs (++)
and (−−). Quantity (0)

pt
includes an additional factor nj

compared to �σ 2
pt :m in Eq. (12). The STAR Collaboration

adopted the quantity 2σp̂t
(0)

pt
for the scale-dependent fluctua-

tion analysis in Refs. [10,11].
For unlike-sign charged-particle pairs quantity Z2 in

Eq. (29) is evaluated for (±∓) pairs where the variance σ 2
p̂t

in Eq. (33) is not included as was the case for �σ 2,US
pt :m [see

Eq. (23)], and the scaling factors σp̂t
and N̄ are replaced with

geometric means as in Eq. (23). The result from Eqs. (29) and
(33) is

(0)+−
pt

= 1

2
√

σ+
p̂t

σ−
p̂t

N̄+N̄−

× 1

ε

ε∑
j=1

n+
j n−

j (〈p+
t 〉j − p̂+

t )(〈p−
t 〉j − p̂−

t ).

(34)

The LS and US correlations are derived by substituting the
explicit summations for 〈p±

t 〉j , p̂±
t , and (σ±

p̂t
)2 into Eqs. (33)

and (34), collecting sibling and mixed-event pair terms, using
the pt binning in Eqs. (18) and (19), and factoring out

constants. The results are given by

�N±±
kl, = 1

ε

ε∑
j=1

nsib±±
j,kl − 1

εmix

∑
j ′ �=j ′′

[
n±

j ′ − 1

N̄± + n±
j ′′ − 1

N̄±

− n±
j (n±

j − 1)

N̄±2

]
n±

j ′kn
±
j ′′l , (35)

�N±∓
kl, = 1

ε

ε∑
j=1

nsib±∓
j,kl − 1

εmix

∑
j ′ �=j ′′

[
n∓

j ′

N̄∓ + n±
j ′′

N̄±

− n+
j n−

j

N̄+N̄−

]
n±

j ′kn
∓
j ′′l , (36)

where self-pair terms cancel in this case.
The ALICE Collaboration defined a mean-pt fluctuation

quantity Cpt
[37] given by

Cpt
= 1

Npairs

1

ε

ε∑
j=1

nj∑
i �=i ′=1

(pt,ji − p̂t )(pt,ji ′ − p̂t ), (37)

a variance difference as shown in Ref. [18], where Npairs

is the event-average number of particle pairs. The corre-
lations are derived by inserting the expansions for p̂t and
collecting sibling and mixed-event pair terms for like-sign
and unlike-sign charged-particle pairs as above. The resulting
correlations are the same as those derived for (0)

pt
in Eqs. (35)

and (36).

D. Correlation derived from σ 2
pt ,dynamical

Mean-pt fluctuation quantity σ 2
pt ,dynamical [27] is defined

for like-sign and unlike-sign particle pairs, using a variance
difference form (see Ref. [18]) given by

σ 2±±
pt ,dynamical = 1

ε

ε∑
j=1

1

n±
j (n±

j − 1)

×
n±

j∑
i �=i ′=1

(p±
t,j i − p̂±

t )(p±
t,j i ′ − p̂±

t ), (38)

σ 2±∓
pt ,dynamical = 1

ε

ε∑
j=1

1

n+
j n−

j

×
n±

j∑
i=1

n∓
j∑

i ′=1

(p±
t,j i − p̂±

t )(p∓
t,j i ′ − p̂∓

t ). (39)

This quantity is directly proportional to a weighted integral
of a two-particle correlation. Following the same steps as in
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Sec. II B the corresponding correlations are given by

�N±±
kl,σ−dyn = 1

ε

ε∑
j=1

N̄±2

n±
j (n±

j − 1)
nsib±±

j,kl

− 1

εmix

∑
j ′ �=j ′′

[
N̄±

n±
j ′

+ N̄±

n±
j ′′

− 1

]
n±

j ′kn
±
j ′′l , (40)

�N±∓
kl,σ−dyn = 1

ε

ε∑
j=1

N̄±N̄∓

n±
j n∓

j

n±
jkn

∓
j l

− 1

εmix

∑
j ′ �=j ′′

[
N̄±

n±
j ′

+ N̄∓

n∓
j ′′

− 1

]
n±

j ′kn
∓
j ′′l . (41)

Self-pair terms do not appear in σ 2
pt ,dynamical. For like-

sign sibling pairs, events with n±
j = 1, nsib±±

j,kl = 0 are
skipped but those events are included in the mixed-event
summation.

E. Correlation derived from Fpt

Mean-pt fluctuation quantity Fpt
, developed by the

PHENIX Collaboration [28], is based on a fluctuation width
difference similar to pt

. Fpt
is defined by

Fpt
= ωpt ,data − ωpt ,mix

ωpt ,mix
, (42)

ωpt
= [〈pt 〉2 − 〈pt 〉2

]1/2/ 〈pt 〉, (43)

where ωpt
is calculated from the measured events (subscript

“data”) or from mixed events (subscript “mix”). The latter are
uncorrelated pseudo-events constructed by sampling from all
particles in all events in the collection.

For mixed events Eq. (43) becomes

(〈pt 〉mixωpt ,mix)2 = 〈pt 〉2
mix − 〈pt 〉2

mix

= (〈pt 〉 − 〈pt 〉)2
mix , (44)

where

〈pt 〉mix = 1

ε′

ε′∑
j=1

1

nj

nj∑
i=1

pt,ji =
∑
m

ε′
m

ε′
1

mε′
m

ε′
m∑

j=1

m∑
i=1

pt,ji

=
∑
m

ε′
m

ε′ p̂t,m = p̂t . (45)

In Eq. (45) ε′ is the number of mixed events, ε′
m is the

number of mixed events having multiplicity m, p̂t,m is the
inclusive mean pt for all mixed events with multiplicity m,
and in the last step any systematic dependence on multiplicity
of the inclusive mean-pt for the real events is suppressed
because each mixed event is composed of a random sample of
particles from all events in the collection. For real events,
in which p̂t,m may systematically vary with multiplicity,
〈pt 〉data �= p̂t in general. However, the ratio ζ = p̂t /〈pt 〉data

is expected to be approximately 1. Continuing from Eq. (44)
we obtain

(p̂tωpt ,mix)2 = 1

ε′

ε′∑
j=1

(〈pt 〉j − p̂t )
2
mix

=
∑
m

ε′
m

ε′
1

ε′
m

ε′
m∑

j=1

(〈pt 〉j,m − p̂t )
2
mix

=
∑
m

ε′
m

ε′ σ 2
〈pt 〉:m,mix =

∑
m>0

ε′
m

ε′
σ 2

p̂t

m
= m−1σ 2

p̂t
,

(46)

where σ 2
〈pt 〉:m,mix is the mean-pt variance for mixed events

with multiplicity m > 0 (the summation includes only those
events with nonvanishing bin content), and in the last line the
central limit theorem can be used because the mixed events
are uncorrelated. Quantity m−1 is statistically biased and will
be discussed below.

In order to access the correlation, the width difference
form of Fpt

must be transformed to a variance differ-
ence similar to what was done for pt

in Sec. II C. This
transformation can be accomplished by multiplying Fpt

by
N̄2p̂2

t ωpt ,mix(ωpt ,data + ωpt ,mix). The result is defined with new
symbol Fpt

, where N̄2 is required in order that the resulting
expression be proportional to pair number. In Ref. [28] Fpt

for RHIC collision data was found to be of order 2%,
which implies that

ωpt ,data ≈ ωpt ,mix = [m−1]1/2σp̂t
/p̂t (47)

using Eq. (46). The above multiplicative factor is then
approximately 2N̄2m−1σ 2

p̂t
, which is a constant or scaling

factor.
The result for Fpt

is given by

Fpt
= N̄2p̂2

t

(
ω2

pt ,data − ω2
pt ,mix

)
= N̄2p̂2

t

〈pt 〉2
data

1

ε

ε∑
j=1

(〈pt 〉j − 〈pt 〉)2
data − N̄2m−1σ 2

p̂t

= N̄2ζ 2 1

ε

ε∑
j=1

(〈pt 〉j − p̂t /ζ )2
data − N̄2m−1σ 2

p̂t
, (48)

where the second quantity on the RHS was obtained from
Eq. (46). If ζ �= 1, the statistical bias from the average factor
m−1 contributes to the final �Nkl correlation as an additive
bias which may produce significant artifacts. It is expected that
ζ ≈ 1 for applications in high energy heavy-ion collisions and
therefore setting ζ = 1 permits a formal, statistically unbiased
correlation to be defined approximately corresponding to
fluctuation quantity Fpt

