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Consistent description of 12C and 16O has been a long-standing problem of microscopic α cluster models,
where the wave function is fully antisymmetrized and the effective interaction is applied not between α clusters
but between nucleons. When the effective interaction is designed to reproduce the binding energy of 16O (four α),
the binding energy of 12C (three α) becomes underbound by about 10 MeV. In the present study, by taking into
account the coupling with the jj -coupling shell model components and utilizing the Tohsaki interaction, which is
phenomenological but has finite-range three-body interaction terms, it is shown that consistent understanding of
these nuclei can be achieved. The original Tohsaki interaction gives a small overbound value of about 3 MeV for
16O, and this is improved by slightly modifying the three-body Majorana exchange parameter. Also, the coupling
with the jj -coupling shell model wave function strongly contributes to the increase of the binding energy of 12C.
So far the application of the Tohsaki interaction has been limited to 4N nuclei; here, Bartlet and Heisenberg
exchange terms are added in the two-body interaction part for the purpose of applying it to neutron-rich systems,
and it is applied to 6He.
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I. INTRODUCTION

The nuclei 12C and 16O are typical light nuclei, and they
have been extensively studied based on the cluster approaches
[1]. Since there is no bound nucleus with mass number 5 or 8,
formation of 12C from three 4He nuclei (α clusters) is a key pro-
cess of the nucleosynthesis. Here, the second 0+ state at Ex =
7.6542 MeV plays a crucial role, which is the second excited
state of 12C and is located just above the threshold energy to
decay into three 4He nuclei [2]. The existence of a three-α state
just at this energy is an essential factor in the synthesis of var-
ious elements in stars. For 16O also, cluster structure has been
shown to be extremely important. Although the ground state
corresponds to the doubly closed p shell of the shell model, this
configuration can be also interpreted from four-α and 12C +α
viewpoints, if one takes certain limits for the intercluster dis-
tances. Also the first excited state of 16O at Ex = 6.0494 MeV,
very close to the threshold to decay into 12C and 4He, can
be interpreted as a 12C +4He cluster state [3], and low-lying
cluster states just around the threshold are quite important in
the synthesis of 16O in stars [4]. Various cluster models have
been proposed and successfully applied to these nuclei.

However, a consistent description of 12C and 16O has been
a long-standing problem of microscopic α cluster models.
Here the definition of the microscopic model is that the wave
function is fully antisymmetrized and the effective interaction
is applied not between α clusters but between nucleons. When
the effective interaction is designed to reproduce the binding
energy of 16O (four α), the binding energy of 12C (three α)
becomes underbound by about 10 MeV. On the other hand,
when the binding energy of 12C is reproduced, 16O becomes
overbound by about 20 MeV. The author and collaborators
have previously utilized the Tohsaki interaction [5], which
has finite-range three-body terms, and the obtained result is
better than ones only within the two-body terms; however, the
problem has not been fully solved [6].

One clue to solving this problem is the inclusion of the
spin-orbit interaction. In most of the cluster models, α clusters

are defined as simple a (0s)4 configuration at some point. These
α clusters are spin singlet systems and the spin-orbit interaction
does not contribute inside α clusters and also between α clus-
ters. In the jj -coupling shell model, the spin-orbit interaction
is quite important, and this plays an essential role in explaining
the observed magic numbers. According to the jj -coupling
shell model, 12C corresponds to the subclosure configuration of
spin-orbit attractive orbits (p3/2) and the spin-orbit interaction
works attractively, whereas 16O corresponds to the closure
of a major shell (p shell), where both spin-orbit attractive
(p3/2) and repulsive (p1/2) orbits are filled and the contribution
of the spin-orbit interaction cancels. Therefore, inclusion of
the α breaking wave function and taking into account the
spin-orbit contribution are expected to decrease the binding
energy difference of 12C and 16O. To describe the jj -coupling
shell model states and include the spin-orbit contribution
starting with the cluster model, the author and collaborators
proposed the antisymmetrized quasicluster model (AQCM)
[7–13]. In the AQCM, the transition from the cluster to shell
model structure can be described by only two parameters: R
representing the distance between α clusters and � which
characterizes the transition of α cluster(s) to quasicluster(s)
and quantifies the role of the spin-orbit interaction.

