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Sum rule study for double Gamow-Teller states
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We study the sum rules of double Gamow-Teller (DGT) excitations through double spin-isospin operator
(σ t−)2. In general, 2+ states in the grand-daughter nuclei have dominant transition strength in DGT excitations
and 0+ states are weak, except in T = 1 mother nuclei in which 0+ strength is competitive with 2+ strength.
The isospin selection of DGT is also discussed among five possible isospin states in grand-daughter nuclei. A
possibility to extract the unit cross section for the DGT transition strength is pointed out in the (σ t−)2 excitation
of double isobaric analog state (DIAS) in T = 1 nuclei.
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Double charge exchange excitations (DCX) induced by
heavy ion beams at intermediate energies [1,2] attract a lot
of interest in relations with new collective excitations such
as double Gamow-Teller giant resonance (DGTR) and also
double β decay matrix elements. In the 1980s, the double
charge exchange reactions (DCX) were performed by using
pion beams, i.e., (π+,π−) and (π−,π+) reactions. Through
these experimental studies, the double isobaric analog states
(DIAS), the dipole giant resonance (GDR) built on the IAS, and
the double dipole resonance states (DGDR) are identified [3–
5]. However, DGTR were not found in the pion double charge
exchange spectra. In the middle of 1990s, the heavy-ion double
charge exchange experiments were performed at energies of
76 and 100 MeV/u with a hope that DGTR might be observed
in the 24Mg(18O, 18Ne)24Ne reaction [6]. However, no clear
evidence of DGTR was found in these reactions. This is mainly
because the (18O, 18Ne) reaction is a (2n,2p) type DCX one
and even the single GT τ+ resonance by (n,p) reaction is weak
in a N = Z nucleus 24Mg. Other reasons were low intensity
of beams and nonoptimal energy to excite the spin-isospin
responses. A new research program based on a new DCX
reaction [12C, 12Be(0+

2 )] is planned at RIKEN RIBF facility
with high intensity heavy ion beams at the optimal energy of
Elab = 250 MeV/u to excite the spin-isospin response [7]. A
big advantage of this reaction is based on the fact that it is a
(2p,2n) type DCX reaction and one can use neutron-rich target
to excite DGT strength. Although many theoretical efforts have
been made for studies of double β decays, DGT strengths
corresponding to the double β decays are still too small to
be identified in the reaction experiments. Minimum-biased
theoretical prediction based on sum rules will provide a robust
and global view of the DGTR and can be a good guideline for
the future experimental studies.

In this paper, we present useful formulas to analyze the DGT
strength using several sum rules for the double spin-isospin
operator (σ t−)2. We study also DIAS excited through the
double Fermi transition operator (t−)2 and double GT operator
(σ t−)2. The DIAS state might be a sharp peak close to DGT
peaks and can be used to extract the unit cross section between
the absolute DGT strength and the forward angle DCX cross
sections. The isospin structure of DGT strength is also given
by using the isospin coupling scheme of DGT states.

The sum rule for the single GT transitions is well known
and proportional to the neutron excess,

S− − S+ =
∑
f

|〈f |Ô−(GT)|i〉|2 −
∑
f

|〈f |Ô+(GT)|i〉|2

= 3(N − Z), (1)

where the GT transition operators read

Ô±(GT) =
∑

α

σ (α)t±(α). (2)

The GT sum rule is model independent and gives a good
guidance to perform the single charge exchange reactions such
as (p,n) and (3He ,t) reactions, to observe GTR strength in
many nuclei (see, for example, a review article Ref. [8]).

The DGT transition operator Ô±(GT)2 can be projected to
good multipole states to be

[Ô±(GT) × Ô±(GT)]Jμ, J = 0,2. (3)

The sum rule strength is defined as

DJ
± =

∑
Jf Mf ,μ

∣∣〈Jf ,Mf |[Ô± × Ô±]Jμ|JiMi〉
∣∣2

= 〈JiMi |
∑

μ

(−1)μ[Ô∓ × Ô∓]Jμ[Ô± × Ô±]J−μ|JiMi〉,

(4)

where Ji and Jf are the angular momenta of the initial and final
states, respectively. The sum rule strength is also expressed by
the reduced matrix element,