.
By evaluating Eq. (48) for (++) and (−−) charged-particle

pairs and inserting the summations for 〈pt 〉j , p̂t , and σ 2
p̂t

as in
the above derivations, the like-sign correlation quantity can be
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derived and is given by

�N±±
kl,F = 1

ε

ε∑
j=1

N̄±2

n±2

j

nsib±±
j,kl − 1

εmix

×
∑
j ′ �=j ′′

(
N̄±

n±
j ′

+ N̄±

n±
j ′′

− 1 − m±−1

)
n±

j ′kn
±
j ′′l , (49)

where self-pair terms are not included in the correlation. The
statistical bias factor m±−1 in the mixed-event term is equal
to N̄±2

m±−1 ˆ̄n±
k

ˆ̄n±
l , if multiplicity dependence of the single-

particle pt distribution shape is neglected. This bias term is
canceled by a similar bias term in the sibling-pair sum given
by

N̄±2

(
m±(m± − 1)

m±2

)
ˆ̄nsib±±
kl = N̄±2

(1 − m±−1 ) ˆ̄nsib±±
kl

≈ N̄±2
(1 − m±−1 ) ˆ̄n±

k
ˆ̄n±
l , (50)

where the bias contribution comes from the second term on
the RHS. Multiplicity dependence in the shape of the two-
particle distribution is also neglected in Eq. (50). The last line
in Eq. (50) represents the limit of zero correlations. For realistic
applications with nonvanishing correlations this statistical bias
contributes to �N±±

kl,F. In Sec. V the possible significance of
this bias will be studied using simulations.

For unlike-sign pairs quantity Fpt
, with ζ = 1, becomes

FUS
pt

= N̄+N̄−

ε

ε∑
j=1

(〈p+
t 〉j − p̂+

t )(〈p−
t 〉j − p̂−

t ). (51)

The resulting unlike-sign correlation is given by

�N±∓
kl,F = 1

ε

ε∑
j=1

N̄+N̄−

n+
j n−

j

nsib±∓
j,kl

− 1

εmix

∑
j ′ �=j ′′

(
N̄±

n±
j ′

+ N̄∓

n∓
j ′′

− 1

)
n±

j ′kn
∓
j ′′l , (52)

which is statistically unbiased.

F. Correlations derived from �[PT ,N] and �[PT ,N]

The NA49 Collaboration recently published transverse
momentum and multiplicity fluctuation measures �[PT ,N ]
and �[PT ,N ] [30], defined in the present notation by

�[PT ,N ] = 1

N̄ω(pt )
{N̄ω[PT ] − P T ω[N ]}, (53)

�[PT ,N ] = 1

N̄ω(pt )
{N̄ω[PT ] + P T ω[N ]

−2[PT N − P T N̄ ]}. (54)

In these equations PT,j = ∑nj

i=1 pt,ji is the event-wise sum
of pt magnitude over all particles in the j th event. The other

symbols are defined as follows:

P T = 1

ε

ε∑
j=1

PT,j , (55)

PT N = 1

ε

ε∑
j=1

njPT,j , (56)

ω[PT ] = (
P 2

T − P
2
T

)/
P T , (57)

ω[N ] = (N2 − N̄2)/N̄, (58)

ω(pt ) = σ 2
p̂t

/
p̂t . (59)

Note the different meaning of symbol ω in the above equations
from Ref. [30], which is proportional to a fluctuation variance,
compared to the definition in the previous subsection where
that ω was proportional to a fluctuation width.

Equation (53) can be simplified by multiplying both
numerator and denominator of the RHS by N̄P T . The result
is

P T

(
σ 2

p̂t
/p̂t

)
�[PT ,N ] = [

N̄2P 2
T − N2 P

2
T

]/
N̄2. (60)

The correlated particle-pair difference is derived by inserting
summations in the numerator of the RHS of this equation,
omitting a self-pair term, and binning on 2D transverse
momentum. The result is given by

�Nkl,� = 1

ε

ε∑
j=1

nsib
j,kl − N2

N̄2

1

εmix

∑
j �=j ′

njknj ′l . (61)

The multiplicity bin-width dependence of �Nkl,� can be
estimated using the same steps as in Eq. (8) and neglecting
possible systematic variations in the shapes of the single- and
two-particle distributions on pt with event multiplicity. The
result is

�Nkl,� ≈ [
N̄ (N̄ − 1) + σ 2

N

]
ˆ̄nsib
kl − (

N̄2 + σ 2
N

)
ˆ̄nk ˆ̄nl

= (
N̄2 + σ 2

N

)(
ˆ̄nsib
kl − ˆ̄nk ˆ̄nl

) − N̄ ˆ̄nsib
kl . (62)

The last term on the RHS of Eq. (62) represents an additive
bias, i.e., �Nkl,� �= 0 in the no-correlation limit, ˆ̄nsib

kl = ˆ̄nk ˆ̄nl .
The correlated particle-pair difference for �[PT ,N ] can be

derived by following the same steps as above, assuming large
event-number ε � 1. The result is given by

�Nkl,� = 1

ε

ε∑
j=1

nsib
j,kl − 1

εmix

∑
j �=j ′

(
2nj ′

N̄
− N2

N̄2

)
njknj ′l

(63)

≈ [
N̄ (N̄ − 1) + σ 2

N

]
ˆ̄nsib
kl − 2

(
N̄2 + σ 2

N

)
ˆ̄nk ˆ̄nl

+ (
N̄2 + σ 2

N

)
ˆ̄nk ˆ̄nl

= (
N̄2 + σ 2

N

)(
ˆ̄nsib
kl − ˆ̄nk ˆ̄nl

) − N̄ ˆ̄nsib
kl , (64)

where the second and third equations apply if the shapes of
the single- and two-particle pt distributions do not vary with
event multiplicity. In this limit �Nkl,� and �Nkl,� are equal
and both are additively biased. The bias can be minimized by
selecting multiplicity ranges where σ 2

N � N̄2 and multiplying
the mixed-event pair term with factor (N̄ − 1)/N̄ , or by
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selecting multiplicity ranges where σ 2
N ≈ N̄ (Poisson limit)

and N̄ � σN .

G. Multiplicity-dependent nonstatistical fluctuations

In the preceding subsections two-particle correlations on
(pt1,pt2) were derived from different nonstatistical mean-pt

fluctuation quantities. For example, �σ 2
pt :m in Eq. (16) is

expressed as an average over all events in the centrality bin,
given by

�σ 2
pt :m = mσ 2

〈pt 〉 − σ 2
p̂t

, (65)

where m is the (η,φ) bin-wise multiplicity and σ 2
〈pt 〉 is the

variance of fluctuating mean-pt for the events containing m
particles. Similar expressions for the non-charge-identified
forms for (0)

pt
, σ 2

pt ,dynamical and Fpt
are given by

2σp̂t
(0)

pt
= m

(
mσ 2

〈pt 〉 − σ 2
p̂t

)/
N̄, (66)

(N̄ − 1)σ 2
pt ,dynamical = (N̄ − 1)

(
mσ 2

〈pt 〉 − σ 2
p̂t

m − 1

)
, (67)

Fpt
/N̄ ≈ N̄

(
mσ 2

〈pt 〉 − σ 2
p̂t

)/
m (68)

using Eqs. (33), (38), and (48) and rearranging the event
summation as in Eq. (16). In the last equation ζ ≈ 1 was
assumed for quantity Fpt

.
Non-statistical fluctuations, or two-particle correlations,

cause (mσ 2
〈pt 〉 − σ 2

p̂t
) �= 0 and to depend on (η,φ) bin-wise

multiplicity. Defining

f (m) ≡ mσ 2
〈pt 〉 − σ 2

p̂t
, (69)

each quantity can be written as a multiplicity weighted average
of f (m), given by

�σ 2
pt :m = f (m), (70)

2σp̂t
(0)

pt
= mf (m)/N̄, (71)

(N̄ − 1)σ 2
pt ,dynamical = (N̄ − 1)f (m)/(m − 1), (72)

Fpt
/N̄ ≈ N̄f (m)/m, (73)

where the explicit dependence of f (m) on multiplicity is
determined by the dynamical processes which produce non-
statistical fluctuations. For example, event-wise fluctuations
in global temperature involve all particles such that the
number of correlated particle-pairs, �Nkl , is proportional to
m2, and �σ 2

pt :m, being proportional to number of correlated
pairs per final-state particle [see Eq. (20)], is proportional
to m. For this example f (m) ∝ m and the averages over
finite width multiplicity bins in above Eqs. (70)–(73) result
in a bias (results depend on bin width) for (0)

pt
but not for

the other three quantities. The bias in (0)
pt

occurs because

mf (m) = m2 = N̄2 + σ 2
N . If the number of correlated particle

pairs is proportional to m, then f (m) is constant and quantities
σ 2

pt ,dynamical and Fpt
are biased while �σ 2

pt :m and (0)
pt

are not.
If an analysis of data were focused on a specific dynamical

process which was known to produce a certain f (m), then
the set of possible correlation quantities could be ranked
with respect to optimal suppression of the above bias effect.

