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Microscopic optical potential for 4He scattering based on the effective Skyrme interaction
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Microscopic optical potential of 4He interaction with nuclei is constructed by means of the single-folding
model using the nucleon-nucleus optical potentials, which earlier were successfully applied to describing the
neutron and proton scattering and are obtained from approximate calculations of the mass operator of the
one-particle Green’s function with the effective Skyrme nucleon-nucleon forces. The 4He scattering processes are
described in a self-consistent approach based on the standard and extended Skyrme forces, which simultaneously
provide a satisfactory description of nuclear structure and nucleon-nucleus scattering. The performed calculations
reasonably describe experimental data on differential cross sections of the elastic and inelastic α-particle scattering
on different target nuclei in the mass-number range from 28Si to 208Pb at different projectile energies below or
about 100 MeV, as well as the energy dependences of α-particle reaction cross sections on nuclei in a wide energy
range.
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I. INTRODUCTION

Elaboration of theoretical approaches that include both
calculations of structures of atomic nuclei and descriptions
of collision processes of nucleons or composite light nuclei
(e.g., deuterons and α particles) with nuclei, based on certain
realistic effective nucleon-nucleon interactions, is an important
problem of modern nuclear physics. In this framework, among
the most frequently employed models are those using micro-
scopic optical potentials (MOP) along with nuclear structure
description using the microscopic shell model. Different mod-
els of MOP for describing nuclear scattering processes have
been developed, which are based on using various effective
nucleon-nucleon (NN ) forces and realistic nuclear densities.

In the literature, a frequently used approach to building
nucleon-nucleus (NA) and nucleus-nucleus MOP is based
on folding models (see, for example, Refs. [1–3]). When
considering scattering processes with composite projectiles,
in particular 4He, the subject of the present article, many
authors (see, for example, Refs. [2,4–6] and references therein)
make use of the double-folding model (DFM), in which the
optical potential is obtained by doubly folding an effective
NN interaction with the nucleon density distributions of both
the target nucleus and projectile. On the other hand, such
processes are also described on the basis of approximation
using the single-folding model (SFM) of the projectile density
with the NA optical potential, which can also be constructed
in a microscopic approach (see, for example, Refs. [6,7]). In
these folding MOP models, as a rule (see Ref. [1–7]), the
effective NN interaction is taken in the form resulting from
the g-matrix consideration, e.g., Refs. [8–13]. Note that to
describe experimental data satisfactorily, in most calculations
by both DFM and SFM it is necessary to introduce adjustable
renormalization parameters of the calculated MOP. However,
there are examples of folding MOP calculations that do not
make use of any renormalizations. For instance, in the work
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of Ref. [6] authors succeeded in describing α-particle–nucleus
(αA) scattering cross sections with no fitting parameters in
both DFM and SFM approaches on the basis of the Melbourne
g-matrix effective NN interaction [3]. Also, in Ref. [6], it was
shown that the results of calculations in the SFM approxima-
tion can agree well enough with those of the DFM calculations
under certain conditions. It is worth mentioning that along with
the folding models of MOP, there are also microscopic models,
based on effective NN interactions, which involve the random-
phase-approximation calculations, e.g., Refs. [14–16].

As an alternative to the g-matrix approach, for microscopic
calculations of nuclear structure and characteristics of nuclear
matter the effective density-dependent NN interactions of the
Skyrme type [17] are widely used, starting from Ref. [18].
Great efforts have been devoted to the further elaboration of
variants of Skyrme NN forces (see, for example, Refs. [19,20]
and references therein), which could be able to simultaneously
describe different properties of nuclei, including exotic nuclei,
and properties of excited nuclear states, and were suitable for
astrophysical problems, such as calculations of neutron stars.
It is also advisable to consider the possibility of application of
these effective Skyrme NN forces in calculations describing
nuclear scattering processes instead of the usually employed
g-matrix interactions; examples of such calculations can be
found, in particular, in Refs. [15,16].

Such an approach to analyzing NA scattering, basing on
the density-dependent Skyrme NN forces, was developed in
Refs. [21–25], making use of the corresponding microscopic
NA optical potentials found from approximate calculations
of the mass operator of the one-particle Green’s function
by perturbation theory. In our papers [22–24], the real part
of the NA MOP was used in the form of the finite-nucleus
potential, calculated in the Hartree-Fock approximation with
the Skyrme forces (SHF) of the standard form [18], while the
imaginary part of the MOP was calculated in the nuclear-
matter and local-density approximations; in Ref. [25] this
approach was further employed with extended-form Skyrme
forces of the type in Refs. [26,27], allowing for the both
density- and momentum-dependent terms. It is essential that in
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Refs. [22–25] we used the self-consistent calculations of the
NA MOP and nucleon densities of the target nucleus. On this
basis, we succeeded in satisfactorily describing differential
cross sections and analyzing powers of the elastic neutron- and
proton-nucleus scattering at medium energies as well as the
NA reaction cross sections by means of finding new optimized
sets of parameters of the Skyrme forces.

