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Background: Since more than 40 years of theoretical and experimental studies of true ternary fission, one is still
quite far from its understanding. The true ternary fission channel, being strongly suppressed by the macroscopic
properties of the potential energy, may, however, be present with a significant probability due to shell effects.
Purpose: Development of a model for the multidimensional potential energy suitable for analysis of the nucleus-
nucleus collisions with the possibility of ternary exit channel. Study of the potential possibility of fission of
actinides into three heavy fragments.
Method: The asymmetric three-center shell model of deformed nucleus is developed in this paper. The model
can be applied for analysis of ternary as well as binary fission processes.
Results: The potential energy surfaces for few ternary combinations in the fission channel are calculated for the
252Cf nucleus. Their properties are discussed.
Conclusions: The potential energy structures are compared with the experimental observations. It was found that
the potential energy has pronounced valleys favorable for ternary fission with formation of doubly magic tin as
one of the fragments and two other lighter fragments. The positions of the found fission valleys are in a good
agreement with the experimental data.
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I. MOTIVATION

In spite of the fact that a lot of studies of the fission process
have been performed since its discovery in 1938, fission
physics still has exciting topics to be explored and understood.
One of them is the process of ternary fission. Here one should
distinguish between two different processes, namely “ternary
fission” and “true ternary fission.” Ternary fission is the process
of formation of a light charged particle (mainly, an α particle)
accompanying fission and emitted with the largest probability
in the perpendicular direction to the fission axis. The proba-
bility of this process decreases exponentially with the increase
of the fragment mass. This supports the idea that the third
fragment appears as a fluctuation in the neck region. Nearly
complete information on this process can be found in Refs. [1–
3] (see also Refs. [4,5] for recent experimental studies).

The term “true ternary fission” is used for a simultaneous
decay of a heavy nucleus into three fragments of comparable
masses [1]. True ternary fission is considered as a process
similar to the binary fission connected with a large-scale
evolution of the nuclear shape from the compact configuration
of the initial nucleus through formation of two necks and final
division of a composite system into three fragments.

True ternary fission of atomic nuclei (below the word “true”
is omitted) has a long history of theoretical and experimental
studies. Early theoretical considerations based on the liquid
drop model (LDM) [6] showed that, for heavy nuclei, ternary
fission produces a larger total energy release in comparison to
binary fission, but the actual possibility of ternary fission is
determined, in fact, not by the total energy release but by
the barrier properties. It was found that the LDM ternary
fission barriers for oblate (triangular) deformations are much
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higher compared to the barriers of prolate configurations [7],
and it seems that the oblate ternary fission may be excluded
from consideration. However, further study of this problem
within the more sophisticated three-center shell model [8]
showed that the shell effects may significantly reduce the
ternary fission barriers even for oblate deformations of very
heavy nuclei. Recently [9] the potential energy as well as the
tunneling probability were calculated within the three-center
shell model for the isotopes of element 120. The calculations
were performed assuming equal masses of all three fragments
(division into three zirconium isotopes). The authors conclude
that such a process is very improbable due to the high fission
barrier. Another extensive study of the true ternary fission
of 252Cf was performed recently in Refs. [10–12] based on
the consideration of the potential energy surface at contact
configuration of three preformed clusters. These studies
have confirmed, in particular, the preference of the collinear
configuration of three fragments over the triangular one.

The experimental information on the true ternary fission
is rather limited. Study of this process performed by M. L.
Muga with colleagues [13] for spontaneous fission of 252Cf
and thermal neutron-induced fission of few uranium isotopes
has showed that the ratio of ternary events to the binary ones
is about 10−6. Another investigation of symmetric ternary
spontaneous fission of 252Cf was done by Schall et al. [14].
The deduced upper limit for the symmetric ternary to binary
fission ratio is 10−8 s. The extensive search for the ternary
decay channel was performed by the group of D. Kamanin
(see Ref. [15] and references therein) for the spontaneous
fission of 252Cf as well as for thermal neutron-induced fission
of 235U. The searched for process was named “collinear
cluster tri-partition” since the decay products fly apart almost
collinearly. It was found that the true ternary fission is a rather
probable channel with the yield ratio to the binary one of
about 10−4. The increased ternary yield is detected in the
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spontaneous fission of 252Cf for the following combinations
with formation of magic or semimagic clusters: Sn+Ge(or
Ni)+S(or Ca). Another dedicated experiment has shown that
the ternary fission with formation of 68Ni or 72Ni as one of the
fragments has an increased yield as well.

