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Systematics of a vibrational effect on the dynamic moments of inertia in superdeformed
bands in the mass ≈150 region
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An empirical semiclassical model has been proposed to investigate the nature of dynamic moment of inertia
of the superdeformed (SD) bands in nuclei of mass 150 region. The model incorporates an additional frequency
dependent distortion to the dynamic moment-of-inertia term akin to a vibrational component to explain the
extreme spin structure of these bands. Using this model three distinct natures of the dynamic moment-of-inertia,
have been identified for the SD band structure for the mass 150 region. This study establishes the role of the
vibrational mode in the extreme high spin rotational structure of the atomic nuclei.
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I. INTRODUCTION

Vibration and rotation are the two modes of excitation that
have been observed both in atomic nuclei [1] and molecules
[2]. Vibrational modes in nuclei have been observed as
multipolar resonances that are collective in nature and the
resonance energy exhibits a (mass number)−1/3 dependence
[3]. Low energy vibrational modes have also been observed
in the nuclei, where the conjugation of the valance nucleons
with the core gives rise to rotational and vibrational interplay
of energy levels.

Interplay of the two modes have also been well studied
in molecules through Raman and infrared spectroscopy [4],
where the relative internal arrangement of the molecules
can be explored. In the case of diatomic molecules, the
vibration energy depends on the atomic distances between
the components of the molecule and the effective interaction.
Molecules with rotational and vibrational degrees of freedom,
exhibit a composite spectra. If a simple scenario is considered,
such as in the case of the 12C −16O molecule, three primary
types of vibrational-rotational couplings are possible, subject
to the conditions �J = 0 (Q branch), �J = 1 (R branch),
and �J = −1 (P branch), where J is the rotational quantum
number [5].

The energy of the excitation in these cases can be expressed
in terms of vibrational frequency dependent moment of inertia
Bν and centrifugal distortion factor Dν , and the angular
momentum of the state I as

Fν = (Bν − DνI (I + 1))I (I + 1), (1)

where ν is the vibrational frequency.
In low-lying nuclear structure levels, the vibration and

rotation couplings have been observed in many cases. When
the vibration is such that it increases the deformation (β2, γ ) at
constant rotational frequency, a surface distortion is observed,
which evolves with time and resembles a tidal wave on the
surface of the nucleus. The energy and the reduced transition
probability [B(E2)] in this case increase with the increase of
angular momentum [6,7]. Semiclassically the transition energy
and the transition probability are expressed as [8]

E ∼ aI + bI 2 + cI 3 + . . . ,

B(E2) ∼ αI + βI 2 + γ I 3 + . . . . (2)

Interestingly, the energy transition rate in this form assumes
a variable angular momentum dependent moment of inertia.
Similarly, in this work, the superdeformation phenomenon in
the nuclei has been investigated and a frequency dependent
effective dynamic moment of inertia has been identified which
is related to a vibrational distortion. Such vibration may be
thought to arise due to cluster-like structure or binary structure
of nucleus at very high spin [9,10]. The effect of such a
structure would be directly observed in the dynamic moment
of inertia.

To date, more than 300 superdeformed (SD) bands have
been observed across the nuclear landscape [11]. The superde-
formation in a nucleus has been characterized as an extended
ellipsoidal shape. For the ideal SD case the ellipsoidal long
axis is twice the short axis in length, and corresponds to a
quadrupole deformation of β ∼ 0.6 [12]. Such an extended
shape is stable at high spin and rotational frequency due to the
interplay of collective and single particle degrees of freedom.
The primary factors for the stability of shape is due to the shell
corrections, which produce a local minima in the potential-
energy surface, and the decrease of the Coulomb force due to
larger than average separation of protons. In addition, at this
high spin range (I � 30�), the presence of highly mixed j
states presents an interesting domain for theoretical studies.
There has been many exhaustive theoretical studies using
mean field models; Woods-Saxon [13], anharmonic oscillator
potential [14,15], and Skyrme-Hartree-Fock [16]. Quite a few
semiclassical macroscopic models have also been successful
in presenting a good description of the SD bands [17–22].