Comparing this MOP model based on the Skyrme
forces with the above-mentioned folding-model approach,
which uses the complex g-matrix interaction (see, e.g.,
Refs. [3,5–7,13]), it worth noting the following points. The
effective NN interaction used in these folding models is built
proceeding from certain realistic NN interactions by means
of approximately solving the corresponding equation for the
g matrix in nuclear matter, whereas the effective Skyrme
interaction is parametrized, with the involved parameters being
determined by optimizing the description of certain sets of
experimental data. Because the employed effective Skyrme
interaction is purely real, in contrast to these folding models, it
is necessary to calculate the imaginary part of MOP separately,
which is done by considering the second-order Goldstone
diagrams. Another essential distinction of the approach under
consideration consists in using the same effective NN forces
both for describing the interaction between the incident
nucleon and bound nucleon in the target and for calculating
the needed nuclear densities, while in the folding models the
employed g-matrix interaction is used for the first purpose,
but the nuclear target structure is described independently,
for example, calculated with other effective NN forces.
Thus, the considered model attempts to implement a unified
approach including both the shell model of nuclei and the MOP
describing the nuclear scattering.

Since the approach [21–25] to building the NA MOP with
the Skyrme forces is successful in describing the observables of
neutron-nucleus (nA) and proton-nucleus (pA) scattering, it is
possible to generalize it for analyzing scattering processes with
composite light ions. On this route, in works of Refs. [28–30]
calculations of cross sections of the deuteron, 3He, and 4He
elastic scattering on nuclei were performed in the framework of
consideration eventually resulting in the single-folding model
with NA MOP from Ref. [21]. In Ref. [31] we also performed
an analysis of the cross sections and different spin observables
for the elastic deuteron-nucleus (dA) scattering within the
SFM with the NA MOP from Ref. [25]. It is necessary to stress
that there are essential distinctions between our approach [22–
25,31] and that of Refs. [21,28–30]: In the latter the real part of
NA MOP is calculated in the nuclear-matter and local-density
approximations and does not take account of the rearrangement
potential, arising in the SHF approximation with the density-
dependent NN forces, and these calculations are not self-
consistent, in contrast to our approach.

Because the generalization of our self-consistent model
for the case of the dA MOP turned out to be sufficiently
successful in describing experimental dA scattering data (see
Ref. [31]), it is interesting to apply it also to analyzing the
4He +A scattering, which could yield useful information for
developing a unified approach to the description of scattering
processes and nuclear structure. For this reason, in the present
article we consider the αA MOP constructed in the SFM, based

on the NA MOP obtained in our self-consistent approach
with Skyrme forces. We use this αA MOP to describe the
elastic and inelastic αA scattering and study the applicability of
various variants of Skyrme NN forces, including the optimized
variants found by the authors in Refs. [23,25] from analyzing
the elastic NA scattering observables and characteristics of
nuclear structure.

II. THE MODEL OF α A MOP WITH THE
SKYRME INTERACTION

The method of constructing the MOP for describing the αA
scattering is based on the model of NA MOP developed by
us earlier in Refs. [22–25], using approximate calculations of
the mass operator of the one-particle Green’s function with
the Skyrme forces depending on the nuclear density. We will
use the approximations that reduce the αA MOP calculation
scheme to the single-folding approach, which was frequently
used in the literature for describing scattering of composite
particles, in particular 4He, by nuclei.

Note that in Ref. [30] a theoretical scheme was considered
in which the αA MOP was identified with the mass operator
of the four-particle Green’s function in the nuclear medium.
Examining the corresponding Goldstone diagrams up to
second order inclusive, the authors of Ref. [30] ignored
the contributions containing the direct interaction between
nucleons in the projectile, considering 4He as a cluster.
Moreover, they also neglected the contributions including the
indirect interactions of the nucleons in 4He, which can lead
to the 4He breakup. As a result of these approximations, in
Ref. [30] the αA optical potential was represented in the
single-folding form with the NA MOP from the model of
Ref. [21] calculated on the basis of the Skyrme forces in the
approximations of nuclear matter and local density, and this
αA MOP was used for analyzing the experimental elastic αA
scattering cross sections.