DJ
± = 1

2Ji + 1

∑
Jf

|〈Jf ||[Ô± × Ô±]J ||Ji〉|2, (5)

where the double bar means the reduced matrix element for
the angular momentum. Hereafter we denote the initial state
|JiMi〉 by a simple notation |i〉. The sum rule value for J = 0
excitations is then evaluated as

D
(J=0)
− − D

(J=0)
+ = 〈i|[[Ô+ × Ô+](J=0),[Ô− × Ô−](J=0)]|i〉

= 2(N − Z)(N − Z + 1) + 4
3 [(N − Z)S+

− 〈i|[i�̂ · (Ô− × Ô+) + �̂ · �̂]|i〉], (6)
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where

�̂ =
∑

α

σ (α) (7)

and (Ô− × Ô+) is the vector product of two operators. In the
last line of Eq. (6), we use an identity

(Ô+ × Ô−) · �̂ = −�̂ · (Ô− × Ô+) + 2i�̂ · �̂ (8)

which makes the final formula of the sum rule (6) different
from those in Refs. [9,11], but it is equivalent to the one in
Ref. [10]. It is important for quantitative study to rewrite the
formula by using the identity (8) since the terms including Ô+
on the right can be omitted in N > Z nuclei in a good accuracy.
The sum rule for Jπ = 2+ final states can be obtained in a
similar way to that for J = 0 states:

D
(J=2)
− − D

(J=2)
+

= 〈i|
∑

μ

(−1)μ
[
[Ô+ × Ô+](J=2)

μ ,[Ô− × Ô−](J=2)
−μ

]|i〉

= 10(N − Z)(N − Z − 2)

+ 10

3
[2(N − Z)S+ + 〈i|[i�̂ · (Ô− × Ô+) + �̂ · �̂]|i〉].

(9)

It should be noticed that the sum rule for J = 2 final states is
not given in Refs. [9,10], but given in Ref. [11] in a different
form.

Next, we consider the DGT transition to the DIAS state.
The DIAS state is defined as

|DIAS〉 = T−T−
Nf

|i〉, (10)

where T− = ∑
α t−(α) is the isospin lowering operator and the

normalization factor is Nf = √
2(N − Z)(N − Z − 1). The

double Fermi transition to DIAS state is evaluated to be

|〈DIAS|T−T−|i〉|2 = 2(N − Z)(N − Z − 1), (11)

in which the mother state is assumed to have a good isospin
quantum number T = Tz = (N − Z)/2. The DGT transition
to DIAS is also expressed as

D
(J=0)
− (DIAS) = |〈DIAS|[Ô− × Ô−](J=0)|i〉|2

=
∣∣∣∣

1

Nf

〈0̂|T+T+[Ô− × Ô−](J=0)|i〉
∣∣∣∣
2

= 1

3N2
f

[8�sum − 2(S− + S+)]2

= 1

6(N − Z)(N − Z − 1)

× [8�sum − 2(S− + S+)]2, (12)

where �sum is the sum rule of the isovector spin transition,

�sum = 〈i|
∑
α,μ

σμ(α)tz(α)
∑
β,μ′

σμ′(β)tz(β)|i〉. (13)

For a single-j configuration with the occupation probability
v2, the value �sum is evaluated to be

�sum =
∑
p,h,μ

|〈(ph)1μ|σμtz|0̂〉|2

= 1

4

v2
h(2jh + 1)(2jh − 1)

jh

for jh = jp + 1, (14)

where we use a filling approximation for the last occupied
orbit.

Calculated sum rule values for DGT transitions to Jπ = 0+
and 2+ in Eqs. (6) and (9), respectively, are listed in Table I
for ten nuclei, together with those for DIAS states by Fermi
and GT operators (11) and (12). In N > Z nuclei with the

TABLE I. Various sum rule values for DGT transitions to J π = 0+,2+ and DIAS states. The double Fermi transitions to DIAS are also
listed. For Eqs. (6) and (9), the spin sum rule �̂ · �̂ terms in the last line is obtained by shell model calculations: 6He, 8He, and 14C in p-shell
model space with CKII interaction, 18O and 20O in sd-shell model space with USDB interaction, and Ca isotopes in pf -shell model space with
GXPF1A interaction. The single particle value of �sum is used for 90Zr. The single particle values from Eq. (13) are given in the bracket in the
sixth column. In the second and third columns, the value in the bracket is the upper limit for J = 0, while that is the lower limit for J = 2.
Notice that Vogel et al. in Ref. [9] and Zheng et al. in Ref. [10] calculated only the J = 0 channel and a factor 3 larger than the present one
because of the exact angular momentum projection in the present results. The values �sum for DIAS(J=0) (DGT) in Eq. (12) are calculated by
using the same shell model calculations as for �̂ · �̂. The sum rule value DIAS(J=0) (DGT) with the single particle value �sum (13) is also
listed in the fifth column with bracket.