In nuclear structure calculations, it is quite well known
that the central part of the nucleon-nucleon interaction in the
calculation should have proper density dependence in order to
satisfy the saturation property of nuclear systems. If one just
introduces a simple two-body interaction, for instance Volkov
interaction [14], which has been widely used in the cluster
studies, one has to properly choose a Majorana exchange
parameter for each nucleus, and consistent description of two
different nuclei with the same Hamiltonian becomes tough
work. Thus it is rather difficult to reproduce the threshold
energies to decay into different subsystems.

Concerning the density dependence of the interaction,
adding a zero-range three-body interaction term helps improve
agreements with experiments, as in the modified Volkov (MV)
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interaction [15]. However, in this case the binding energies
become quite sensitive to the choice of the size parameter of
the Gaussian-type single-particle wave function. Especially,
the binding energy and radius of 4He cannot be reproduced
consistently. This situation is especially common in the case
of the Gogny interaction widely used in mean field studies [16].
The nucleus 4He is a building block of α cluster states, and it
is desired that its size and binding energy be reproduced. The
Tohsaki interaction, which has finite-range three-body terms,
has many advantages compared with the zero-range three-body
interactions. This interaction is a phenomenological one and
is designed to reproduce the α-α scattering phase shift. Also
it gives reasonable size and binding energy of the α cluster,
which is rather difficult in the case of the zero-range three-body
interaction, and the binding energy is less sensitive to the
choice of the size parameter of the Gaussian-type singleparticle
wave function because of the finite-range effect of the three-
body interaction. Furthermore, the saturation properties of
nuclear matter are reproduced rather satisfactory.

Of course, introducing a term proportional to the fractional
power of the density is another possibility to reproduce
the saturation properties of nuclear systems, as in density
functional theories (DFTs), instead of introducing three-
body interaction terms. However, in the present study, parity
and angular momentum projections are performed, and also
superposition of many Slater determinants is carried out based
on the generator coordinate method (GCM). In this case, it
is desired that the Hamiltonian be expressed in an operator
form, such as a three-body interaction, which enables us
to calculate the transition matrix elements between different
Slater determinants. From this viewpoint, a simplified version
of finite-range three-body interaction is proposed in Ref. [17].

The purpose of the present work is to combine the use of
a finite-range three-body interaction for the interaction part
and AQCM for the wave function part to establish consistent
understanding of 12C and 16O. The original Tohsaki interaction
gives a small overbound value for 16O (about 3 MeV) [6]; here,
the author tries to improve the result by slightly modifying
the three-body Majorana exchange parameter. For 12C, the
subclosure configuration of the jj -coupling shell model,
where the spin-orbit interaction plays an important role, is
coupled to a three-α model space based on AQCM. For 16O,
the closed shell configuration of the p shell is the dominant
configuration of the ground state, and the four-α model, which
covers the model space of the closed p shell, is applied. Also,
the application of the Tohsaki interaction has been limited to
4N nuclei, and Bartlet and Heisenberg exchange terms are
added in the two-body interaction for the purpose of applying
it to neutron-rich systems.

II. THE MODEL

A. Hamiltonian

The Hamiltonian (Ĥ ) consists of kinetic energy (T̂ ) and
potential energy (V̂ ) terms,

Ĥ = T̂ + V̂ , (1)

TABLE I. Parameter set for the two-body part of the Tohsaki
interaction (F1 parametrization in Ref. [5]) together with the strengths
of the three-body interaction.