On the other hand, in a number of papers (see, for
example, Ref. [7] and references therein) it was noted that,
when applying the SFM for obtaining optical potentials for
composite projectiles, certain corrections to the potentials can
be necessary, which are mainly reduced to renormalization of
the SFM potentials and are attributed to several physical effects
of the composite structure of the incident nuclei. However, we
have in mind the results of Ref. [6], which showed that the
scattering cross sections calculated in the SFM approximation
could be sufficiently close to those in the DFM calculations
in certain α-particle energy regions, in particular at energies
lower 120 MeV, and the αA optical potentials obtained in
the both models required no renormalization to reproduce the
considered experimental data. For this reason, here we also
hope to do without such renormalizations of our αA MOP and
will not consider them.

Taking into account the above reasoning, the MOP for
describing the 4He scattering on nuclei can be presented in
the following single-folding form:

UαA(R) = 2
∫

d3rα

{
ρ(α)

n (rα)Un(|R + rα|,E)

+ ρ(α)
p (rα)Up(|R + rα|,E)

}
. (1)
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Here ρ(α)
q (rα), where q = n,p, are the neutron and proton

one-particle densities (normalized to unity) for the incident
4He nucleus and rα is the nucleon coordinate in the projectile
from its center of mass (c.m.); Uq(rq,E) are the nA and pA
optical potentials depending on the incident nucleon energy
E; and R is the vector from the c.m. of the target nucleus
to that of the projectile. In the present study, the microscopic
NA potentials Uq will be employed in the form found by us
in Ref. [25] on the basis of calculations using the effective
Skyrme NN interaction, which is taken, in general, in the
following extended form:

v = t0(1 + x0Pσ )δ(r) + 1
2 t1(1 + x1Pσ )[k′2δ(r)

+ δ(r)k2] + t2(1 + x2Pσ )k′δ(r)k + 1
6 t3(1 + x3Pσ )

× ργ (R̃)δ(r) + iW0(σ 1 + σ 2)[k′ × δ(r)k]

+ 1
2 t4(1 + x4Pσ )[k′2ργ4 (R̃)δ(r) + δ(r)ργ4 (R̃)k2]

+ t5(1 + x5Pσ )k′ργ5 (R̃)δ(r)k. (2)

Here r and R̃ are the relative and c.m. coordinates of the
two interacting nucleons; ρ = ρn + ρp, ρn, and ρp are the
total, neutron, and proton densities of the target nucleus; k =
−i∂/∂r and k′ = i∂/∂r′ are the momentum operators of the
relative nucleon motion in the initial and final states; and Pσ

is the operator of spin permutation. The quantities tn, xn (n =
0 − 5), γ , γ4, γ5, and W0 are the phenomenological parameters
of the NN interaction. In Eq. (2), the terms in the first three
lines correspond to the standard form of Skyrme force and the
last two lines present the momentum- and density-dependent
terms with parameters t4 and t5.

The expressions for the potentials Uq(rq,E) are obtained
from calculations of the mass operator of the one-particle
Green’s function by perturbation theory up to the Goldstone
diagrams of second order inclusive [22,23,25], where the mean
self-consistent Hartree-Fock (HF) potential is taken as the
zeroth-order approximation. In the SHF theory, the variation of
the HF functional with the effective nuclear-density-dependent
NN forces results in the rise of the so-called rearrangement
potential, which plays an important role in ensuring the
nuclear force saturation and is taken into account in our
approach [22–25,31], in contrast to that of Refs. [21,28–30].
Constructing the αA MOP, we do not take account of the NA
spin-orbit potential, and therefore, the NA optical potentials
Uq(r,E) for the incident nucleons of sort q can be represented
as follows:

Uq(r,E) = Vq(r,E) + iWq(r,E) + δq,p

m∗
q(r)

mq

VC(r), (3)

where the real central part of the NA MOP has the form

Vq(r,E) = m∗
q(r)

mq

[V (HF)(r) + V (m)(r)]q

+
(

1 − m∗
q(r)

mq

)
M

M + mq

E. (4)

Here mq and E are the mass and laboratory energy of the
incident nucleon and M is the target-nucleus mass. The
central V (HF)(r) and Coulomb VC(r) potentials are calculated

according to the SHF theory for finite nuclei and m∗
q(r) is the

effective mass of the nucleon inside the nucleus. The term
V (m)(r) arises in the transformation from the nonlocal HF
equation to the Schrödinger equation with energy-dependent
local potential [32] and is expressed through the effective
mass m∗

q . The expression for the imaginary part of the NA
MOP Wq(r,E) is obtained from the second-order Goldstone
diagrams and is calculated in the approximations of nuclear
matter and local density. It includes dependence on the nucleon
density ρ and on certain integrals over the momenta of
intermediate nucleon states in these diagrams. These latter
integrals depend on the nucleon densities ρn and ρp and on the
magnitude of the incident-nucleon wave vector k being related
to the nucleon energy E by the following dispersion law:

k2 = 2m∗
q

�2

[
ME

M + mq

− V (HF) − VC

]
. (5)