For practical analysis of data from relativistic heavy-ion
collisions, multiple dynamical processes contribute to the
nonstatistical fluctuations, and those processes are expected
to follow different functions of multiplicity, for example the
number of nucleon participants or the number of binary
nucleon-nucleon collisions [22]. Dynamical processes also
depend on the charge combination of particle pairs (e.g.,
in hadronization) and the location in (pt1,pt2) space (e.g.,
for soft versus semihard processes). Given this complexity
it is preferable to evaluate the bias caused by multiplicity-
dependent nonstatistical fluctuations, or correlations, by using
realistic estimates of those correlations on (pt1,pt2). This is
the approach followed here and discussed in detail in Secs. III
and IV.

H. Normalized covariance

In the preceding subsections the bin-wise number of
correlated particle pairs �Nkl was calculated. In terms of
particle densities �Nkl is proportional to C(pt1,pt2) in Eq. (4),
which can be expressed as

ρ̂(pt1,pt2) = ρ̂(pt1)ρ̂(pt2) + C(pt1,pt2)

= ρ̂(pt1)ρ̂(pt2)r(pt1,pt2)

= ρ̂(pt1)ρ̂(pt2){1 + [r(pt1,pt2) − 1]}, (74)

where the correlated pair density is given by

C(pt1,pt2) = ρ̂(pt1)ρ̂(pt2)[r(pt1,pt2) − 1]. (75)

Quantities C and �Nkl therefore include a trivial dependence
on multiplicity squared, which is easily removed by divid-
ing by ρ̂(pt1)ρ̂(pt2). Furthermore, tracking inefficiency and
detector acceptance effects cancel in this ratio if the product
ρ̂(pt1)ρ̂(pt2) is calculated using the same data which were
used for C(pt1,pt2).

In heavy-ion collisions, quantum interference between
identical particles in the final-state produces correlations
which scale with the number of identical-particle pairs [6].
The per-pair ratio C(pt1,pt2)/ρ̂(pt1)ρ̂(pt2) is approximately
constant with increasing centrality. All other processes which
are expected to produce correlations (see Sec. I) scale with
either the number of participating nucleons, the number of
binary nucleon + nucleon collisions, or the number of final-
state particles. A per final-state particle ratio [18] is therefore
more appropriate for studying the centrality dependence of
most correlation structures other than that caused by final-state
quantum interference.

In the statistics literature Pearson’s normalized covariance
[34], given by

(nk − n̄k)(nl − n̄l)√
σ 2

nk
σ 2

nl

= nknl − n̄kn̄l

σnk
σnl

≈ nknl − n̄kn̄l√
n̄kn̄l

, (76)

provides the necessary, per final-state particle correlation
measure using the geometric-mean particle number in the
denominator, where nk and nl are the event-wise number of
particles in bins k and l. In Eq. (76) overlines indicate event
averages within the event collection, and σ 2

nk
is the variance of

the event-wise, multiplicity frequency distribution in bin k. In
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the last step in Eq. (76) the bin-wise multiplicity frequency
distributions are assumed to be accurately represented by
Poisson distributions with means n̄k and n̄l . In order to cancel
efficiency and acceptance effects, applications of Eq. (76) [22]
take the form

nknl − n̄kn̄l√
n̄kn̄l

= √
n̄kn̄l

[
nknl − n̄kn̄l

n̄kn̄l

]
, (77)

where the ratio in square brackets is obtained from the data
and the leading square root, or prefactor (see Sec. II A),
is calculated from a model representation of the efficiency
corrected product of single-particle yields. For transverse
momentum correlations the prefactor

√
ρref is given by

√
ρref(pt1,pt2) =

[
d2Nch

dpt1dη1

d2Nch

dpt2dη2

]1/2

, (78)

where Nch includes all charged particles within the pt ,�η and
�φ acceptance.

Parton fragmentation into jets is of considerable interest in
analysis of heavy-ion collision data. It has been shown that
jet fragment distributions scale with transverse rapidity yt [4],
defined by

yt = ln[(pt + mt )/m0], (79)

where mt =
√
p2

t + m2
0, and arbitrary mass m0, which regulates

the singularity at pt = 0, is assumed equal to the pion mass
when nonidentified particles are used in the analysis, and
equals the true particle mass when the particle species is
identified. The single-particle distribution on yt is given by

d2Nch

dytdη
= dpt

dyt

d2Nch

dptdη
≈ mt

d2Nch

dptdη
, (80)

where pt = m0 sinh(yt ), and in the last step dpt/dyt = mt at
mid-rapidity (η = 0) is assumed. In the present application
2D transverse rapidity correlations will be calculated where
the final quantity, �ρ/

√
ρref , is given by

�ρ√
ρref

(yt,k,yt,l) =
[

d2Nch

dyt,kdη

d2Nch

dyt,ldη

]1/2
�Nkl

Nmix
kl

. (81)

Pair difference �Nkl for like-sign and unlike-sign particle
pairs for all the various methods derived here are given in the
preceding subsections. The mixed-event particle pair averages
Nmix

kl are given by the second factor on the right-hand sides
of Eqs. (22), (24), (27), (35), (36), (40), (41), (49), and
(52) for each mean-pt fluctuation quantity considered here.
Sibling-pair averages N sib

kl are given by the first factors on the
right-hand sides in the preceding list of equations.

The prefactor in Eqs. (78) and (81) applies when all
charged-particle pairs in the acceptance are used in the
correlations. The number of like-sign or unlike-sign pairs is
one-half of the total, assuming the numbers of positive and
negative charged particles are equal, which is approximately
true for relativistic heavy-ion collisions [1–3]. The appropriate
prefactor for these cases is

√
ρref/2.

In Sec. IV Monte Carlo simulations are described for
each mean-pt fluctuation quantity in which LS, US, charge-
independent (CI), and charge-dependent (CD) correlations,
plus alternate CI and CD forms are included. For each correla-
tion form, charged-particle pair combinations (a,b) = (++),
(−−), (+−), and (−+) are calculated and combined to give
the LS, US, CI, and CD combinations. Those combinations
and the corresponding prefactors are listed in the following
equations:

�ρ√
ρref

(LS) =
√

ρref

2
√

2

∑
ab=++,−−

[
�Nkl

Nmix
kl

]
ab

, (82)

�ρ√
ρref

(US) =
√

ρref

2
√

2

∑
ab=+−,−+

[
�Nkl

Nmix
kl

]
ab

, (83)

�ρ√
ρref

(CI) =
√

ρref

4

∑
a,b=±,±

[
�Nkl

Nmix
kl

]
ab

, (84)

�ρ√
ρref

(CI,alt) = √
ρref

∑
a,b=±,± �Nab

kl∑
a,b=±,± N

mix,ab
kl

, (85)

�ρ√
ρref

(CD) = √
ρref

(
N

sib,++
kl + N

sib,−−
kl

) − (
N

sib,+−
kl + N

sib,−+
kl

)
∑

a,b=±,± N
mix,ab
kl

(86)

�ρ√
ρref

(CD,alt) = √
ρref

(�N++
kl + �N−−

kl ) − (�N+−
kl + �N−+

kl )∑
a,b=±,± N

mix,ab
kl

, (87)

where summation indices a,b denote charged-particle pair combinations.
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III. SYSTEMATIC BIAS

In addition to the pair-counting statistical bias caused by
finite centrality bin widths, systematic variations in the shapes
of the single-particle distribution and the true correlation itself
within the range of the centrality bin lead to bias in the
correlation quantities. Systematic bias due to shape variation in
the single-particle distribution occurs because (1) mixed-event
particle pairs are selected from arbitrary pairs of events within
the centrality bin where each mixed-event particle pair may
sample two different parent distributions;3 (2) sibling pairs
from a single-event sample the same parent distribution,
while sibling pairs for other events may sample different
parent distributions; (3) “cross-terms” in the mixed-event
pairs, where different parent distributions are sampled, have
no corresponding terms in the sibling pairs, giving rise to
nonvanishing contributions in the absence of true correlations.