α μα (fm) V (2)
α (MeV) V (3)

α (MeV) M (2)
α W (2)

α

1 2.5 − 5.00 − 0.31 0.75 0.25
2 1.8 − 43.51 7.73 0.462 0.538
3 0.7 60.38 219.0 0.522 0.478

and the kinetic energy term is described as a one-body operator,

T̂ =
∑

i

t̂i − Tcm, (2)

where the center-of-mass kinetic energy (Tcm), which is
constant, is subtracted. The potential energy has central
(V̂central), spin-orbit (V̂spin-orbit), the Coulomb parts.

B. Tohsaki Interaction

For the central part of the potential energy (V̂central),
the Tohsaki interaction is adopted. The Tohsaki interaction
consists of two-body (V (2)) and three-body (V (3)) terms:

V̂central = 1

2

∑
i �=j

V
(2)
ij + 1

6

∑
i �=j,j �=k,i �=k

V
(3)
ijk , (3)

where V
(2)
ij and V

(3)
ijk consist of three terms,

V
(2)
ij =

3∑
α=1

V (2)
α exp

[−(�ri − �rj )2/μ2
α

](
W (2)

α + M (2)
α P r

)
ij
,

(4)

V
(3)
ijk =

3∑
α=1

V (3)
α exp

[−(�ri − �rj )2/μ2
α − (�ri − �rk)2/μ2

α

]

× (
W (3)

α + M (3)
α P r

)
ij

(
W (3)

α + M (3)
α P r

)
ik
. (5)

Here, P r represents the exchange of the spatial part of the
wave functions of interacting two nucleons, and this is equal to
−P σ P τ due to the Pauli principle (P rP σ P τ = −1), where P σ

and P τ are spin and isospin exchange operators, respectively.
The range parameters {μα} are set to be common for the
two-body and three-body parts, and the values are listed in
Table I together with strengths of two-body interaction {V (2)

α },
three-body interaction {V (3)

α }, and the Majorana exchange
parameters of the two-body interaction. The values of Winger
parameters, {W (2)

α }, are given as W (2)
α = 1 − M (2)

α . The F1
parameter set in Ref. [5] is employed. The Majorana exchange
parameters for three-body interaction terms are shown in
Table II.

Until now, the Tohsaki interaction has been applied only to
4N nuclei, and in this article the application to neutron-rich
nuclei is shown. The original Tohsaki interaction does have
Wigner and Majorana exchange terms, but spin and isospin
exchange terms are missing. Because of this, the interaction
gives a weak bound state for a two-neutron system, as in the
case of Volkov interaction. Therefore, here Bartlet (BP σ ) and
Heisenberg (HP τ ) exchange terms are added in Eq. (4) as
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TABLE II. Majorana exchange parameters for the three-body
interaction terms. F1 stands for the original F1 set of the Tohsaki
interaction [5], and F1′ is the modified versions introduced in the
present article.

F1 F1′

M
(3)
1 0.0 0.0

M
(3)
2 0.0 0.0

M
(3)
3 1.909 1.5

(W (2)
α + BP σ − HP τ + M (2)

α P r )ij . The values of B and H are
chosen to be 0.1. By adding these terms, the neutron-neutron
interaction (or proton-proton interaction) becomes weaker
than the original interaction, while the α-α scattering phase
shift is not influenced by this modification.

C. Spin-orbit interaction

For the spin-orbit part, G3RS [18], which is a realistic
interaction originally determined to reproduce the nucleon-
nucleon scattering phase shift, is adopted:

V̂spin-orbit = 1

2

∑
ij

V ls
ij , (6)

V ls
i �=j = Vls(e

−d1(�ri−�rj )2 − e−d2(�ri−�rj )2
)P (3O) �L · �S, (7)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, and P (3O) is a
projection operator onto a triplet odd state. The operator �L
stands for the relative angular momentum and �S is the total
spin, (�S = �S1 + �S2). The strength, Vls , has been determined
to reproduce the 4He +n scattering phase shift [19], and
Vls = 1600–2000 MeV has been suggested.