Initial state (J = 0) (J = 2) DIAS DIAS(DGT) �sum

6He 12.0(12) 0.0 (0) 4 3.70(3.70) 0.211 × 10−3 (0.667)
8He 39.7(40) 80.7 (80) 24 7.71(2.47) 0.052 (1.333)
14C 8.98(12) 7.55 (0) 4 4.56 (0.15) 0.566 (1.333)
18O 10.4(12) 3.96 (0) 4 7.72 (2.61) 0.297 (0.80)
20O 35.5(40) 91.3 (80) 24 4.13 (1.74) 0.845 (1.60)
42Ca 8.50(12) 8.75 (0) 4 3.80 (2.18) 0.66 (0.86)
44Ca 32.6(40) 98.5(80) 24 2.31 (1.47) 1.38 (1.71)
46Ca 72.3(84) 269.3(240) 60 1.89 (1.32) 2.20 (2.57)
48Ca 135.5(144) 501.2(480) 112 3.70 (1.25) 1.59 (3.43)
90Zr 196.3(220) 859.2(800) 180 (1.11) (4.44)
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good isospin quantum number, the vector product (Ô− × Ô+)
and the sum S+ in Eqs. (6) and (9) vanish because of the
isospin raising operator in Ô+ . The spin sum rule �̂ · �̂ term
is obtained by shell model calculations: 6He, 8He, and 14C with
p-shell model space with CKII interaction, 18O and 20O with
sd-shell model space with USDB interaction, and Ca isotopes
with pf -shell model space with GXPF1A interaction. The
single particle value is used for 90Zr assuming the neutron
excitation from 1g9/2 to 1g7/2. The value in the bracket is
obtained without the spin sum rule term, i.e., the upper limit
for J = 0, while the lower limit for J = 2. Notice that Vogel
et al. in Ref. [9] and Zheng et al. in Ref. [10] calculated only
the J = 0 channel and give a factor 3 larger than the present
one because of no exact angular momentum projection in their
results. The values �sum for DIAS(J=0) (DGT) in Eq. (12) are
calculated by using the same shell model wave functions as
for �̂ · �̂ and shown in the sixth column in Table I. The single
particle values of Eq. (13) are given in the bracket in the sixth
column. The value DIAS(J=0)

− (DGT) with the single particle
value �sum is listed in the fifth column with brackets. In all the
nuclei in the present study, the value of �sum is one-fourth of
�̂ · �̂ because of a semiclosed configuration (either proton or
neutron configuration is a closed shell).

The values �sum, equivalently �̂ · �̂, are almost negligible
for p-shell nuclei 6He and 8He, because of good SU(4)
spin-isospin symmetry in which the spin transitions are
allowed only for spin and isospin flip transition between
(S,T ) = (0,1) → (1,0). This selection turns out to be the
selection of transitions (Jπ ,T ) = (0+,1) → (1+,0) in 6He and
(Jπ ,T ) = (0+,2) → (1+,1) in 8He, which correspond to the
charge exchange GT transitions. The shell model values �sum

are smaller than the single-particle values in other nuclei by
a factor 1.2 ∼ 2.5. The effect of the �̂ · �̂ term for J = 0
and J = 2 sum rules are negligible for 6He and 8He, while
it amounts at most to 20% in other nuclei with T > 1 and it
becomes much larger in T = 1 nuclei such as 14C, 18O, and
42Ca.

In N 	 Z nuclei, the sum rule values of DGT transitions
are approximately proportional to the (2J + 1) factor, i.e.,
the value for J = 2 is 5 times larger than that for J = 0 in
the same nucleus. However, this proportionality is strongly
modified in N ∼ Z nuclei. In the extreme, the sum rule for
J = 2 transitions is smaller than that for J = 0 in the nuclei
6He, 14C, and 18O with N = Z + 2, and the two values are
almost equal in 42Ca.