The explicit expressions for all above-mentioned poten-
tials, calculated with the Skyrme forces (2), are given in
Eqs. (5)–(20) of Ref. [25] and we do not present them here.
The densities ρn,p(r), the kinetic-energy densities τn,p(r),
and the spin densities Jn,p(r) of nucleons [18], which are
necessary for calculating these potentials, are obtained from
the self-consistent calculations of the target-nucleus structure
by the SHF method using the same Skyrme force (for details,
see Ref. [25]).

When calculating the αA MOP with Eq. (1), we choose the
nucleon energy in the used NA MOP to be E = Eα/4, where
Eα is the energy of incident α particles, as it is made in the
majority of works considering αA scattering.

In our calculations, we assume, for the sake of simplicity,
that the proton and neutron densities ρ(α)

n,p(r) for 4He are equal
to each other and can be taken in the Gaussian form:

ρ(α)
n,p(r) = 1

(πb2)3/2
exp(−r2/b2). (6)

This distribution of the nucleon density in 4He is a frequently
used one (see, for example, Refs. [1,4,7]) and can be
considered as sufficiently acceptable. We use the parameter
value b = 1.1932 fm [1,4,7], which corresponds to the 4He rms
radius of 1.4614 fm and is in agreement with the experimental
value of its charge radius [33].

III. CALCULATIONS OF THE 4He + A SCATTERING
CROSS SECTIONS

For implementing the SFM of αA MOP using the above-
described model of NA MOP constructed with the effective
Skyrme NN forces, we have developed an original numerical
optical-model code including the SHF calculations. Using
this code, we have performed an analysis of differential
cross sections of the elastic scattering of α particles in the
projectile-energy region up to Eα ∼ 100 MeV in a wide range
of target-nucleus mass numbers. We have considered a number
of up-to-date variants of the Skyrme forces of the both standard
and extended form employed in studying the nuclear structure.
We also examined the optimized variants SkOP (a standard
Skyrme force), SkOP3, and SkOP4 (extended-form forces),
obtained earlier by us from optimizing the description of the
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FIG. 1. Differential cross sections σ (θ ) ≡ dσ (θ )/d� of the elastic α-particle scattering on 58Ni nuclei at several energies calculated by the
single-folding αA MOP with different NA potentials. Experimental data are from Refs. [37,38].

neutron-nucleus scattering with simultaneous control of the
main characteristics of the nuclear matter and structure of
finite nuclei. These optimized forces ensured a satisfactory

description of the cross sections and polarizations of nA
and pA scattering together with acceptably reproducing
characteristics of nuclear structure, as well as a reasonable

FIG. 2. The same as in Fig. 1, but on 90Zr. Experimental data are from Ref. [39].
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description of various observables for the dA scattering (see
Refs. [25,31]).

From all considered Skyrme force variants, both those from
the literature and our optimized ones, we have chosen the
extended force variant SkOP4 (SkOP3 yields similar results)
and the standard variant SLyIII.0.7 (results with SLyIII.0.8 are
also close) [34], which give, in our opinion, the best description
of experimental data. Therefore, below we present results of
calculations only for these force variants in comparison with
the SFM calculations basing on the global phenomenological
NA optical potential [35] (denoted as KD2003). This global
potential ensures a successful description of observables of
the elastic NA scattering, which is, on the whole, better than
the description by our NA MOP with Skyrme forces, and
therefore, we consider this comparison as an additional test of
applicability of our NA MOP in the αA scattering calculations.
The experimental data on cross sections were mainly taken
from the electronic nuclear reaction database [36].

In Figs. 1–4, we present the results of calculations by
the considered model of αA MOP for the differential cross
sections of the elastic α-particle scattering at different pro-
jectile energies on different target nuclei (here and below
the numbers in parentheses are the offsetting factors for
the cross sections). As can be seen from Figs. 1–4, in
general, the calculations with our optimized extended-form
force variant SkOP4 yield a reasonable description of the
experimental data, being somewhat better than when using the
standard SLyIII.0.7 force. Note that calculations of NA and
dA scattering observables basing on the SLyIII.0.7 force give

FIG. 3. The same as in Fig. 1, but for 120,124Sn and 208Pb target
nuclei. Experimental data are from Refs. [40–43].