D. Single-particle wave function (Brink model)

In conventional α cluster models, the single-particle wave
function has a Gaussian shape [20]:

φi =
(

2ν

π

) 3
4

exp[−ν(r i − Ri)
2]ηi, (8)

where ηi represents the spin-isospin part of the wave function,
and Ri is a real parameter representing the center of a Gaussian
wave function for the ith particle. In the Brink-Bloch wave
function, four nucleons in one α cluster share a common Ri

value. Hence, the contribution of the spin-orbit interaction
vanishes.

E. Single-particle wave function in the AQCM

In the AQCM, α clusters are changed into quasiclusters. For
nucleons in the quasicluster, the single-particle wave function
is described by a Gaussian wave packet, and the center of this
packet ζ i is a complex parameter:

ψi =
(

2ν

π

) 3
4

exp[−ν(r i − ζ i)
2]χiτi, (9)

where χi and τi in Eq. (9) represent the spin and isospin parts
of the ith single-particle wave function, respectively. The spin
orientation is governed by the parameters ξi↑ and ξi↓, which
are in general complex, while the isospin part is fixed to be
“up” (proton) or “down” (neutron):

χi = ξi↑| ↑ 〉 + ξi↓| ↓ 〉, τi = |p〉 or |n〉. (10)

The center of the Gaussian wave packet is given as

ζ i = Ri + i�espin
i × Ri , (11)

where espin
i is a unit vector for the intrinsic-spin orientation,

and � is a real control parameter describing the dissolution of
the α cluster. As one can see immediately, the � = 0 AQCM
wave function, which has no imaginary part, is the same
as the conventional Brink-Bloch wave function. The AQCM
wave function corresponds to a jj -coupling shell model wave
function, such as the subshell closure configuration, when
� = 1 and Ri → 0. The mathematical explanation for this
is summarized in Ref. [11]. For the width parameter, the value
of ν = 0.23 fm−2 is used.

F. AQCM wave function of the total system

The wave function of the total system 
 is the antisym-
metrized product of these single-particle wave functions:


 = A{ψ1ψ2ψ3 · · · ·ψA}. (12)

The projections onto parity and angular momentum eigenstates
can be performed by introducing the projection operators P J

MK

and P π , and these are performed numerically in the actual
calculation.

G. Superposition of different configurations

Based on GCM, the superposition of different AQCM wave
functions can be done:

� =
∑

i

ciP
J
MKP π
i. (13)

Here, {
i} is a set of AQCM wave functions with different
values of the R and � parameters, and the coefficients for
the linear combination, {ci}, are obtained by solving the Hill-
Wheeler equation [20]. A set of coefficients for the linear
combination {cj } for each eigenvalue of E is determined in
this way.

III. RESULTS

Before showing the applications, here let us discuss the size
parameter [ν in Eq. (9)] dependence on the 4He energy, with
the (0s)4 configuration calculated using the Tohsaki interac-
tion. As mentioned in the Introduction, the size parameter
dependence is quite small because of the finite-size effect
of the three-body interaction, compared with the zero-range
three-body interaction cases. Here the F1 parameter set of the
Tohsaki interaction is adopted. In Fig. 1, the energy minimum
point appears at ν = 0.25 fm−2 and the curvature is rather flat
around this point. Later the F1′ parameter set will be newly
introduced, but the result for 4He with the (0s)4 configuration
does not change.
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FIG. 1. The size parameter [ν in Eq. (9)] dependence on the
4He energy with the (0s)4 configuration calculated using the Tohsaki
interaction. The F1 parameter set is adopted.