In the superdeformation regime, the nucleus exhibits nearly
a perfect quadrupole behavior with a very small regular
separation in the rotational level energies. This feature may
manifest as identical SD bands in neighboring nuclei [23] due
to similar moment of inertia. Certain features of the moment
of inertia have also been studied by the semiclassical model,
where a stiff core part was identified at high spin given by [19]

� = 3
4�rgd + 1

4�irr, (3)

where �rgd and �irr, are the respective rigid-core and irrota-
tional contribution to the total moment of inertia.

Characteristics of a rotational band can be investigated from
the energy of the levels (EL) and the angular momentum (I ).
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The moment of inertia (�), kinematic moment of inertia (�(1)),
and dynamic moment of inertia (�(2)), hereafter also referred to
as DMOI, are the three quantities that characterizes the evolution
of the band with the spin. These are given by

�(1) = I

(
dE

dI

)−1

,

�(2) =
(

d2E

dI 2

)−1

. (4)

For an ideal rotor, � ≡ �(1) ≡ �(2). However, in a realistic
scenario, the excited level structure in a nucleus has also
been determined by the slow alignment of the pairing effect
between the valance nucleons and the centrifugal stretching
due to rotation [16]. Both the effects result in a DMOI that is
dependent on the rotational frequency. Both these effects can
be described by the well-known semiclassical formalisms, the
Harris parametrization [17] and variable moment of inertia
model [18]. However, in most of the cases the SD band head
is not well determined, and these two models are not adequate
to determine DMOI.

Interestingly, a simple semiclassical expression between
�(1) and �(2) has been derived by Wu et al., [21,22]. The two
parameter expression, using the Bohr Hamiltonian [24] for
a well-deformed nucleus with small axial symmetry has been
quite successful in describing the SD band rotational spectrum.
Here the authors have quantified a constant R as a function of
the angular momentum I , such that R ≡

√
[�(1)]3/�(2). One

can infer from this formalism that the moment of inertia can
be represented in a functional form fn(ω), n = 1 and n = 2
give �(1) and �(2), respectively. The function is given as

fn(ω) = �◦

[
1 − (�ω)2

a2b

]( 1
2 −n)

, (5)

where �◦ is the band-head moment of inertia, and a, and b are
related with �◦ via

�◦ = �
2

ab
. (6)

The preceding two equations, (5) and (6), indicate that the
there is a slow variation of DMOI with rotational frequency.
In addition, the dynamic and kinematic moment of inertia in
SD bands are related to the band-head moment of inertia, �◦,
through the two parameters and rotational frequency, ω, as the
independent variable.

At this juncture, I now introduce the model primarily based
on the two semiclassical scenarios mentioned previously,
and the vibrational-rotational energy function, Eq. (1). In
addition I also consider the experimental evidences of the
octupole vibrational coupling to the SD states [25–27] and the
phenomenon of fission isomers [28] that indicates a certain
type of binary or cluster structure or reflection asymmetry in
this type of high spin and high energy states.

The phenomenological model is chosen such that it in-
corporates a vibration-like distortion part and describes the
slow variation of DMOI for smooth SD bands where no sudden
alignments have been observed. The function has the property
such that at the band head the magnitude of the vibrational

coupling is maximum and it goes to zero at the maximum
observed spin ωmax. There are two modes of vibrational
distortional coupling. When the vibrational amplitude is in
the perpendicular direction to the rotation axis it increases the
dynamic moment of inertia. The dynamic moment of inertia
exhibits the opposite trend when the vibrational coupling is in
the direction parallel to the rotation axis.