Today it becomes possible to study experimentally the prop-
erties and dynamics of the formation and decay of superheavy
nuclei, for which true ternary fission could be rather probable.
It is well known that for superheavy nuclei the LDM fission
barriers are rather low (or vanish) and the shell correction to the
total deformation energy is very important. First estimations of
the binary and prolate ternary fission barriers of the superheavy
nucleus 298114, made in Ref. [16] with the approximately
calculated shell corrections, demonstrated their closeness
within 10%. This result was later confirmed in Ref. [17]
within the temperature-dependent LDM. The possibility of
symmetric true ternary fission and quasifission (with equal
outer fragments) was considered recently in Ref. [18] based
on the potential energy calculations. It was found that the
ternary fission is quite possible for superheavy nuclei, and it is
connected with three-body clusterization with the formation of
two tinlike fragments and a heavy third fragment in between.
For example, in the case of the 64Ni+238U reaction, one
may expect the ternary exit channel like 132Sn+38Ca+132Sn
with three magic nuclides as the fragments. Even larger shell
effects are predicted for the giant nuclear systems formed
in collisions of actinides. Here the fusion-fission process is
not possible at all; however, the ternary quasifission in U+U
collisions with the formation of two leadlike outer fragments
is extremely favorable. Note that it is sufficient to detect two
coincident leadlike ejectiles (or one leadlike and one calcium-
like fragments) in U+U collisions to unambiguously prove
the existence of ternary quasifission of a giant nuclear system.
Such experiments are under discussion for the near future.

The present work is aimed at the development of a
model for the multidimensional potential energy suitable for
the modeling of nucleus-nucleus collisions (binary entrance
channel) with the possibility to have two as well as three
fragments in the exit channel. The potential energy model
should provide (i) a rich-enough nuclear shape parametrization
giving realistic entrance-channel shapes (rather compact con-
tact configuration) as well as elongated scission shapes with
pronounced necking; (ii) a smooth variation of nuclear shapes
with the growing third fragment (the middle one), including a
smooth transition from the binary to ternary fission shapes; and
(iii) a correct description of the fusion barriers in the entrance
channel as well as ground-state properties and fission barriers.
Another purpose of the paper is to test the model on the existing
experimental data on the true ternary fission. That is possible
since all the features seen in the experiment (such as increased
yields for a certain combination of fragment masses) should
be present in the potential energy landscape as well.

II. THREE-CENTER SHELL MODEL

The macro-microscopical approach is used as a stan-
dard method of calculation of the potential energy of a
deformed nuclear system. Within the macro-microscopic
approach, the potential energy is usually composed

of two parts, Vmac−mic(A,Z; shape) = Vmac(A,Z; shape) +
δE(A,Z; shape). The macroscopic part, Vmac, smoothly de-
pends on the proton and neutron numbers and may be
calculated within the liquid-drop model. In particular, in this
work, the finite-range liquid-drop model (see, e.g., Ref. [19])
with the parameters determined in Ref. [20] is used. The mi-
croscopic part, δE, describes the shell effects. It is constructed
from the single-particle energy spectra by the Strutinsky
procedure [21]. The single-particle states required for the shell
correction calculation can be obtained by diagonalization of
the Hamiltonian of a model on the basis of the chosen wave
functions. The problem is significantly simplified if all of the
matrix elements can be calculated analytically. This can be
achieved by the proper choice of the mean-field potential and
basis functions.

One of the most successful models of such kind giving
the single-particle spectrum of a deformed binary nuclear
system is the two-center shell model (TCSM). The model
was first proposed in Ref. [22] and later on developed by
the Frankfurt group [23–25]. In spite of the fact that the
standard two-center shell model works well for the ground-
state and saddle-point deformations, it (being applied to the
whole system) fails in the region of the Coulomb barrier
in the entrance channel of the fusion reaction and also
in the region of two well-separated nuclei [20,26,27]. The
standard model cannot describe correctly the transition from
the potential energy of a mononucleus to the potential energy
of separated nuclei. An extended macro-microscopic approach
was proposed in Ref. [20] for the simultaneous analysis
of deep-inelastic collisions, quasifission, and fusion-fission
processes. The mentioned problem of the standard model was
solved within this model. The idea was to use the correct
properties of the standard macro-microscopical approach for
compact nuclear shapes and moderate deformations (typical
for fission saddle points), while the potential energy (or mass)
of the system at extreme deformations of scission point (or
Coulomb barrier) as well as for separated nuclei can be easily
calculated as a sum of the interaction potential (e.g., folding)
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FIG. 1. Example of the three-center shell model potential Vosc

(top) and the corresponding nuclear shape (bottom).
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and two deformation energies of the fragments. In between a
smooth transition between these two cases is used.