The application of Tohsaki interaction starts with 6He. So
far the Tohsaki interaction has been applied to 4N nuclei, but
here a neutron-rich system is examined. Figure 2 shows the
energy convergence of the ground 0+ state of 6He [ν in Eq. (9)
is set to 0.23 fm−2]. The model space is α + n + n and the
positions of the two neutrons are randomly generated, and
different configurations for the neutrons are superposed. The
dot-dashed line at −27.31 MeV shows the threshold energy
of 4He +n + n (the experimental value is −28.295 66 MeV).
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FIG. 2. The energy convergence of the ground 0+ state of
6He with an α + n + n model. Different configurations for the
two neutrons outside 4He are superposed. The horizontal line at
−27.31 MeV shows the threshold energy of 4He +n + n. The dotted
line is the result of original F1 parameter set, and the dashed line is
the result after adding B = H = 0.1. The result of the F1′ parameter
set is shown as the solid line.
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FIG. 3. The 0+ energy of 16O with a tetrahedron configuration
of four α’s as a function of distance between α clusters. The dotted
line is the result of the original F1 parameter set. The result of the
F1′ parameter set is shown as the solid line. The dashed line is for
the result calculated using the Volkov No. 2 interaction [14] with
M = 0.63.

Here, the dotted line is the result of original F1 parameter
set. The Bartlet and Heisenberg terms are added with the
parameters of B = H = 0.1, and the result is shown as the
dashed line. Furthermore, the Majorana exchange parameter
of the three-body interaction term is slightly modified and the
result of the F1′ parameter set (defined in Table II) is shown
as solid line (this is to reproduce the binding energy of 16O,
which will be discussed shortly). For the spin-orbit part, the
strength Vls has been determined to be 1600–2000 MeV in the
analysis of the 4He +n scattering phase shift [19], and here
Vls = 1600 MeV is adopted. The results of dashed and solid
lines are similar and difficult to distinguish. Nevertheless, by
adding Bartlet and Heisenberg terms, a binding energy close
to the experimental one is obtained (the experimental value of
S2n is 0.975 MeV).

For 16O, according to the jj -coupling shell model, the
ground state corresponds to the closure of a major shell (p
shell), where both spin-orbit attractive (p3/2) and repulsive
(p1/2) orbits are filled and the contribution of the spin-orbit
interaction cancels. Therefore, α breaking configurations are
not expected to mix strongly, and here a four-α model space
is introduced, which is known to coincide with the closed p
shell configuration at the limit of relative distance between α
clusters equal to zero. The 0+ energy of 16O with a tetrahedron
configuration of four α’s is shown in Fig. 3 as a function of
the relative distance between α clusters [ν in Eq. (9) is set
to 0.23 fm−2]. The dotted line is the result of the original
F1 parameter set, and the result of the newly introduced F1′

parameter set (defined in Table II) is shown as the solid line.
Here, F1′ is designed to avoid the small overbinding of 16O
when the original F1 parameter set is introduced, and the solid
line is less attractive compared with the dotted line by about
2–3 MeV. The eigenenergy of 16O is obtained by superposing
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FIG. 4. The matter point rms radius for the 0+ state of 16O
calculated with the tetrahedron configuration of four α’s. The
horizontal axis shows the relative distance between α clusters.

the basis states with α-α distances of 0.1, 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0 fm based on GCM, and the newly introduced
F1′ parameter set gives −127.9 MeV for the ground state
compared to the experimental value of −127.619 293 MeV.