results close to those obtained with SLyIII.0.8, which provide
a reasonable description of the NA and dA data, being not
much worse than for the results obtained with our optimized
force variants (see Ref. [31]). However, in the case of α + A
scattering under consideration, the calculations on the basis
of αA MOP with using extended-form SkOP4 (or SkOP3)
force better agree with the experimental data than when
using all standard-form forces considered by us, including
our optimized variant SkOP. At the same time, the αA MOP
with the extended Skyrme force variants from Ref. [27] do not
give a satisfactory description of the data, so we do not present
results for them here. Note that the extended forces SkOP3
and SkOP4 also yielded somewhat better results in describing
the NA scattering than our optimized standard-form variants,
whereas they had no advantage in the case of dA scattering (see
Refs. [25,31]). It may be somewhat surprising that making use
of the SFM with the approved global NA potential KD2003
gives even a worse description of the elastic αA scattering cross
sections than the calculations on the basis of the SkOP4 force.
In the further figures we shall show results of calculations
using only this Skyrme force SkOP4.

The calculation results in Figs. 1–4 are shown for Eα values
in a rather wide energy range. We may note that in Fig. 1, for
the α + 58Ni scattering at lower energies of 29 and 34 MeV, the
model with Skyrme forces gives somewhat worse agreement
with the data than in other considered cases. In this connection,
we should remind readers that the used optimized SkOP4
force was found in Ref. [25] from fitting the differential cross
section and analyzing power of elastic n + 120Sn scattering
at the neutron energy of E = 13.9 MeV. In Ref. [25] the
best description of experimental data on cross sections and
analyzing powers of the neutron scattering on different target
nuclei was obtained at the energies En < 20 MeV, and for the
pA scattering this model yielded satisfactory results also at
somewhat higher energy values. However, in the case of the
pA scattering there arises a certain limitation of this model at
small energies owing to the existence of the Coulomb barrier
in the real pA potential, which is most essential for heavy
target nuclei. It was pointed out in Refs. [22–25] that in the
region of higher energies of incident nucleons an excessive
growth of the depth of imaginary part of NA MOP (the
nuclear absorption) occurs. For these reasons, this model of
NA MOP is expected to be mostly applicable for constructing
the αA MOP at energies of α particles below or about 100
MeV, which corresponds to the nucleon-energy region, where
it works well enough for describing both the nA and pA
scattering.

It is worth mentioning that in Fig. 1 the calculations
by means of the αA MOP with SkOP4 force reproduce
the nuclear-rainbow-like refractive damping of diffraction
oscillations (see, for example, Refs. [43,46]) observed in the
α + 58Ni scattering cross section at 58 MeV in the region of
sufficiently large angles. Note that in calculations with the
SLyIII.0.7 force this effect is described somewhat worse. It
should be remarked that the NA MOP with the SkOP4 force
used here also works well enough in describing the nA and
pA observables at the incident nucleon energies close to the
value Eα/4, which can be clearly seen in Figs. 6, 7, 9, and 10
of Ref. [25].

064612-5



V. I. KUPRIKOV AND V. V. PILIPENKO PHYSICAL REVIEW C 94, 064612 (2016)

FIG. 4. The same as in Fig. 1, but for 58Ni, 90Zr, 124Sn, and 208Pb target nuclei at 104 MeV. Experimental data are from Refs. [44,45].

At the higher energy 82 MeV, the calculations with Skyrme
forces also lead to a refractive damping of cross section oscil-
lations, but they do not describe properly the rainbow hump
observed in the experimental cross section in the angle region
80–100◦, and this discrepancy indicates that the transparency
of the target nucleus at small impact parameters is too small,
i.e., nuclear absorption is too large. The damping of oscilla-
tions in this calculated cross section is characteristic of the
effect of nuclear refraction in the nucleus surface region [46].

In the case of the α + 90Zr scattering at 59.1, 79.5,
and 99.5 MeV (see Fig. 2) the calculated cross sections
also demonstrate a similar refractive damping of diffraction

oscillations. Note that the calculations with the SFM model
using the global NA potential KD2003, in most cases, give
a worse description of the mentioned refraction effects. We
also call attention to the pronounced diffraction oscillations of
the calculated α + 208Pb scattering cross section at the higher
energy 139 MeV (see Fig. 3). These oscillations disagree with
the experimentally observed refractive pattern at the angles
θ > 50◦ and are obviously a consequence of the excessively
deep imaginary part of MOP. In Fig. 4 we also present
examples of calculations at a rather large energy of 104 MeV.