From previously mentioned energy levels of the molecular
excitation [Eq. (1)], one obtains a moment of inertia term
dependent on the vibrational distortion and rotational angular
momentum, in the present case I propose the DMOI as a function
of rotational frequency and vibration distortion as

�(2) = �(2)
c ± �(2)

vib

[
ωmax − ω

ωmax

]2

, (7)

where �(2)
c and �(2)

vib are, respectively, the constant and the
vibration dependent part of DMOI. Parameter �(2)

vib is such that
it describes the magnitude of the deviation of DMOI from the
perfect rotor behavior. The quantity ((ωmax − ω)/ωmax)2 is a
function of rotational frequency, ω, such that at ω = ωmax, it
goes to zero. ωmax is determined from the maximum observed
rotational frequency of a SD band. It is assumed here that
the SD band terminates at this value. Depending on the initial
curvature of the experimental DMOI, the coupling between �(2)

c

and �(2)
vib is either positive or negative. �(2)

vib couples positively to
the constant part, if the vibration is in the plane of rotation. For
the negative coupling, the vibration amplitude is more aligned
towards the rotation axis, and hence decreases the magnitude
of the moment of inertia.

II. FORMALISM

The atomic nucleus is a finite Fermi system. The value of
the moment of inertia of the nucleus, �, lies between a rigid
rotor and a liquid rotor, �liquid < � < �rgd. One can extract the
moment of inertia parameter for a rotational band using the
relation, Ex = �

2

2�I (I + 1). However, the average properties
of a band in a nucleus are better described by the �(1) and
DMOI.

Experimentally, for most of the SD bands the band-head
spin is not assigned firmly, due to the missing or low intensity
of the intraband linking transitions. Hence, in this work the
properties of SD bands have been viewed from the DMOI

perspective, and the overall patterns in the mass region 150
are observed.

The DMOI function is given as in Eq. (7). The function
is single valued and smooth. The function has a constant
part �(2)

c and a slowly varying vibrational part, parametrized
through �(2)

vib[(ωmax − ω)/ωmax]2. Using least-square fitting the
two parameters of this function were extracted from the
experimental DMOI values. Then the constant part is related
to the MOI of the rigid core and the variation part is similar to
first term of Inglis moment of inertia �Inglis [29].

In this model the vibrational distortion effect is
parametrized through the effective moment of inertia, �(2)

vib,
as a function of rotational frequency. It is noteworthy that
the function exhibits a constant behavior if ω is scaled to
[(ωmax − ω)/ωmax]2. Using Eq. (1), an approximate relation
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can be inferred between �(2)
c and Bν , as well as �(2)

vib and Dν .
While �(2)

c is equivalent to 1/Bν , �(2)
vib ∼ Dν[Iωmax/(ωmax −

ω)]2. The coupling between the two parameters �(2)
c and �(2)

vib
is determined by the dynamics of the SD band.

III. RESULTS

The DMOI [Eq. (7)] have been fitted to the experimental
values using the least square minimum procedure to extract the
two parameters �(2)

c and �(2)
vib for 23 SD bands in the mass 150

region. The extracted values are tabulated in Table I, along with
the rms of the residuals for the fit,

∑n
i=1(�(2)cal

i − �(2)obs
i )2/n,

where n, �(2)cal , and �(2)obs , respectively, are the number of
degrees of freedom, calculated value of DMOI, and observed
value of DMOI. For each of the 23 cases shown here, the nature
of the DMOI in the entire rotational frequency range is well-
reproduced individually.

Overall, the experimental values of the constant part to
DMOI, �(2)

c , has a small spread, 72.3+15.2%
−9.36%, the �(2)

vib values
span 3.7�

2 MeV−1 to 88.7�
2 MeV−1. The characteristics of

DMOI have been identified through the magnitude and coupling
(positive or negative) of the parameters �(2)

vib and �(2)
c .