The observed root mean square (rms) radius of 16O is quite
large: the charge radius is 2.69 fm [21], and the radius is often
underestimated by 0.1–0.2 fm, if one calculates with four-α
models and uses only a two-body effective interaction such as
the Volkov interaction [14]. The dashed line in Fig. 3 is for
the result calculated using the Volkov No. 2 interaction with
M = 0.63. In this case, the energy curve is much shallower,
and features of the curve are quite different from the Tohsaki
interaction cases. The dashed line shows the energy minimum
point around an α-α distance of 2 fm. Using the Tohsaki
interaction with finite-range three-body interaction terms, the
solid line in Fig. 3 shows that the lowest energy is obtained with
an α-α distance of 2.5 fm, larger than the result of the Volkov
interaction (dashed line) by 0.5 fm. The matter point rms radius
for the 0+ state of 16O with a tetrahedron configuration of four
α’s is shown in Fig. 4 as a function of distance between α
clusters. When the α-α distance is 2.5 fm, which gives the
lowest energy in the Tohsaki interaction cases, the matter point
radius is 2.49 fm. This matter point radius decreases to 2.35 fm
if the α-α distance is 2.0 fm, which gives the lowest energy in
the Volkov interaction case. The ground state of 16O obtained
by superposing the basis states with the α-α distances of 0.1,
0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 fm gives a matter pont rms
matter radius of 2.49 fm (Tohsaki interaction F1′ parameter
set). This value corresponds to a charge radius of 2.64 fm, and
the experimental value is almost reproduced.

It is important to show not only the energy curvature with
respect to α-α distance but also the size parameter dependence
on the energy and charge radius of 16O. The 16O wave functions
with tetrahedron configuration of four α’s are superposed and
the energy and charge radius of the ground state are obtained,
where the size parameter ν [defined in Eq. (9)] of the Gaussian-

TABLE III. Size parameter dependence on the energy and charge
radius of 16O. Energy and Radius stand for the energy and charge
radius of the ground state as a function of the size parameter ν [defined
in Eq. (9)] of the Gaussian-type single-particle orbit. Expt. denotes
experimental values.

ν (fm−2) 0.17 0.20 0.23 0.26 Expt.

Energy (MeV) − 124.1 − 128.0 − 127.9 − 124.2 − 127.6
Radius (fm) 2.79 2.70 2.64 2.57 2.69

type single-particle orbit is changed. In Table III, Energy and
Radius stand for the energy and charge radius (fm) of the
ground state. The size parameter dependence is rather small,
and this is again coming from the finite-size effect of the
three-body interaction in the present model.

Here the F1 (original) and F1′ (modified) parameter sets of
the Tohsaki interaction are compared. The 0+ energy curves
of α-α (8Be) calculated with F1 (dotted line) and F1′ (solid
line) are compared in Fig. 5. As explained previously, F1′ is
designed to avoid small overbinding of 16O calculated with
F1, and the solid line is slightly more repulsive at short
α-α relative distances. However, the difference is quite small,
less than 1 MeV, and the character of the original F1 that
reproduces the α-α scattering phase shift is not influenced by
this modification.

For 12C, jj -coupling (α breaking) components of the
wave function are needed, and these are prepared based on
AQCM. Basis states with equilateral triangular configuration
of three α clusters with relative distances of R = 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 fm are introduced, and α clusters are
changed to quasiclusters by giving the dissolution parameter
�. The values of � are chosen to be 0.2 and 0.4, since
the states in between pure three-α clusters (� = 0) and
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FIG. 5. The 0+ energy curves of 8Be calculated with the α + α

model as a function of relative α-α distance. The dotted and solid lines
are the results calculated with the original F1 parameter set and newly
introduced F1′ parameter set. The dot-dashed line at −54.61 MeV
shows the threshold energy of α + α.
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FIG. 6. The energy levels of 12C. Here (a) is the result without the
spin-orbit interaction, and (b), (c), and (d) show the results calculated
with 1600, 1800, and 2000 MeV for the strength of the spin-orbit
terms of the G3RS interaction [Vls in Eq. (7)], respectively. The
dot-dashed line at −81.92 MeV shows the three-α threshold energy.

the jj -coupling shell model limit (� = 1) are known to be
important for the description of the ground state. In addition
to these 12 basis states, 28 more basis states with various
three-α configurations are introduced by randomly generating
Gaussian center parameters. This is because the Hoyle state is
a gaslike state without specific shape, and it has been known
that not only equilateral triangular configuration but various
three-α cluster configurations couple in this state. The ν value
in Eq. (9) is set to 0.23 fm−2.