It is also interesting to compare the behavior of the αA
MOP variants used in calculations of the above-presented cross

FIG. 5. Radial dependences of the (a) real V (R) and (b) imaginary W (R) parts of different optical potentials (for details see the text) for
the α + 58Ni scattering at the projectile energy 58 MeV.
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FIG. 6. The same as in Fig. 5, but at the projectile energy 104 MeV.

sections together with other examples of appropriate optical
potentials from literature. For this purpose, we present such a
comparison of real and imaginary parts of different optical
potentials for two considered cases, namely, for α + 58Ni
scattering at 58 MeV in Fig. 5 and at 104 MeV in Fig. 6. In
both these figures, we also present the single-folding potentials
obtained by the model used in Ref. [7], which employs the
Lane-consistent NA MOP of Ref. [47] based on the approach
of Ref. [13] and implemented in the numerical code MOM [48].
We have calculated these α + 58Ni MOP (denoted as JLMB)
using the SHF calculations with our SkOP4 force for the
nucleon densities needed in the code MOM, while the values
of the renormalization factors Nr and Ni and range parameter
tri , entering into this model, were taken from Table III of
Ref. [7]: Nr = 0.77, Ni = 0.87, and tri = 1.41 fm at 58 MeV
and Nr = 0.73, Ni = 1.05, and tri = 1.43 fm at 104 MeV.
The α + 58Ni scattering cross sections calculated with these
JLMB potentials are shown in Figs. 1(b) and 4(a), the result
at 58 MeV being rather close to the result of analogous
calculation available in Ref. [7]. In Fig. 5, we also show the
best-fit phenomenological potential from Ref. [37] at 58 MeV
(denoted as WS2), which uses the Woods-Saxon-square form
for real and volume imaginary potentials and the derivative
of the Woods-Saxon-square form for the surface imaginary
part. Figure 6 also shows the curves for the single-folding
α + 58Ni MOP at 104 MeV taken from Fig. 6 of Ref. [6],
denoted as NAF. This MOP employs the NA folding potential
based on the Melbourne g-matrix interaction of Ref. [3].
As can be seen from Figs. 5 and 6, the presented optical
potentials contain essential distinctions, even when they yield
comparable descriptions of the experimental data. At the
energy of 58 MeV, our potentials obtained with the Skyrme
forces SkOP4 and SLyIII.0.7 slightly differ in their real and
surface imaginary parts, whereas there is a more significant
distinction in the volume imaginary part at smaller R values. At
the same time, the phenomenological WS2 potential provides
a reasonable description of this cross section, including the
mentioned refraction effects, by means of a considerably less
deep real potential and the surface imaginary part that also
essentially differs. It is interesting that the JLMB MOP, which
also describes these data well, has the real part very close to

that of WS2, while its imaginary part markedly differs not only
from our MOP variants but also from the WS2 potential. At
104 MeV our MOP variants drastically differ from the JLMB
MOP. However, their real parts are close to the real part of the
NAF potential in the surface region, and the imaginary part of
our MOP based on the SkOP4 force approaches the imaginary
part of NAF at smaller R values. The main distinction of our
MOP is too deep surface imaginary part, which is absent in
the NAF potential. This large surface imaginary potential in
our MOP at 104 MeV illustrates the above-stated shortcoming
of the present model consisting in the excessive growth of the
nuclear absorption with the energy increase.

It is also useful to check up the validity of the αA
microscopic optical potential by calculating the total reaction
cross sections σr , which are an important characteristic of the
α-particle interaction with nuclei. Thus, we have performed
calculations of σr by the proposed model for several target
nuclei in a rather wide range of the incident α-particle

FIG. 7. Reaction cross sections σr for the α-particle interaction
with 28Si, 58Ni, 120Sn, and 208Pb nuclei as functions of the energy Eα

calculated by the αA MOP with the SkOP4 force, by the SFM using
the global NA potential KD2003, as well as by means of the global
αA potential. Experimental data are from Refs. [49–51].
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FIG. 8. Differential cross sections calculated using the αA MOP
with the SkOP4 force for the elastic α + 28Si scattering at 45 MeV as
well as for the inelastic scattering with exciting the first 2+ state of
28Si nucleus. Experimental data are from Ref. [53].

energies. By way of example, in Fig. 7 we present the
energy dependences of the reaction cross sections σr (Eα) for
α-particle interaction with 28Si, 58Ni, 120Sn, and 208Pb nuclei
calculated by using the αA MOP based on our optimized
Skyrme force SkOP4 in comparison with σr obtained by the
SFM using the global NA potential KD2003 and with the
ones calculated with the global optical αA potential proposed
in Ref. [52] (denoted as Global 2015). It is seen from Fig. 7
that the calculations using the αA MOP with the SkOP4
force describe the considered reaction cross sections quite
satisfactorily up to the energy values lying essentially higher
than the expected upper limit of applicability of this model and
do not yield to calculations by the SFM and phenomenological
optical model based on the global NA and αA potentials,
respectively.