In the following, the key relations of the developed
three-center shell model (T3CSM) are given. The T3CSM is
developed in a similar way as the TCSM. The basic constituent
of the macro-microscopical model is the shape parametrization
that depends on a set of chosen collective degrees of freedom.
An axial symmetric nuclear shape in the T3CSM is obtained
by three smoothly joined ellipsoids with semiaxes ai and bi

(i = 1,2,3). The Hamiltonian of the model is

Ĥ = − �
2

2m0
∇2 + Vosc(�r) + VLS(�r, �p,�s) + VL2 (�r,�l). (1)

Denoting the positions of the three centers by z1, z2

(side fragments), and z3 (middle fragment), the momentum
independent part of the potential in cylindrical coordinates
{z,ρ,φ} (independent of φ due to the system axial symmetry)
may be expressed as

Vosc(ρ,z) = 1

2
m0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
z 1 (z − z1)2 + ω2

ρ 1 ρ2; z � z1;

ω2
z 1 (z − z1)2 [1 + c1(z − z1) + d1(z − z1)2] + ω2

ρ 1 [1 + g1(z − z1)2]ρ2; z1 < z � zL;

ω2
z 3 (z − z3)2 [1 + c3(z − z3) + d3(z − z3)2] + ω2

ρ 3 [1 + g31(z − z3)2]ρ2; zL < z � z3;

ω2
z 3 (z − z3)2 [1 − c3(z − z3) + d3(z − z3)2] + ω2

ρ 3 [1 + g32(z − z3)2]ρ2; z3 < z � zR;

ω2
z 2 (z − z2)2 [1 + c2(z − z2) + d2(z − z2)2] + ω2

ρ 2 [1 + g2(z − z2)2]ρ2; zR < z � z2;

ω2
z 2 (z − z2)2 + ω2

ρ 2 ρ2; z > z2.

(2)

Here m0 is the nucleon mass, and ωz i and ωρ i are the frequencies of the oscillators defined along the symmetry axis and
perpendicular to it. They are connected with the semiaxes as

ai = R0ω0/ωz i, bi = R0ω0/ωρ i,

R0 = r0A
1/3, �ω0 = 41/A1/3 MeV, (3)

where r0 = 1.16 fm is the nuclear radius parameter and A is the nucleus mass number. An example of the T3CSM mean-field
potential along with the corresponding nuclear shape is shown in Fig. 1. The shape profile function has local maxima (while the
potential has minima) at the positions of the oscillator centers z1, z2, and z3 = 0. Similarly, the zL and zR values correspond to
the minima of the shape profile (maxima of the potential). The thicknesses of the shape at zL and zR are assumed to be equal,
which leads to simultaneous rupture of both necks at the moment of ternary scission.

The momentum-dependent part of the potential consists of a spin-orbit coupling term

VLS(�r, �p,�s) =

⎧⎪⎪⎨
⎪⎪⎩

{ − � κ1
m0 ω01

,(∇Vosc × �p) · �s}; z � zL;{ − � κ3
m0 ω03

,(∇Vosc × �p) · �s}; zL < z � zR;{ − � κ2
m0 ω02

,(∇Vosc × �p) · �s}; z > zR

(4)

and an l2-like term

VL2 (�r,�l) = 1

2

⎧⎪⎪⎨
⎪⎪⎩

−{
� κ1

m2
0 ω3

01
,l2

} + �ω01 κ1 μ1 N1(N1 + 3)δif ; z � zL;

−{
� κ3

m2
0 ω3

03
,l2

} + �ω03 κ3 μ3 N3(N3 + 3)δif ; zL < z � zR;

−{
� κ2

m2
0 ω3

02
,l2

} + �ω02 κ2 μ2 N2(N2 + 3)δif ; z > zR.