By superposing these 40 basis states based on GCM
and diagonalizing the Hamiltonian, energy eigenstates are
obtained. The F1′ parameter set of the Tohsaki interaction
is adopted for the central part. In Fig. 6, the ground 0+,
first 2+, and second 0+ states of 12C are shown together
with the calculated three-α threshold energy (dot-dashed line).
The strength of the spin-orbit interaction, Vls in Eq. (7), is
chosen as Vls = 0, 1600, 1800, and 2000 MeV in (a), (b),
(c), and (d), respectively. The reasonable range of the strength
of Vls = 1600–2000 MeV has been suggested in the 4He +n
scattering phase shift analysis [19]. Without the spin-orbit
interaction (Vls = 0 MeV), the ground 0+ state of 12C is
obtained at −85.2 MeV in Fig. 6(a), compared with the
experimental value of −92.161 726 MeV. However, with the
spin-orbit effect, the ground state is obtained at −87.8 MeV
in Fig. 6(b) (Vls = 1600 MeV), −88.9 MeV in (c) (Vls =
1800 MeV), and −90.5 MeV in (d) (Vls = 2000 MeV).
Therefore, the absolute value of the binding energy of 12C
can be almost reproduced with the present interaction and the
model, together with the binding energies of 4He and 16O. If
one measures the energy from the three-α threshold energy,
the ground state of 12C is −3.3 MeV in Fig. 6(a), −5.9 MeV in
(b), −7.0 MeV in (c), and −8.6 MeV in (d), compared with the
experimental value of −7.2747 MeV. Thus the binding energy
from the three-α threshold is also reproduced in the case of
Vls = 1800 MeV [Fig. 6(c)].

TABLE IV. The calculated B(E2) values of 12C (e2fm4) from the
first 2+ state to the ground state [B(E2 2+

1 → 0+
1 )] and that from the

second 0+ state to the first 2+ state [B(E2 0+
2 → 2+

1 )] as a function
of strength of the spin-orbit interaction, Vls (MeV), in Eq. (7). Expt.
stands for the experimental values [25].

Vls 0 1600 1800 2000 Expt.

B(E2 2+
1 → 0+

1 ) 18.3 10.7 8.67 6.54 7.8 ± 0.4
B(E2 0+

2 → 2+
1 ) 9.27 14.5 18.3 21.8 13 ± 4

The famous Hoyle state, the second 0+ state experimentally
observed at Ex = 7.65420 MeV, appears at Ex = 6.1 MeV
in Fig. 6(a), Ex = 7.5 MeV in (b), Ex = 7.9 MeV in
(c), and Ex = 8.6 MeV in (d). If one measures from the
three-α threshold energy, these energies correspond to Ex =
2.8 MeV in Fig. 6(a), Ex = 1.6 MeV in (c), Ex = 0.9 MeV in
(c), and Ex = −0.1 MeV in (d). Here again Vls = 1800 MeV
gives reasonable agreements with the experiment. However
the result implies that a slightly larger number of basis states
are needed to reproduce Hoyle state just above (experimentally
0.38 MeV) the three-α threshold energy.

The calculated point matter radii of the first and second
0+ states of 12C are 2.42 fm (corresponding to the charge
radius of 2.56 fm compared with the experimental value of
2.47 fm) and 3.05 fm, respectively. The values for the fermionic
molecular dynamics (FMD) calculation [22] are 2.39 and
3.38 fm, respectively. The second 0+, which is much extended
compared with the ground state, is successfully obtained in the
present model; however, more basis states would be needed for
a quantitative description of the gaslike nature.