The above-described model for the αA MOP based on the
Skyrme forces can be directly generalized for describing the
cross sections of the inelastic α + A scattering with exciting
low-lying collective states in the target even-even nuclei. This
can be easily done by using the well-known macroscopic
collective model and considering these excited states as one-
phonon vibrations of the nuclear surface. Such calculations
can serve as an additional useful test of applicability of the
proposed approach to constructing the αA MOP. We have per-
formed the corresponding calculations for the inelastic α + A
scattering in the distorted-wave Born approximation (DWBA),
and for this purpose we have employed the known numerical
code FRESCO 2.9 [60], taking account of the Coulomb-
excitation contribution, which, however, is rather insignificant.
In Figs. 8–12, we present examples of such calculation results,

FIG. 9. The same as in Fig. 8 (the elastic cross section is normalized to the Rutherford one), but for 58Ni target nuclei at (a) 58 and (b)
104 MeV, with dashed curves calculated with the Gaussian α-particle density (6) and the dotted ones with the model-free density SOG from
Ref. [33]. Experimental data are from Refs. [37,44].
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FIG. 10. The same as in Fig. 8 (the elastic cross section is
normalized to the Rutherford one), but for 58Fe target nuclei at
64.5 MeV. Experimental data are from Ref. [54].

obtained using the αA MOP with the SkOP4 force, for the
inelastic scattering on 28Si, 58Fe, 58Ni, 90Zr, and 208Pb nuclei
along with the results for the corresponding elastic scattering
cross sections for these target nuclei at the same projectile
energies. The deformation lengths, used in the calculations of
the inelastic scattering cross sections and determining their
absolute normalization, were taken the same for the real and
imaginary parts of the transition potential and have been
determined from the known values of B(EL) [57,58] of the
corresponding electromagnetic transitions in the same manner
as in Ref. [11], using experimental rms charge radii [33].

As seen from Fig. 8, the calculated cross sections of both
elastic α + 28Si scattering and inelastic scattering with exciting
the first 2+ state of 28Si (E∗

2 = 1.78 MeV) at Eα = 45 MeV
reasonably agree with the experimental data. The deformation
length for calculating the inelastic cross section was δ2 =
1.34 fm.

In the cases of the α + 58Ni scattering at the projectile
energies of 58 and 104 MeV, shown in Fig. 9, the inelastic
scattering cross sections with exciting the first level 2+ of
58Ni nucleus (E∗

2 = 1.454 MeV) were calculated with the
deformation length value δ2 = 0.81 fm. If we use the somewhat
higher value δ2 = 0.992 fm from Ref. [37] in the case of
Eα = 58 MeV, this provides better normalization of this
inelastic scattering cross section. It should be noted that at the
energy Eα = 58 MeV the calculated inelastic scattering cross
section reasonably reproduces the refractive effects observed
at sufficiently large scattering angles, as in the calculations for

FIG. 11. Differential cross sections calculated with the SkOP4
force at 40 MeV for the elastic α + 90Zr scattering as well as for the
inelastic scattering with exciting the first 2+ and 3− states of 90Zr
nucleus. Experimental data are from Ref. [55].

corresponding elastic scattering. For the sake of comparison,
in Fig. 9 we also present the results of additional calcula-
tions performed with the densities ρ(α)

n,p(r), determined from
the model-free charge distribution of 4He in the form of the
sum of Gaussian functions (SOG) [33] by eliminating the
effect of finite size of the proton charge distribution [59] in
the standard way. We assumed that the neutron and proton
densities coincide, as was in the case of the density (6). As can
be seen from the figure, the results of all presented calculations
with two variants of ρ(α)

n,p(r) practically coincide for both elastic
and inelastic scattering cross sections.

In Fig. 10, the calculated cross sections for the elastic α +
58Fe scattering at 64.5 MeV and for the corresponding inelastic
scattering with exciting the first level 2+ of 58Fe nucleus (E∗

2 =
0.81 MeV) are in good agreement with the experimental data
and also reasonably reproduce the above-mentioned refractive
damping of diffraction oscillations. Here, the deformation-
length value was δ2 = 1.146 fm.

In Fig. 11, which shows the results of calculations for the
α + 90Zr scattering at Eα = 40 MeV, the inelastic scattering
is considered for the cases of exciting both the first 2+ level
with E∗

2 = 2.186 MeV and the first 3− level with E∗
3 = 2.748

MeV in the target nucleus. The corresponding deformation
lengths have the values δ2 = 0.469 fm and δ3 = 1.134 fm.
Finally, Fig. 12 considers scattering on 208Pb nuclei, where
the inelastic scattering is accompanied by exciting the first
3− level with E∗

3 = 2.615 MeV; the used deformation length
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FIG. 12. Differential cross sections calculated with the SkOP4
force at 79.1 MeV for the elastic α + 208Pb scattering as well as for
the inelastic scattering with exciting the first 3− state of 208Pb nucleus.
Experimental data are from Ref. [56].

was δ3 = 0.793 fm. A sufficiently good agreement with the
experimental data is observed for all calculated cross sections
in Figs. 11 and 12.