(5)

In these formulas {A,B} = AB + B A denotes the anti-
commutator of two quantities and δif is a purely diagonal
operator; κi is the spin-orbit interaction constant; μi is the
adjustable parameter of the Nilsson model; Ni is the oscillator
shell number for the side or middle part of the nucleus;
and �ω0i = 41/Ãi MeV is the energy level spacing of the
spherical oscillator, where Ãi is the asymptotic mass number
of the nuclear fragment, which is defined in Ref. [25] as
Ãi = aib

2
i /r3

0 . The parameters Ni and Ãi are determined in
such a way that for the elliptic shape of the initial nucleus,
they should be the oscillator shell number and the nuclear mass
number, while for the asymptotic state of separated nuclei they
are the corresponding values for the fragments.

The nuclear shape is determined by the profile function
ρs(z) and can be obtained by assigning Vosc(ρs,z) = V0, where
V0 = 1/2m0ω0R

2
0 (see Fig. 1). It is clear that the parts of the

shape, external with respect to z1 and z2, are axially symmetric
ellipsoids centered at zi with semiaxes ai and bi (i = 1,2).
The internal part of the shape is more complicated. The shape
parametrization (as well as the mean-field potential Vosc) has
21 free parameters: zi , ai , bi , ci , di (i = 1,2,3), g1, g2, g31, g32,
zL, and zR . It is assumed that z3 = 0. Another 13 parameters
can be fixed in the same way as done in Ref. [25], imposing the
conditions of volume conservation and the continuity of the
parametrization and its first derivative at the matching points
zL and zR . Therefore, the shape parametrization of the T3CSM
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has seven independent parameters that allows one to introduce
seven collective variables: the elongation of the system R =
z2 − z1, which for separated fragments is approximately the
distance between the mass centers of the side fragments;
the ellipsoidal deformations of the three parts of the system,
δi = ai/bi − 1; two mass-asymmetry parameters η21 = (A2 −
A1)/(A2 + A1) and η3 = A3/(A1 + A2 + A3), where A1, A2,
and A3 are the mass numbers of the fragments; and the neck
parameter ε. This parameter arises due to the smoothing of the
potential Vosc(ρ,z) in the region between the oscillator centers
and is defined as the ratio of the smoothed and pure harmonic
oscillator potentials at the crossing point of the harmonic
oscillator potentials zL and zR (see, e.g., Fig. 9 of Ref. [20]).
Therefore, smaller values of ε correspond to a thicker neck at
fixed values of the other parameters.

The basic functions required for the diagonalization of the
Hamiltonian (1) are the solutions of the three-center problem,

Ĥ0ψ = E0ψ, Ĥ0 = − �
2

2m0
∇2 + Vosc(ρ,z), (6)

where the mean-field potential is taken without smoothing
(ci = di = gi = 0). The corresponding Schrödinger equation
for the pure three oscillator potentials (6) is separable when
ωρ1 = ωρ2 = ωρ3 ≡ ωρ . When solved, this equation produces
the basis for further calculation within the T3CSM. The total
single-particle wave function reads

ψ(ρ,z,φ) = �nz
(z)χ |m|

nρ
(ρ)ηm(φ), (7)

where

ηm(φ) = 1√
2π

exp(imφ), (8)

χ |m|
nρ

(ρ) = N−1
ρ k

|m|+1
2

ρ exp

(
−kρ ρ2

2

)
ρ|m| L|m|

nρ
(kρ ρ2) (9)

with the normalization constant Nρ and kρ = m0 ω
�

, nρ is a
non-negative integer, and Lα

n(x) is the Laguerre polynomial.
The z-dependent function �nz

is defined in three regions
corresponding to the three nascent fragments

�nz
(z) =

⎧⎪⎨
⎪⎩

N−1
z1

U
(−nz1 − 1

2 ,−√
2kz1 (z − z1)

)
, z � zL;

N−1
z3U

U
(−nz3 − 1

2 ,
√

2kz3 (z − z3)
) + N−1

z3V
V

(−nz3 − 1
2 ,

√
2kz3 (z − z3)

)
, zL < z � zR;

N−1
z2

U
(−nz2 − 1

2 ,
√

2kz2 (z − z2)
)
, z > zR

(10)

with the normalization factors Nz1 , Nz2 , Nz3U , and Nz3V . Here
U (a,x) and V (a,x) are the regular and irregular parabolic
cylinder functions defined by

U (a,x) = √
π 2− 1

2 a− 1
4 e− x2

4
1F1

(
1
2a + 1

4 ; 1
2 ; 1

2x2
)