In Figs. 1, 2, and 3, the nuclei with three distinct patterns
in DMOI components are plotted. Three categories of DMOI, I,
II, and III, are identified depending on the magnitude of the
ratio of the DMOI component, �(2)

c and �(2)
vib, and nature of the

coupling. In the category I, the average magnitude of �(2)
c is

about eight times the average magnitude of �(2)
vib (Fig. 1). The

TABLE I. Fitted parameter values, �(2)
c , �(2)

vib using Eq. (7) are
tabulated.

Isotope (Band) Category �(2)
c �(2)

vib rms of residuals

143Eu (SD1) I 67.4882 5.51486 1.30959
143Gd (SD) I 68.2859 12.0957 1.00398
144Gd (SD2) I 68.2249 3.6832 0.703386
147Gd (SD2) II 65.6736 62.4044 0.515283
147Tb (SD) I 70.8534 13.7481 0.638003
148Eu (SD1) II 71.209 35.9854 0.521523
148Eu (SD2) II 71.8992 37.1367 1.07683
148Gd (SD1) II 66.3205 50.523 0.817359
148Gd (SD6) II 70.5666 70.2551 0.617295
149Gd (SD1) II 69.9208 41.7947 0.621519
149Gd (SD5) II 66.8639 52.4335 0.99385
149Gd (SD6) II 65.5212 58.6527 1.71442
149Tb (SD2) II 74.1203 16.4275 0.546993
150Gd (SD5) II 70.6088 42.7737 0.667379
150Gd (SD8) II 70.0014 49.3173 0.307386
150Gd (SD9) II 66.3469 47.9009 1.18063
150Gd (SD10) II 71.6982 56.9163 0.37468
150Gd (SD12) III 83.2367 15.7484 1.48063
150Tb (SD1) II 73.4802 17.9999 0.57067
151Gd (SD3) II 69.2381 35.52 0.594611
151Tb (SD2) III 82.8791 19.2366 1.03616
152Dy (SD1) III 82.906 16.4917 0.523973
153Dy (SD3) III 82.91 17.0606 0.812715
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FIG. 1. �(2) vs. ω for Category I SD bands are shown. The red
line represents the average curve with the parameter value, �(2)

c =
68.7 (�2 MeV−1) and �(2)

vib = 8.8, respectively. The blue region spans
±5% of the value of the two parameters.

nuclei, 143Eu, band 1, 143Gd yrast SD band, 144Gd band 2, and,
147Tb yrast SD band, fall under this category. In this region
two other SD bands, 150Tb SD band 2, and 151Dy SD band
1 also show a similar magnitude of the negative coupling of
�(2)

vib, but the magnitude of �(2)
c is quite higher and hence not

included in the category I.
Thus, the region I is characterized by the averages �(2)

c =
68.7 (�2 MeV−1), and �(2)

vib = 8.8 (�2 MeV−1). Curiously, the
coupling between the DMOI component is negative, hence, the
initial DMOI starts with a lower value, that gradually increases
and becomes equal to �(2)

c at ω = ωmax. The shaded blue region
in Fig. 1 corresponds to ±5% of the average values, depicted
by the red line. All the experimental �(2) values are found to
be within the region.

In category II, one finds 15 SD bands, where �(2)
c is

about 1.5 times �(2)
vib and the coupling is positive like the

previous category. Due to a considerable increase in the
magnitude of the frequency dependent part, the initial DMOI

is high and decreases much more rapidly than the other
two categories. The DMOI components �(2)

c and �(2)
vib have

comparable magnitude and on the average are given as
69.3 (�2 MeV−1) and 47 (�2 MeV−1), respectively.