Systematic bias due to multiplicity-dependent shape varia-
tions in the true correlation is a matter of definition. Here, the
goal is to measure the true correlation at a fixed multiplicity
or centrality. The amount by which the measured correlation,
when averaged over the finite centrality bin width, differs from
the true correlation at the mid-point of the bin is considered a
bias. On the other hand, if the goal is to measure the average
correlation within the finite centrality bin then the bias, if any,
will depend on the averaging method. The effects of these
sources of systematic bias will be discussed in Sec. IV in
terms of Monte Carlo simulations.

In this section we illustrate the origin of systematic
bias by calculating systematic contributions to the �σ 2

pt :m
based correlation to leading order, where, for simplicity,
charge identification is ignored. The purpose of the analytical
treatment in this section is to provide an intuitive understanding
of the above two sources of systematic bias. From Eq. (22) the
sibling-pair number can be written as

N sib
kl,�σ 2 = 1

ε

ε∑
j=1

N̄

nj

nsib
j,kl =

∑
m

εm

ε

N̄

m

1

εm

εm∑
j=1

nsib
jm,kl

=
∑
m

εm

ε

N̄

m
n̄sib

m,kl =
∑
m

εm

ε

N̄

m
m(m − 1) ˆ̄nsib

m,kl,

(88)

where, as in Eq. (8), m is a multiplicity within the finite bin,
N̄ is the mean multiplicity, εm is the number of events having
multiplicity m, n̄sib

m,kl is the average sibling-pair histogram for
all εm events, and ˆ̄nsib

m,kl is the unit-normalized distribution on yt

bins (k,l) where
∑

k,l
ˆ̄nsib
m,kl = 1. The sibling-pair distribution

consists of an uncorrelated (factorized) part plus a nonfac-
torized correlation, which is written for the unit-normalized
distributions as

ˆ̄nsib
m,kl = ˆ̄nmk ˆ̄nml + Cm,kl, (89)

3A parent distribution is the infinite statistics limit of a measured
distribution which in this analysis is approximated by a mathematical
function. Finite statistics random samples of the parent distribution
produce fluctuating event-wise distributions.

where ˆ̄nmk is the average, unit-normalized single-particle
distribution on yt bin k for events having multiplicity m, where∑

k
ˆ̄nmk = 1. True correlation quantity Cm,kl is defined such

that
∑

kl Cm,kl = 0.
We consider the possibility that the shapes of both the

single-particle distribution and the true correlation vary with
multiplicity m, and therefore express these quantities as

ˆ̄nmk = ˆ̄n(0)
k + δ ˆ̄nmk, (90)

Cm,kl = C
(0)
kl + δCm,kl (91)

where ˆ̄n(0)
k is the single-particle distribution at the mid-point

of the bin and C
(0)
kl is the true correlation at a fixed multiplicity

which is the primary object to be measured. Substituting
Eqs. (89)–(91) into Eq. (88) yields

N sib
kl,�σ 2 = N̄ (N̄ − 1)

[
ˆ̄n(0)
k

ˆ̄n(0)
l + C

(0)
kl

] + N̄
∑
m

εm

ε
(m − 1)

×[
ˆ̄n(0)
k δ ˆ̄nml + ˆ̄n(0)

l δ ˆ̄nmk + δ ˆ̄nmkδ ˆ̄nml + δCm,kl

]
.

(92)

Similarly the mixed-event pair distribution from Eq. (22) is
expressed as

Nmix
kl,�σ 2 = N̄ (N̄ − 1) ˆ̄n(0)

k
ˆ̄n(0)
l

+ (N̄ − 1)
∑
m

εm

ε
m

(
ˆ̄n(0)
k δ ˆ̄nml + ˆ̄n(0)

l δ ˆ̄nmk

)

+ N̄ − 1

N̄

(∑
m

εm

ε
mδ ˆ̄nmk

)(∑
m′

εm′

ε
m′δ ˆ̄nm′l

)
.

(93)

The correlated pair-difference is given by

�Nkl,�σ 2 = N̄ (N̄ − 1)C(0)
kl

+
∑
m

εm

ε
(m − N̄ )

(
ˆ̄n(0)
k δ ˆ̄nml + ˆ̄n(0)

l δ ˆ̄nmk

)

+
∑
m

εm

ε
N̄ (m − 1)(δ ˆ̄nmkδ ˆ̄nml + δCm,kl)

− N̄ − 1

N̄

(∑
m

εm

ε
mδ ˆ̄nmk

)(∑
m′

εm′

ε
m′δ ˆ̄nm′l

)
.

(94)

Leading-order estimates of the bias contributions in Eq. (94)
are calculated as follows. We define δm ≡ m − N̄ as in
Eq. (8) and expand the change in shape of the single-particle
distribution as

δ ˆ̄nmk ≈ ∂ ˆ̄nmk

∂m

∣∣∣∣
m=N̄

δm + · · · ≡ fkδm + · · · , (95)

and the change in shape of the true correlations as

δCm,kl = ∂Cm,kl

∂m

∣∣∣∣
m=N̄

δm + · · · ≡ gklδm + · · · . (96)

The first-order expansion for the correlated pair-difference is
derived by substituting the leading terms in Eqs. (95) and (96)
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into Eq. (94), replacing m with (N̄ + δm), and retaining terms
only through order (δm)2. The final result is given by

�Nkl,�σ 2 ≈ N̄ (N̄ − 1)C(0)
kl + (

fl ˆ̄n(0)
k + fk ˆ̄n(0)

l

)
σ 2

N

+ N̄ (N̄ − 1)fkflσ
2
N

(
1 − σ 2

N/N̄2
) + N̄gklσ

2
N,

(97)

where σ 2
N = ∑

m(εm/ε)(δm)2 is the variance of the finite width
multiplicity bin. In the limit of zero multiplicity bin width
quantity �Nkl,�σ 2 is proportional to the true correlation at
a specific multiplicity. However, in general, Eq. (97) shows
that linear variations alone in the single-particle distribution
and/or correlation shapes are sufficient to produce systematic
bias. This bias occurs for the LS and US forms for all
correlation quantities in Sec. II. In the next section Monte
Carlo simulations are used to study a variety of realistic
systematic variations in the shapes of the input distributions.
These variations are general and are not limited to the linear
terms assumed in this section.

IV. MONTE CARLO SIMULATIONS

Simulations were done for the correlation quantities derived
in Sec. II using realistic multiplicity frequency distributions,
centrality-bin widths, charged-particle pt spectra, and trans-
verse momentum correlations in order to estimate realistic
levels of statistical and systematic biases. The simulated col-
lision system is minimum-bias (unrestricted, random nucleus
+ nucleus impact parameters) Au+Au collisions at

√
sNN =

200 GeV per colliding nucleon + nucleon pair. Collisions were
selected for peripheral, mid-central, and more-central nuclear
overlap corresponding to total reaction cross section ranges
[22] 84–93%, 55–64%, and 9–18%, respectively, where, for
example, the 5% most-central (head-on) collisions account
for the 0–5% range of the multiplicity frequency distribution.
Charged-particle production for pt > 0.15 GeV/c, |η| � 1,
and full 2π range in azimuth was assumed corresponding to
the acceptance of the STAR TPC [20]. Monte Carlo Glauber
model [38] estimates of the number of nucleon participants
(Npart) were taken from Ref. [22].