It is noticed that the DGT transition to DIAS state is much
smaller than the sum rule values of DGT transitions for J = 0
and J = 2 states in nuclei with N > Z + 2. However, in T = 1
nuclei, the DGT transition to the DIAS state is comparable with
the DGT sum rules (6) and (9). This characteristic turns out the
possibility to extract the unit cross section for DGT transition
in T = 1 nuclei, especially 14C and 18O, since the DIAS state
might have a narrow width and may be distinguished clearly
from other DGT states in double charge exchange reactions.
This argument is entirely benefited from the fact that the
spin-isospin response is much more favorable than the isospin
response in the medium energy charge exchange reactions with
Elab ∼ 200 MeV/u.

So far the isospin dependence of DGT sum rules in
the grand-daughter nucleus is not considered. For the DGT
transitions from a mother nucleus with the isospin T , five
different isospin states T ′′ = T + 2,T + 1,T ,T − 1,T − 2
are expected for the grand-daughter nucleus with Tz = T − 2.
DIAS is a state with T ′′ = T . The isospin selection amplitude
A(T ′′) for different isospin T ′′ in the grand-daughter nucleus
can be calculated by a combination of Clebsch-Gordan
coefficients,

A(T
′′
) =

∑
T ′

〈T T 1 − 1|T ′T − 1〉〈T ′T − 11 − 1|T ′′T − 2〉

= 〈T T 2 − 2|T ′′T − 2〉

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2T −3
2T +1 for T ′′ = T − 2√

2(2T −1)
(T +1)(2T +1) for T ′′ = T − 1√

6
(T +1)(2T +3) for T ′′ = T√

6
(T +1)(T +2)(2T +1) for T ′′ = T + 1√

6
(T +1)(T +2)(2T +1)(2T +3) for T ′′ = T + 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(15)

The calculated values referring to mother nuclei with different
isospins T = 1 ∼ 22 are given in Table II. For the mother
nucleus with T = 1, only three isospin states T ′′ are allowed by
DGT excitations. For mother nuclei with large isospin T > 2,
the isospin T ′′ = T − 2 give the major contributions. On the
other hand, for mother nuclei with small isospin T � 2, the
dominant configurations are T ′′ = T for T = 1 and T ′′ = T −
1 for T = 2 mother nuclei.

In summary, we studied the sum rules of DGT excitations
by the operator (σ t−)2. In nuclei N > Z + 2, the Jπ = 2+
excitations dominate the DGT strength, due to the multipole
factor (2J + 1), more than 0+ excitations. However, in nuclei
with N ∼ Z, the 0+ excitations become substantially stronger,
even larger than 2+ excitations in light nuclei with T = 1 such
as 14C an 18O. The excitation to DIAS is also studied through
(σ t−)2 and t2

− operators to investigate the possibility to extract
the unit cross sections for DGT strength. We pointed out that
the strength of DIAS excitations by the (σ t−)2 operator is
competitive to DGT strength in the light T = 1 nuclei. This

TABLE II. Splitting of DGT strength to different isospin final
state with T ′′ = T ± 2,T ± 1,T for the initial state with T = 1 ∼ 22.
Probability A(T ′′)2 of each isospin T ′′ for a given T is listed in %.

T T ′′

T − 2 T − 1 T T + 1 T + 2

1 – – 60 33.3 6.7
2 20 40 28.6 10 1.4
3 42.9 35.7 16.7 4.3 0.5
4 55.6 31.1 10.9 2.2 0.2
5 63.6 27.3 7.7 1.3 0.1
8 76.5 19.6 3.5 0.4 0.0
22 91.1 8.3 0.6 0.0 0.0
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characteristic feature may give a good opportunity to extract
the unit cross section for DGT strength. The isospin structure
of DGT is also studied in the grand-daughter nuclei. Among
five possible isospin states T ′′ = T ± 2,T ′′ = T ± 1,T ′′ = T
in a grand-daughter nucleus referred to a mother state with
the isospin T , the largest component appears for T ′′ = T − 2

states for T > 2 nuclei, while T ′′ = T and T ′′ = T − 1 states
are dominant in the final states in T = 1 and T = 2 nuclei,
respectively.
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