�
(

1
2a + 3

4

)

−x
√

π 2− 1
2 a+ 1

4 e− x2

4
1F1

(
1
2a + 3

4 ; 3
2 ; 1

2x2
)

�
(

1
2a + 1

4

) (11)

and

V (a,x) = √
π 2− 1

2 a− 1
4 tan

[
π

(
1

4
+ 1

2
a

)]

× 1F1
(

1
2a + 1

4 ; 1
2 ; 1

2x2
)
e− x2

4

�
(

1
2a + 3

4

)
�

(
1
2 − a

)

− x
√

π 2− 1
2 a+ 1

4 tan−1

[
π

(
1

4
+ 1

2
a

)]

× 1F1
(

1
2a + 3

4 ; 3
2 ; 1

2x2
)
e− x2

4

�
(

1
2a + 1

4

)
�

(
1
2 − a

) , (12)

whose properties may be found in Ref. [28]. The seven nzi

and Nzi coefficients entering Eq. (10) can be determined
numerically in a standard way by imposing the normalization
condition and the condition of smoothness of the wave function
and its first derivative at the matching points∫ ∞

−∞
�nz

(z)dz = 1,

�nz1 (zL) = �nz3 (zL), �nz2 (zR) = �nz3 (zR),

�′
nz1

(zL) = �′
nz3

(zL), �′
nz2

(zR) = �′
nz3

(zR),

ωz1

(
nz1 + 1

2

)
= ωz2

(
nz2 + 1

2

)
= ωz3

(
nz3 + 1

2

)
. (13)

The last equation in Eq. (13) ensures that the eigenvalue E0 =
�ωzi(nzi + 1/2) + �ωρ(2nρ + 1) is independent of the space
coordinates.

Finally, the eigenvalues and eigenvectors of the initial prob-
lem (1) are found by the standard diagonalization procedure
with the cut-off energy for the basis functions equal to 12�ω0.

III. RESULTS AND DISCUSSION

There are too many collective degrees of freedom necessary
for proper description of the potential energy of a nuclear
configuration consisting of three deformed heavy fragments.
As mentioned above, the three-center parametrization has
seven degrees of freedom. The number of collective variables
has been restricted in order to test the developed model. Instead
of three independent deformation parameters δi , I use a single
unified deformation δU defined in the same way as in Ref. [20],

3δU = (δ1 − δ̃1) + (δ2 − δ̃2) + (δ3 − δ̃3),

Cδ1(δ1 − δ̃1) = Cδ2(δ2 − δ̃2) = Cδ3(δ3 − δ̃3), (14)

where δ̃i are the deformation parameters providing the min-
imum of the potential energy for the fixed other collective
variables. The second relation in Eq. (14) is, in fact, the
balance equation of forces applied to three deformed nuclear
fragments. Equation (14) is limited to second-order terms
in the expansion of deformation energies into series in the
deformation. The rigidity parameters Cδi can be evaluated
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FIG. 2. Macroscopic part of the potential energy for fission of 252Cf calculated for zero values of the deformation parameters (b) and nuclear
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shows one of possible binary fission paths.

using the corresponding relation for the ellipsoid nucleus. It is
assumed in the calculations shown below that δU = 0 and the
neck parameter ε = 1.

First, let us discuss the macroscopic (LDM) part of the
potential energy. Figure 2 shows the LDM potentials for 252Cf
along with the corresponding nuclear shapes. The potential
energy was calculated for the mirror-symmetric division of
the nucleus (A1 = A2) for zero values of the deformation
parameters (δi = 0). For better visualization, the calculated
potential energy is plotted as a function of R/R0 cos (α3) and
R/R0 sin (α3), where α3 = πA3/100 and R0 is the radius of the
spherical nucleus. One may see that the potential energy has
two barriers. The first one, which is closer to the ground state, is
the usual barrier of binary fission. The second one is the barrier
of three-body clusterization, which prevents the system from
the ternary fission. This barrier grows with the increase of the
mass of the middle fragment. The origin of this effect is quite
obvious—it is due to increase of the Coulomb forces. Such
behavior of the second barrier has an important consequence
that simple exchange of side and middle fragments alters the
probability of the system decay. A larger probability of the

ternary fission should be expected when the middle fragment
has a smaller size (see below).