The minimum-bias multiplicity frequency distribution for
relativistic heavy-ion collisions is accurately approximated by
the power-law function [38]

dNevents

dNch
∝ N

−3/4
ch (98)

except near the lower and upper multiplicity endpoints where
the measured distribution falls off rapidly. For the selected
centralities the multiplicity ranges are [2,14], [66,117], and
[644,910] with mean multiplicities N̄ch = 6.6, 89.7 and
771, respectively [39]. Measurements [40] of the frequency
distribution on charge difference n� ≡ n+ − n− for positive
(n+) and negative (n−) charged-particle multiplicities (Nch =
n+ + n−) for all centralities indicate an approximate Gaussian
dependence, exp[−(n� − n̄�)2/2σ 2

n�
], where the mean (n̄�)

and width (σn�
) increase monotonically with centrality. Within

each centrality bin this dependence can be approximated with

TABLE I. Centrality bins, multiplicity ranges, and multiplicity-
dependent single-particle distribution parameters for the Monte Carlo
simulations discussed in the text.

Parameter Centrality

84–93% 55–64% 9–18%

[Nch,min,Nch,max] [2,14] [66,117] [644,910]
N̄ch 6.6 89.7 771
n̄0

� 0.27 1.56 6.48
δn̄� 0.058 0.015 0.0038
σ 0

n�
1.20 6.83 21.5

δσn�
0.26 0.035 0.010

T0 (GeV) 0.1540 0.1828 0.2184
T1 (GeV) 0.00075 0.000174 0.0000224
q0 10.425 11.858 16.120
q1 0.033 0.0124 0.00393

linear functions given by

n̄�(Nch) = n̄0
� + δn̄�(Nch − N̄ch), (99)

σn�
(Nch) = σ 0

n�
+ δσn�

(Nch − N̄ch), (100)

where the centrality trends of the data are well described with
the parameters listed in Table I. The above power-law and
Gaussian distributions were sampled to obtain the event-wise
number of positive and negative charged particles within the
acceptance.

Nonidentified charged-particle pt spectra,
d2Nch/2πptdptdη, were reported by the STAR [1] and
PHENIX [2] Collaborations for Au+Au minimum-bias
collisions at 200 GeV. These data can be accurately described
in the range 0.15 � pt � 4 GeV/c by a Levy distribution
[16,41] given by

d2Nch

2πptdptdη
= A

[1 + β(mt − m0)/q]q
, (101)

where A, β ≡ 1/T , and q are fitting parameters, mt =√
p2

t + m2
0, and m0 is assumed to be the pion mass. Inverse

exponent q−1 can be interpreted as the relative variance
σ 2

β /β̄2 of an event-wise fluctuating slope parameter β of
a pt distribution exp (−βmt ) [16]. Fit parameters for the
STAR and PHENIX spectra data were interpolated to the
centralities defined in Ref. [22] which were used here.
The pt -integrated yields were then normalized to the efficiency
corrected dNch/dη for each centrality given in Ref. [22]. The
parameters are listed in Table II. The pt distribution can be
expressed as a yt distribution using dpt/dyt ≈ mt near η = 0
where

d2Nch

dytdη
= 2πpt

dpt

dyt

d2Nch

2πptdptdη
. (102)

The resulting parent distributions were sampled n± times to
determine the transverse rapidities for the particles in each
simulated event.

Systematic bias due to variations in the shape of the
single-particle pt spectrum was simulated by allowing pa-
rameters T and q in Eq. (101) to vary within each centrality
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TABLE II. Efficiency corrected multiplicity and estimated number of participant nucleons [22], single-particle pt Levy distribution
parameters, and 2D Levy distribution parameters for eleven centrality bins for the Monte Carlo simulations discussed in the text.

Centrality (%) dNch
dη

Npart A (GeV/c)−2 T (GeV) q �(1/q)LS
� �(1/q)LS

� �(1/q)US
� �(1/q)US

�

84–93 5.2 4.6 14.70 0.1540 10.425 0.0058 −0.0218 0.00120 −0.0236
74–84 13.9 10.5 35.65 0.1647 10.822 0.0042 −0.0143 0.00129 −0.0165
64–74 28.8 20.5 68.33 0.1740 11.290 0.0024 −0.0087 0.00115 −0.0100
55–64 52.8 36.0 117.0 0.1828 11.858 0.0016 −0.0060 0.00096 −0.0068
46–55 89 58.1 185.3 0.1914 12.560 0.0009 −0.0047 0.00091 −0.0048
38–46 139 86.4 275.1 0.1989 13.321 0.0009 −0.0035 0.00062 −0.0037
28–38 209 124.6 395.5 0.2059 14.173 0.0007 −0.0028 0.00059 −0.0028
18–28 307 176.8 558.4 0.2124 15.117 0.0006 −0.0022 0.00048 −0.0019
9–18 440 244.4 772.6 0.2184 16.120 0.0005 −0.0015 0.00040 −0.0018
5–9 564 304.1 968.0 0.2224 16.872 0.0004 −0.0013 0.00035 −0.0014
0–5 671 350.3 1129.7 0.2258 17.547 0.0004 −0.0012 0.00032 −0.0013

bin. A linear dependence of T and q with respect to Nch

within each centrality bin was assumed based on the trends
in Table II. Systematic variations, if any, in the separate
shapes of the positive and negative charged-particle pt dis-
tributions with respect to charge difference, n�, have not
been reported. Possible linear (antisymmetric on n�) and
quadratic (symmetric) dependences were therefore assumed
in this study. Within each centrality bin T and q for
positive and negative charged particles were described by the
functions

T ±(Nch,n�) = T0 + T1(Nch − N̄ch) + T ±
2 n� + T ±

3 n2
�/σn�

,

(103)

q±(Nch,n�) = q0 + q1(Nch − N̄ch) + q±
2 n� + q±

3 n2
�/σn�

,

(104)

where four of the parameter values are listed in Table I.
Parameters T0, T1, q0, and q1, determined by fitting the
centrality-dependent trends in Table II, were assumed to be
the same for positive and negative charged particles. In lieu
of further measurements, parameters |T ±

2 | and |T ±
3 | were

assumed equal to the magnitude of T1, i.e., the same variation
with particle number. Similarly, |q±

2 | and |q±
3 | were set equal

to the magnitude of q1. Linear and quadratic variations with
n� were studied separately and the relative algebraic signs
for positive and negative charged-particle shape variations
were alternated where it was assumed that T +

2,3 = ±T −
2,3 = T1

and q+
2,3 = ±q−

2,3 = ±q1. The systematic bias effects resulting
from the assumed dependence on charge difference should
be taken as an estimate of possible systematic bias, pending
future measurements of charge-identified pt distributions with
respect to n�.

Preliminary �ρ/
√

ρref transverse rapidity correlations for
200 GeV Au+Au collisions were reported by Oldag [24,42]
as a function of centrality. Although these correlations are
preliminary and precede the present work they provide a
reasonable estimate of the expected magnitudes and centrality
dependence of the correlations and can be used to study
systematic bias. Parametrizations of these data were used to
construct sibling pair weights for the Monte Carlo simulations
where the Nch dependence was calculated by interpolating each

parameter to the selected value of Nch. Simulated correlations
computed by averaging over finite centrality bin widths will
be compared to the input correlation at the centrality-bin
mid-point determined by N̄ch.