In the final category III (Fig. 3), the coupling be-
tween �(2)

c and �(2)
vib is positive, and average values of the

DMOI components are �(2)
c = 82.98 (�2 MeV−1) and �(2)

vib =
17.1 (�2 MeV−1). Here, �(2)

c is higher than other two regions
and about five times the average �(2)

vib value. As a result of
the coupling the initial DMOI is higher and decreases to a �(2)

c

value at ω = ωmax. 150Gd SD band 12, 151Tb SD band 2, 152Dy
SD band 1, and 153Dy SD band 3 belong to this category. The
green region represents the ±5% of the average values shown
by the red line.
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FIG. 2. �(2) vs. ω for Category II SD bands are shown. The red line represents the average curve with the parameter value, �(2)
c =

69.18 (�2 MeV−1) and �(2)
vib = 45.21 (�2 MeV−1), respectively. The yellow region spans ±7% of the value of the two parameters.

Thus, the three categories are given by the values:

�(2)
c : �(2)

vib = 68.70+3.43
−3.43 : 8.80+0.44

−0.44 Category I,

�(2)
c : �(2)

vib = 69.18+4.84
−4.84 : 45.2+3.16

−3.16 Category II,

�(2)
c : �(2)

vib = 82.98+4.14
−4.14 : 17.13+0.86

−0.86 Category III.

It is interesting to note that �(2)
c ∼ 68.70, for Categories I

and II are very close in magnitude, but the coupling of the
�(2)

vib component gives rise to two different behaviors. Category
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151Tb2
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FIG. 3. �(2) vs. ω for Category III SD bands are shown. The red
line represents the average curve with the parameter values �(2)

c =
82.98 (�2 MeV−1) and �(2)

vib = 17.13 (�2 MeV−1), respectively. The
green region spans ±5% of the value of the two parameters.

III SD bands have a different core value of �(2)
c = 82.98+4.14

−4.14
but the coupling is similar in nature to Category II. Hence,
Categories II and III match at the band-head frequency, while
Categories I and II match at the highest frequency ωmax, where
�(2)

vib = 0.

IV. SUMMARY

An empirical semiclassical two-parameter model has been
used to investigate the characteristics of DMOI of the SD band
in the mass 150 region. Using the model, three categories of
DMOI have been identified. The DMOI in this model has been
parametrized such that the component �(2)

c is constant and �(2)
vib
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FIG. 4. The �(2) vs. ω plot shows the three regions with �(2)
c /�(2)

vib

∼ 8 (blue), �(2)
c /�(2)

vib ∼ 5 (green), and �(2)
c /�(2)

vib ∼ 1.5 (yellow) for
the given span of angular frequency.
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is dependent on angular frequency. Experimental values, of
23 SD bands, which show a smooth behavior has been fitted
using Eq. (7). In all the cases a reasonably good fit has been
obtained.

The three categories of the DMOI are shown for a given
angular frequency range in Fig. 4. It is interesting to note
that at the lower frequency limit, Categories II and III, DMOI

overlap. This indicates that in both scenarios, the band head
DMOI is similar, but the magnitude of the coupling of the vi-
brational component is different. At higher angular frequency,
these two DMOI become distinctly separate and reach the
respective average rigid core values of 82.98 (�2 MeV−1) and
69.3 (�2MeV−1) for Categories III and II.

At the higher frequency limit, DMOI in Categories, I
and II overlap. While at the band head the two categories
have different values, at the highest frequency ωmax, the
band behavior merges. This shows that as the frequency
increases the effect of the vibrational component diminishes
and DMOI merges towards the core component value of ∼69.3
(�2 MeV−1).

Thus, in this study, three distinct patterns of the DMOI have
been highlighted. A substantial number of SD bands have been
fitted using the model and good agreement is observed between
the experiment and the phenomenological model. As a result,
the DMOI may be thought to have a rather weak dependence
on their respective nucleonic configurations. The angular
frequency component, given by [(ωmax − ω)/ωmax]2, is a direct
measure of the vibrational distortion effect and responsible for
the deviation from the ideal rotor. It is natural that this model
will also work for smooth SD bands in other mass regions. The
present model can also be extended to calculate the B(E2) rates
by parametrizing the charge asymmetry through the vibrational
distortion effect.
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