It should be stressed once more that the second barrier
on the potential energy landscape has a purely macroscopic
nature and its appearance is connected with the formation
of the second neck in the nuclear shape on the way to the
ternary fission. It is clear that the macroscopic structure of
the potential landscape prevents actinides from the ternary
decay. Large shell effects for the strongly deformed nuclear
system are the only reason for observing a noticeable yield of
ternary fission. Such shell effects in the actinide region can
be expected for mass-asymmetric fission with the formation
of a magic tinlike cluster as one of the fragments. In order
to test the model on available experimental data [15], a few
potential energy surfaces for 252Cf have been calculated. The
first one corresponds to the case when one of the outer
fragments is 132Sn. This potential energy along with the
corresponding shell correction are shown in Fig. 3. The mass
of the second (side) fragment is determined by the mass
conservation A2 = 252 − 132 − A3. Three regions of strong
shell effects are clearly seen. The first one leads to binary
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fission with nearly symmetric “tin–cadmium” combination.
Other two combinations correspond to the ternary fission
with the formation of three magic clusters: tin, calcium, and
nickel. The only difference between them is the order of
fragments (small difference in the masses of calcium and
nickel for these two combinations can be ignored). However, as
discussed above, the probability of these two equal (in terms of
fragment masses) combinations differs dramatically. One may
see a rather well-pronounced valley on the potential energy
surface corresponding to the formation of three fragments
with the masses 132, 40, and 80 (“tin-sulfur-germanium”
combination). This valley appears due to strong shell effects
for the “tin-calcium-nickel” case. A small shift towards the
smaller middle fragment (sulfur instead of calcium) is due
to macroscopic properties of the ternary barrier. The ternary
fission valley is quite well separated by the potential ridge from
the binary fission valley. This means that the ternary fission of
the 252Cf nucleus into the “tin-sulfur-germanium” combination
should be among the most probable true ternary fission
channels of this nucleus. This result is in good agreement with

the experimental data. The second found ternary combination,
“tin-nickel-calcium,” has negligible probability to be realized
due to a large ternary fission barrier.

For better visualization of the potential energy structure
discussed above, a cut of Fig. 3 along the 132Sn+48Ca+72Ni
ternary fission direction is shown in Fig. 4. In addition to the
total potential Vmac−mic, the microscopic shell correction δE
and the macroscopic (LDM) part Vmac of the total potential
are given. It is seen that the LDM potential makes the ternary
fission nearly improbable due to large second (ternary fission)
barrier while the first (binary fission) barrier is much lower.
The shell effects substantially change the structure of the
potential energy. First, the binary fission barrier becomes
double-humped, which leads to the well-known phenomenon
of spontaneous fission isomers. Second, the ternary fission
barrier decreases drastically. It is important that the pocket
in the potential energy between the binary and ternary
fission barriers exists in both directions: elongation and mass
asymmetry (see Fig. 3). This prevents the system trapped into
the pocket from escape to the binary fission channel and,
finally, increases the probability of the ternary fission process.

The increased ternary fission yield with the formation
of 68,72Ni was observed in Ref. [15]. The potential energy
surfaces for these two cases are shown in Fig. 5. One
may see again a well-separated ternary fission valley for
the “nickel+calcium+tin” combination (the fragment masses
are 72, 48, and 132). However, the potential energy surface
calculated assuming 68Ni as the first side fragment does
not have a “good” ternary fission valley because of smaller
absolute value of the shell correction that cannot “dig” a valley
in the second (ternary fission) barrier. Both surfaces shown in
Fig. 5 also have well-pronounced ternary fission valleys when
the middle fragment has the mass around 16 (oxygen). This
leads to the “nickel-oxygen-samarium” combination.

To conclude, the three-center shell model of deformed
nucleus is developed in this paper. The model is an extension
of the well-known two-center shell model and includes it as a
special case. The three-center shell model is applied to analyze
the general properties of the potential energy landscape on the
example of the ternary fission of the 252Cf nucleus. It was found
that the ternary fission channel, being strongly suppressed by
the macroscopic properties of the potential energy (additional
barrier of ternary decay), may, however, be present with a
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FIG. 5. The same as in Fig. 3(a) but with one of the side fragments assumed to be 72Ni (a) and 68Ni (b).
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significant probability due to the shell effects. The potential
energy has pronounced valleys favorable for true ternary fis-
sion with formation of doubly magic tin as one of the fragments
and two other lighter (usually magic or semimagic) fragments.
The positions of the found ternary fission fission valleys are in
a good agreement with available experimental data.
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