The correlation data in Refs. [24,42] were defined as

�ρ√
ρref

= SNmix
kl√

N soft
kl

[
N̂ sib

kl − N̂mix
kl

N̂mix
kl

]
, (105)

where S is the prefactor scaling coefficient described below
and “hat” symbols denote unit-normalized distributions as
defined previously. In Eq. (105) the ratio in square brackets is
equivalent to the total pair-number normalization discussed in
Sec. II A. Mixed-event and soft-particle pair distributions are
given by

Nmix
kl = d2Nch

dyt,kdη

d2Nch

dyt,ldη
, (106)

N soft
kl = d2Nch,soft

dyt,kdη

d2Nch,soft

dyt,ldη
, (107)

using Eqs. (101) and (102). The soft-particle production
spectrum, defined as that part of the single-particle pt spectrum
which scales with Npart, can be estimated from the Nch → 0
limit of the shape of the pt spectrum as explained in Ref. [43].
Solving Eq. (105) for the sibling-pair distribution gives

N̂ sib
kl = N̂mix

kl

⎧⎨
⎩1 +

√
N soft

kl

SNmix
kl

[
�ρ√
ρref

]
model

⎫⎬
⎭, (108)

where [�ρ/
√

ρref]model is the model function used to fit the
preliminary correlation data in Refs. [24,42]. That model uses
a 2D Levy distribution [16] given by

N sib
kl,2DLevy = (2π )2pt,kpt,lmt,kmt,l

(
1 + βmt,�

2q�

)−2q�

×
[

1 −
(

βmt,�

2q� + βmt,�

)2]−q�

, (109)
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where mt,� = mt,k + mt,l − 2m0, mt,� = mt,k − mt,l , and in-
verse exponents are given by

�(1/q)� = 1

q�

− 1

q
, (110)

�(1/q)� = 1

q�

− 1

q
. (111)

Differences �(1/q)�,� were shown in Ref. [16] to represent
the covariance of the 2D, event-wise distribution of slope
parameters (β1,β2) for arbitrary particles 1 and 2. Numerical
values which fit the preliminary LS and US correlation data in
Eq. (105) for away-side particle pairs (relative azimuth > π/2)
are listed in Table II. For these cases the prefactor scaling
coefficient is 1/

√
4 = 1/2. Sibling-pair weights computed

using Eqs. (108) and (109) are obtained from

N sib
kl = Nmix

kl

[
1 + (

N̂ sib
kl,2DLevy − N̂mix

kl

)/
N̂mix

kl

]
, (112)

where the weight factor in square brackets is of order unity.
Equation (112) was calculated for LS and US pairs. Parameters
β, q, q� , and q� in Eqs. (101) and (109) for arbitrary Nch were
interpolated from the values in Table II.

Monte Carlo simulations were carried out for each selected
centrality using the following steps: (1) The power-law and
Gaussian frequency distributions were sampled to obtain n+,
n−, and Nch = n+ + n− for each event. (2) The single-particle
yt parent distributions were computed using Eqs. (101)–(104)
for event-wise values of Nch and n� and were then sampled
n± times for positive/negative charged-particle multiplicities,
where parameter A in Eq. (101) was normalized to the
event-wise number of particles. (3) Correlation pair weights
were calculated from Eqs. (106), (109), and (112) using
interpolated values at variable Nch or at fixed N̄ch for each
sibling pair. (4) Sibling pair and mixed-event pair histograms
were accumulated for (++), (−−), (+−), and (−+) charged-
particle pairs and for each correlation definition in Sec. II.
(5) Event averages were constructed for LS, US, CI, CD,
CI-alternate, and CD-alternate for correlation definitions based
on �σ 2

pt :m and its alternate form (Sec. II B), (0)
pt

(Sec. II C),
σ 2

pt ,dynamical (Sec. II D), and Fpt
(Sec. II E). (6) Prefactors

(Sec. II H) were then calculated and applied. The resulting
correlations for finite centrality bin widths were compared
with that expected in the absence of bias as discussed in the
next section.

V. RESULTS

For the correlation quantities in Sec. II eleven types of
simulation calculations were done for the peripheral, mid-
central and more-central bins using 106, 106, and 0.5 × 106

collision events in each run, respectively. The event sample
sizes were sufficient to ensure that statistical and/or sys-
tematic bias effects large enough to compromise correlation
measurements are clearly visible in the simulations. Typical
statistical errors in the simulated �ρ/

√
ρref are of order

±0.01, ±0.01, and ±0.015 for the peripheral, mid-central and
more-central collisions, respectively. These errors are about
one-tenth of the expected correlation magnitudes [24,42]. The
eleven simulation runs progressively included additional bias

TABLE III. Monte Carlo model parameter settings for the eleven
types of simulation runs in this paper. The entry �Nch > 0 means
that the finite bin widths in Table I were used. For n�, the notation
“vary” means that non-zero values of parameters n̄0

�, δn̄�, σ 0
n�

and
δσn�

in Table I were used. T1 and q1 �= 0 refer to the values in Table I.
Labels “same,” “diff,” and “mix” mean that T +

2 = T −
2 = T1 and q+

2 =
q−

2 = q1, T +
2 = −T −

2 = T1 and q+
2 = −q−

2 = q1, and T +
2 = −T −

2 =
T1 while q+

2 = −q−
2 = −q1, respectively. Similar values apply when

T ±
3 and q±

3 are nonzero. Correlation weights are “fixed” when they
are calculated for Nch = N̄ch and are “varied” when calculated as a
function of Nch.

Simulation �Nch n� T1,q1 T ±
2 ,q±

2 T ±
3 ,q±

3 Correlation
run type pair weights

1 0 0 0,0 0,0 0,0 1.0
2 >0 vary 0,0 0,0 0,0 1.0
3 >0 vary �=0 0,0 0,0 1.0
4 >0 vary �=0 same 0,0 1.0
5 >0 vary �=0 diff 0,0 1.0
6 >0 vary �=0 mix 0,0 1.0
7 >0 vary �=0 0,0 same 1.0
8 >0 vary �=0 0,0 diff 1.0
9 >0 vary �=0 0,0 mix 1.0
10 >0 vary 0,0 0,0 0,0 �=1, fixed
11 >0 vary 0,0 0,0 0,0 �=1, varied

producing effects. The first assumed fixed Nch with n� = 0 and
no correlation weights. Subsequent calculations included finite
multiplicity bin widths and nonzero n�. Then Nch-dependent
single-particle pt spectrum shapes were added, followed by
n�-dependent pt spectrum shapes for positive and negative
charged particles. Finally, Nch-dependent correlation shape
variation was included. Explicit parameter settings for the
eleven types of calculations are explained in Table III.

Simulated correlations �ρ/
√

ρref(yt1,yt2) for each central-
ity and for like-sign and unlike-sign charged-particle pairs are
shown in Fig. 1 corresponding to simulation run type 10 in
Table III and assuming the �σ 2

pt :m based correlation. Single-
particle spectrum shapes and 2D Levy parameters were fixed at
their respective N̄ch values in each centrality bin. The essential
features of the correlations include (1) an overall increase
in the amplitude with increasingly more-central collisions,
(2) the evolution of the shape of the unlike-sign correlations
along the diagonal yt1 ≈ yt2 bins, and (3) the prominent
peak at (yt1,yt2) ≈ (3,3). The magnitudes of the bias ef-
fects discussed below may be compared to these estimated
correlations.

In Fig. 2 simulations for the mid-central bin assuming the
event-averaged correlation form in Eq. (11) are shown for LS
and US pairs in upper panels (a) and (b) for fixed multiplicity
N̄ch and no input correlation (simulation run type 1). The
results are statistically consistent with zero, indicating no
bias. In the lower panels LS and US results for finite
multiplicity bin width and no input correlations (simulation
run type 2) are shown where large structure appears, indicating
strong statistical bias. In the absence of correlation weights
[weight factor in Eq. (112) equals unity], quantity �ρ/

√
ρref

should ideally be statistically consistent with zero. Statistically
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FIG. 1. Simulated correlations �ρ/
√

ρref (yt1,yt2) for Au+Au
collisions at 200 GeV for LS pairs [panels (a), (c), (e)] and US
pairs [panels (b), (d), (f)] corresponding to peripheral [panels (a),
(b)], mid-central [panels (c), (d)] and more-central [panels (e), (f)]
collisions. For these calculations finite centrality bin widths and the
correlations from Refs. [24,42] were assumed as explained in the text.

significant nonzero correlations resulting from simulation run
types 2–9 in Table III indicate the presence of bias. Figure 2
shows that the simple, event-averaged correlation induces
large, statistical bias for both LS and US pairs for finite width
multiplicity bins, as shown in Eq. (11). Applications of this
event-averaged correlation require the variance of the selected
event-wise multiplicity fluctuations to be much less than N̄2.