It should be noted that a more accurate approach to
describing the inelastic scattering processes, as compared with
DWBA, is the coupled-channel method (CC), which takes ac-
count of multistep effects connected with coupling between the
ground and excited states, which can contribute to the elastic
and inelastic cross sections and be significant at low incident
energies. However, we should remember that parameters of
the Skyrme forces are determined from experimental data
without explicit consideration of intermediate excitations of
nuclei. Their effects are partially taken into account implicitly
through the found values of the Skyrme interaction parameters.
In particular, as has been mentioned above, the optimization
of parameters of our Skyrme force SkOP4 was performed on
the basis of the self-consistent calculations of the elastic nA
scattering observables and nuclear structure characteristics in
the approach without explicitly considering the coupling with
inelastic channels. Thus, the usage of the SkOP4 force in
the CC framework, especially for obtaining the corresponding
corrections to the elastic αA scattering cross sections, would
not be quite consistent. For calculations by the CC, it would
be necessary to use the self-consistent description of the
nuclear structure and the elastic and inelastic NA scattering
processes and to optimize the Skyrme force parameters with
explicit consideration of the coupling between channels. For

this reason, here we restrict ourselves to the DWBA description
of the inelastic α + A scattering.

IV. CONCLUSION

We have considered a model of the microscopic optical
potential, used to describe the α-particle interaction with
nuclei, based on a generalization of the approach in which the
microscopic optical NA potential is found from approximate
calculations of the mass operator of the one-particle Green’s
function, employing effective NN Skyrme forces. This is made
in the framework of the model of folding the single-nucleon
density of 4He with the NA MOP, which was earlier obtained
by the authors using both the standard Skyrme forces and
those of the extended form with allowance for the momentum-
and density-dependent terms. This αA MOP is employed
for analyzing cross sections of the α-particle scattering on
even-even nuclei at medium energies in the self-consistent
calculations on the basis of up-to-date Skyrme force variants,
which provide simultaneously a satisfactory description of the
nuclear structure in calculations by the Hartree-Fock method.

Using this approach, we have carried out calculations of
the differential cross sections of the elastic scattering of α
particles at the energies up to Eα ∼ 100 MeV in a wide range
of mass numbers of target nuclei (from 28Si up to 208Pb) with
using both the well-approved standard and extended Skyrme
forces from the literature, as well as the NN force variants
optimized earlier by us from simultaneously analyzing the
elastic NA scattering observables and nuclear structure. The
study has been complemented by analyzing a number of
differential cross sections of the inelastic α + A scattering
with exciting low-lying collective states in the target even-even
nuclei in the same energy region. This was performed on the
basis of the macroscopic collective vibrational model in the
DWBA (employing the known numerical code FRESCO 2.9)
with using the same αA MOP. The calculations show that
the proposed model of αA MOP can provide a reasonable
description of experimental data for the differential cross
sections of both elastic and inelastic α + A scattering by
different target nuclei in the considered energy region. The best
agreement is obtained when using the optimized Skyrme-force
variants of the extended form that were recently proposed by
the authors. In some of the considered cases, the model even
succeeds in reasonably reproducing the refractive structures
experimentally observed in the cross sections at large scat-
tering angles. However, it should be noted that at sufficiently
high values of the projectile energy, a sufficiently accurate
description of the observed refractive structures, especially of
the nuclear-rainbow type, requires further improvement of the
considered model of αA MOP. Presumably, this refinement
could be mainly connected with eliminating certain problems
caused by a too rapid increase of the depth of the imaginary
part of the NA MOP with the incident energy growth. If such
an improvement is a success, further refinement of the MOP
model could be tried, for example, by employing corrections
obtained from the dispersion relation between the real and
imaginary parts of the MOP.

The applicability of the considered model of the αA
MOP has also been checked in calculations of the energy
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dependences of the total α + A reaction cross sections for
several target nuclei in a wide range of mass numbers. It has
been shown that these calculations based on our optimized

extended Skyrme forces describe the considered reaction cross
sections quite satisfactorily in a rather wide range of the
incident α-particle energies (up to 200 MeV).
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[44] H. Rebel, R. Löhken, G. W. Schweimer, G. Schatz, and G.

Hauser, Z. Phys. 256, 258 (1972).
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