Statistical biases due to pair counting in finite-width
multiplicity bins (simulation run type 2) for correlations
derived from fluctuation quantities �σ 2

pt :m and its alternate
charge-identified form in Eq. (27), (0)

pt
, σ 2

pt ,dynamical, and Fpt

were studied for LS and US charged-particle pairs and for
the three centrality bins. Results for �σ 2

pt :m, (0)
pt

, and Fpt

were statistically consistent with zero (unbiased) as shown
for the �σ 2

pt :m results in the upper row of panels in Fig. 3.
Results for the alternate, charge-identified form in Eq. (27) are
strongly biased (i.e., bias effects are larger than the expected
correlations) as shown in the middle row of panels in this
figure. Only the charge-nonidentified results (not shown) from
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FIG. 2. Statistical bias effects for event-averaged correlation
�ρ/

√
ρref (yt1,yt2) for 200 GeV mid-central Au+Au collisions.

Results assuming fixed Nch and finite multiplicity bin widths with
no input correlations are shown in panels (a), (b) and panels (c), (d),
respectively. Results for LS pairs and US pairs are shown in panels
(a), (c) and panels (b), (d), respectively.

Eq. (21) are statistically unbiased. The explicit treatment of
unlike-sign charged-particle pairs as in Eq. (24) is essential
for eliminating statistical bias. Results for the quantity based
on σ 2

pt ,dynamical (lower row of panels in Fig. 3) are highly biased
for the peripheral, LS correlations but are statistically unbiased
for the other cases. The large bias effect can be avoided by
restricting Nch > 2, based on calculations with Nch ∈ [3,14]
(not shown). Additional simulations with Nch ∈ [1,14] (also
not shown) indicate that large statistical bias appears in the LS
correlations obtained from �σ 2

pt :m and Fpt
, requiring Nch > 1

for these quantities. For high multiplicity events and/or large
angular-bin size (scale) these restrictions are of little practical
importance. However, for scale-dependent analysis [10,11] in
which the average angular-bin occupancy may be small (∼2),
the Nch > 1 or 2 restrictions would distort the event sample
used to compute the correlations. Results based on (0)

pt
are

statistically unbiased for bin-wise occupancies with Nch � 1.
The (0)

pt
quantity was used in the scale-dependent, mean-pt

fluctuation analysis of STAR data in Refs. [10,11].
In Eqs. (86) and (87) two forms for the charge-dependent

(CD = LS − US) correlation are given. The results for mid-
central collisions with finite multiplicity bin width (simulation
run type 2, no input correlation) are shown in Fig. 4. The
nominal [Eq. (86)] and alternate [Eq. (87)] CD results are
shown in the left and right columns of panels, respectively.
Bias effects for the correlation forms derived from fluctuation
quantities �σ 2

pt :m, (0)
pt

, σ 2
pt ,dynamical, and Fpt

are shown in
descending order from upper to lower rows, respectively. For
the nominal CD results large bias occurs for the �σ 2

pt :m and
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FIG. 3. Statistical bias effects in �ρ/
√

ρref (yt1,yt2) for 200 GeV Au+Au collisions due to finite multiplicity bin widths corresponding
to simulation run type 2 in Table III. No input correlations were used. LS pairs in peripheral collisions [panels (a), (e), (i)], US peripheral
[panels (b), (f), (j)], LS mid-central [panels (c), (g), (k)], and US mid-central [panels (d), (h), (l)] are shown in the columns of panels from left
to right, respectively. Simulation results based on �σ 2

pt :m, its alternate form in Eq. (27), and σ 2
pt ,dynamical are shown in successive rows of panels

from upper to lower.

(0)
pt

forms. A small degree of bias is present at lower yt for
the σ 2

pt ,dynamical form. The Fpt
results are consistent with zero

(unbiased). For each quantity the alternate CD results shown
here are unbiased. Note that any difference in the biases for
LS and US pairs will contribute directly to both the nominal
and alternate CD correlations. The point of Fig. 4 is to show
that the LS − US difference computed using the sibling minus
mixed differences given in Eq. (87) minimizes the bias and is
therefore the recommended form to use for charge-dependent
(LS − US) correlations.

No significant differences were found between the simu-
lated correlation results for the nominal and alternate charge-
independent (CI = LS + US) correlations in Eqs. (84) and
(85), respectively. Similar results for these two forms were
produced for the respective correlation methods discussed in
Sec. II as all of the statistical and systematic bias sources
were successively added to the simulations. The mathematical
differences between the two CI correlation forms are contained
in the charge-identified weights, given by 1/4 for the nominal
CI and N

mix,ab
kl /

∑
a′,b′=±± N

mix,a′b′
kl for the alternate CI. When

the positive and negative charged-particle pt distributions
differ in shape, the alternate CI weight factors vary with

(yt1,yt2). The effects of these variations are insignificant in
the present examples.

Systematic bias due to Nch dependence of the single-particle
pt spectrum shape is shown in Fig. 5 for LS and US charged-
particle pairs for peripheral and mid-central collisions. The
panels show differences for simulation run type 3 for �ρ/

√
ρref

minus that for run type 2 (no input correlations). Systematic
bias effects for �ρ/

√
ρref(yt1,yt2) derived from �σ 2

pt :m, (0)
pt

,
σ 2

pt ,dynamical, and Fpt
are shown in successive rows of panels

from the upper-most row to the bottom row, respectively.
Modest bias effects (increases) are seen at lower yt in all cases
for the mid-central collisions. Larger bias is seen for LS pairs
in peripheral collisions for the �σ 2

pt :m and σ 2
pt ,dynamical based

forms. A larger systematic bias appears in LS pair, peripheral
collisions for the Fpt

based correlation. This bias is as large
as the expected correlation signal (see Fig. 1). No significant
systematic bias effects were found for US pairs in peripheral
collisions.

Systematic bias effects due to assumed variations in the pt

distribution shapes for positive and negative charged particles
as a function of n� = n+ − n− were estimated using the
different sets of model parameters described in Sec. IV. The
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FIG. 4. Statistical bias effects for the charge-dependent
(CD = LS − US) �ρ/

√
ρref (yt1,yt2) quantity for mid-central, 200

GeV Au+Au collisions including finite multiplicity bin width only
with no input correlations. Nominal and alternate CD forms were
used for the results shown in the left-hand panels [(a), (c), (e), (g)]
and right-hand panels [(b), (d), (f), (h)], respectively. Possible bias
effects are shown for correlation quantities derived from �σ 2

pt :m, (0)
pt

,
σ 2

pt ,dynamical, and Fpt in successive rows of panels from upper to lower.

largest estimated bias effects resulted from assuming nonzero
values for either parameters T ±

2 and q±
2 , or T ±

3 and q±
3 , in

the “mix” configuration corresponding to simulation run types
6 or 9 in Table III. Results for nonzero T ±

2 and q±
2 (“mix”),

where �ρ/
√

ρref for run type 3 was subtracted from that for
run type 6, are shown in Fig. 6. The columns of panels show
results for LS and US charged-particle pairs for peripheral and
mid-central collisions as in Fig. 3. Bias results for correlations
derived from �σ 2

pt :m, (0)
pt

, and σ 2
pt ,dynamical are similar, with

small bias effects at lower yt as shown for �σ 2
pt :m in the upper

TABLE IV. Range of applicability of LS and US charged particle
pair correlations based on four mean-pt fluctuation quantities in
terms of the allowed range of multiplicity (Nch = n+ + n−) within
an arbitrary, angular bin.

Fluctuation LS US
quantity

�σ 2
pt :m Nch > 1 Nch � 1

(0)
pt

Nch � 1 Nch � 1

σ 2
pt ,dynamical Nch > 2 Nch � 1

Fpt Nch > 1 Nch � 1

row of panels. Bias effects for the correlation quantity based on
Fpt

(lower row of panels) are similar except for LS peripheral
which are larger.

In Fig. 7 the systematic bias due to Nch dependence in
the assumed correlation shape [see the pair weight factor in
Eq. (112)] relative to the correlation at the mid-point of the
multiplicity bin at N̄ch, is shown for LS and US charged-
particle pairs for peripheral and mid-central collisions. Specif-
ically, the results shown correspond to �ρ/

√
ρref computed in

simulation run type 10 subtracted from that for run type 11 (see
Table III). The bias effects vary in shape and overall amplitude
for LS versus US charged-particle pairs, for peripheral versus
mid-central collisions, and for each correlation measure. In
general, these systematic bias effects are negligible relative to
the expected correlation magnitudes.

Finally, systematic bias effects for the more-central colli-
sions listed in Tables I and II were found to be approximately
twice as large as those shown here for mid-centrality. In
realistic correlation analyses [22,24,39] broad multiplicity bin-
widths such as the more-central bin considered here with Nch ∈
[644,910] must be sub-divided in order that event mixing for
the reference pair densities does not produce artifacts in the
correlation structure. Typically, the maximum allowed range
for Nch is 50 which would reduce systematic bias effects to
levels no greater than those shown in Figs. 5–7. Statistical
biases for the more-central collisions for correlations derived
from �σ 2

pt :m, (0)
pt

, σ 2
pt ,dynamical, and Fpt

are negligible, even for
the full bin width.

The ranges of applicability of four of the LS and
US correlation quantities derived here are summarized in
Table IV. Multiplicity, Nch = n+ + n−, refers to the event-
wise, charged-particle occupancy in arbitrary (η,φ) bins. For
the present analysis the (η,φ) bin size was assumed to be equal
to the full acceptance of the STAR TPC tracking detector.
Requiring Nch > 1 (quantities �σ 2

pt :m and Fpt
for LS) or

Nch > 2 (quantity σ 2
pt ,dynamical for LS) only affects the most-

peripheral collision centrality bin in these cases. In general,
however, the (η,φ) bin size can be less than the acceptance
as explained in Refs. [10,11]. The (η,φ) bin-wise multiplicity
requirement, Nch > 1 or 2, for these three correlation quantities
could affect more central collisions and, depending on the
collision system and energy and the angular bin scale, could
cause the correlation analyses for these three quantities for
LS particle pairs to be unreliable for much of the centrality
range. Correlations derived from (0)

pt
do not suffer from
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FIG. 5. Systematic bias effects for 200 GeV Au+Au collisions due to the Nch-dependent shape of the single-particle pt distribution
as discussed in the text. LS and US pair correlations for peripheral and mid-central collisions are shown in the columns of panels as in
Fig. 3. Results are shown for correlations derived from �σ 2

pt :m [panels (a)–(d)], (0)
pt

[panels (e)–(h)], σ 2
pt ,dynamical [panels (i)–(l)], and Fpt

[panels (m)–(p)].

the above restrictions on Nch. Statistical bias in the simple,
event-averaging correlation (Sec. II A) and in the recent NA49
fluctuation quantity (Sec. II F) can only be eliminated by
restricting the event acceptance to nearly zero multiplicity
width such that σ 2

N is negligible. Systematic biases of the types
discussed here can be reduced by restricting the centrality
range of the events.

VI. SUMMARY AND CONCLUSIONS

Two-particle correlations on transverse momentum
(pt1,pt2), or transverse rapidity (yt1,yt2), contain additional,
independent information beyond that accessible with angular
correlation measurements. These correlations therefore play
an important role in efforts to understand the dynamics
involved in relativistic heavy-ion collisions. It is essential that
transverse momentum correlation measurements, which can
be vulnerable to bias effects in the form of distorted shapes

and structures, are as free of statistical and systematic biases
as possible.

Several correlation quantities were studied, most of which
were derived from nonstatistical mean-pt fluctuation measure-
ment quantities in the literature. Bias effects were studied both
analytically and numerically via Monte Carlo simulations for
Au+Au collisions at

√
sNN = 200 GeV. For the simulations,

event multiplicity distributions, pt -spectrum parameters, and
estimated correlation distributions were taken from measure-
ments reported in the literature.

The simple correlation definition based on pair-number
normalization, Eq. (2), includes unknown distortions while
that based on event-averaging, Eq. (11), includes large sta-
tistical bias when event collections are used which have
a finite range of multiplicities. Five distinctly different
correlation quantities were then studied which were de-
rived from mean-pt fluctuation quantities �σ 2

pt :m, (0)
pt

,
σ 2

pt ,dynamical, Fpt
, and �[PT ,N ], �[PT ,N ] in order to
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FIG. 6. Systematic bias effects for 200 GeV Au+Au collisions due to possible n� dependence in the positive and negative single-particle
pt distributions as discussed in the text. LS and US pair correlations for peripheral and mid-central collisions are shown in the columns of
panels as in Fig. 3. Results are shown for correlations derived from �σ 2

pt :m [panels (a)–(d)] and Fpt [panels (e)–(h)].

ascertain the statistical and systematic biases associated with
each.

A simplified charge-identified correlation form based on the
charge-nonidentified �σ 2

pt :m fluctuation quantity was found
to have large statistical bias which exceeded the expected
magnitude of the correlation signal. A charge-identified
correlation form derived from an explicit charge-identified
�σ 2

pt :m definition did not contain significant statistical bias.
Explicit charge identification was therefore included in all of
the other mean-pt fluctuation quantities considered here.

Statistical bias for like-sign pairs can be problematic (bias
effects as large or larger than the expected correlations) for the
�σ 2

pt :m, σ 2
pt ,dynamical, and Fpt

based correlations for peripheral
collisions or for scale-dependent analyses at any centrality
where the event-wise bin occupancies can be as low as 1,
2, and 1, respectively. Statistical bias is not an issue for the
like-sign and unlike-sign charged-pair correlations based on
(0)

pt
; the same is true for unlike-sign correlations for the above

three correlation quantities. The applicable ranges in (η,φ)
bin-wise multiplicities for the LS and US correlations derived
from mean-pt fluctuation quantities �σ 2

pt :m, (0)
pt

, σ 2
pt ,dynamical,

and Fpt
are listed in Table IV. Statistical bias in the correlations

derived from �[PT ,N ] and �[PT ,N ] can only be controlled
by severely limiting the bin-wise multiplicity range such that
σ 2

N is negligible.
Systematic bias due to multiplicity, or centrality, depen-

dence in the single-particle pt spectrum shape is more evident
at lower (yt1,yt2) and, in the present simulations, is largest
for the like-sign, peripheral collision correlations based on
quantity Fpt

. Systematic bias caused by the overall multiplicity
dependence of the correlation shape varies with correlation
model, charge pair combination, location in (yt1,yt2), and
centrality. For each case studied here this bias is one-tenth

or less of the expected correlation magnitudes. Systematic
bias magnitudes are proportional to centrality bin width and
therefore can be reduced by limiting the accepted centrality
range in the data analysis. Reducing the centrality bin width
for statistically unbiased quantities until stable correlations
are achieved is a straightforward way to minimize this type of
systematic bias.

Charge-dependent (CD = LS − US) correlations were also
studied for each correlation quantity. The like-sign minus
unlike-sign sibling pair difference form in Eq. (86) produces
spurious results in most cases. The correlated-pair difference
form in Eq. (87), [(�N++

kl + �N−−
kl ) − (�N+−

kl + �N−+
kl )],

does not produce any additional bias beyond that already
present in the LS and US charged-particle pair correlations.

In conclusion, two-particle correlations on transverse mo-
mentum derived from mean-pt fluctuation quantities �σ 2

pt :m,
(0)

pt
, σ 2

pt ,dynamical, and Fpt
reproduce intrinsic correlation

structure at the mid-point of the centrality bin with reasonable
fidelity, if the event-wise range of multiplicities (Nch) in
the (η,φ) angular bin are appropriately restricted as in
Table IV, and if the collision centrality bin width is sufficiently
narrow. Multiplicity restrictions are an issue for low event
multiplicities and for (yt1,yt2) correlation analysis at any
collision centrality when mean-pt fluctuations are measured in
small (η,φ) bins. For applications to other collision systems,
energies, detector acceptances, or angular bin scales than
that studied here, the impact of the multiplicity restrictions
in Table IV should be evaluated and the stability of the
correlations with respect to centrality bin width investigated.
The analytical analysis and Monte Carlo simulations presented
here can be readily extended to other such applications in order
to facilitate the reduction of bias in two-particle correlations
on transverse momentum.
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FIG. 7. Systematic bias effects for 200 GeV Au+Au collisions due to Nch-dependence of the correlation shapes as discussed in the text.
LS and US pair correlations for peripheral and mid-central collisions are shown in the columns of panels as in Fig. 3. Results are shown for
correlations derived from �σ 2

pt :m [panels (a)–(d)], (0)
pt

[panels (e)–(h)], σ 2
pt ,dynamical [panels (i)–(l)], and Fpt [panels (m)–(p)].
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