The traditional three-α cluster models have a serious
problem: they give very small level spacing between the
ground 0+ state and the first 2+ state, which is the first excited
state of 12C [1]. In the present case, the Vls = 0 MeV result
in Fig. 6(a) shows that the level spacing is 2.5 MeV, which is
much smaller than the experimental value of 4.438 913 1 MeV.
This is improved by the spin-orbit effect, since the excitation
from the ground 0+ state to the 2+ state corresponds to
one-particle–one-hole excitation to a spin-orbit unfavored
orbit from the closure configuration of spin-orbit attractive
orbits in the jj -coupling shell model. The 0+–2+ level spacing
becomes 3.1 MeV in (b), 3.7 MeV in (c), and 4.6 MeV
in (c). A similar trend has been reported in the recent
antisymmetrized molecular dynamics (AMD) [23] and FMD
[22,24] calculations.

The calculated B(E2) values of 12C (e2fm4) from the first
2+ state to the ground state [B(E2 2+

1 → 0+
1 )] and that from

the second 0+ state to the first 2+ state [B(E2 0+
2 → 2+

1 )] are
listed in Table IV as a function of strength of the spin-orbit
interaction, Vls , in Eq. (7). With increasing strength of the
spin-orbit interaction, mixing of the α breaking components
becomes important, and the B(E2 2+

1 → 0+
1 ) value decreases,

whereas the B(E2 0+
2 → 2+

1 ) value increases, as indicated in
our previous work [26] and in AMD [23] and FMD [12,24]
calculations. Comparing with the experimental values, again
Vls ∼ 1800 MeV is confirmed to be a reasonable choice.
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The appearance of negative parity states in low-lying
excitation energy has been considered the signature of the
importance of the three-α cluster structure in 12C. Exper-
imentally, 3− and 1− states have been observed at Ex =
9.6415 MeV and Ex = 10.84416 MeV, respectively. These 3−
and 1− states are reproduced at 9.8 and 12.6 MeV, respectively,
when the strength of the spin-orbit interaction is chosen as
Vls = 1800 MeV, which gives reasonable results for the 0+
and 2+ states.

IV. SUMMARY

The consistent description of 12C and 16O, which has been
a long-standing problem of the microscopic cluster model,
is examined. By taking into account the coupling with the
jj -coupling shell model and utilizing the Tohsaki interaction,
which is a finite-range three-body interaction, consistent
understanding of these nuclei can be achieved. The original
Tohsaki interaction gives a small overbound value of about
3 MeV for 16O, and this is improved by slightly modifying
the three-body Majorana exchange parameter. Also, so far the
application of the Tohsaki interaction has been limited to 4N
nuclei; here, Bartlet and Heisenberg exchange terms are added
in the two-body interaction for the purpose of applying it to
neutron-rich systems.

By applying the Tohsaki interaction with finite-range
three-body interaction terms to 16O, the lowest energy of
the tetrahedron configuration of four α’s is obtained with
very large α-α distance (2.5 fm). After performing GCM,
the ground state is obtained with a charge radius of 2.64 fm,
compared with the observed value of 2.69 fm. The radius is
often underestimated by 0.1–0.2 fm with four-α models, if one

calculates only within the two-body effective interactions, and
this is significantly improved.

For 12C, various α configurations are prepared by randomly
generating Gaussian center parameters, and jj -coupling (α
breaking) components are mixed based on AQCM. The
ground 0+ state of 12C is obtained in the range −88.0 to
−90.5 MeV with reasonable strength of the spin-orbit inter-
action, compared with the experimental value of −92.2 MeV.
The absolute value of the binding energy of 12C (and also
4He and 16O) can be almost reproduced with the present
interaction and the model. If one measures the energy from the
three-α threshold energy, the agreement with the experiment
is even more reasonable. The famous Hoyle state (second 0+
state) is reproduced just around the three-α threshold energy.
Also, traditional three-α cluster models give very small level
spacings for the ground 0+ state and the first 2+ state, and
this is significantly improved by the spin-orbit effect. The
B(E2) values from the first 2+ state to the ground state and
that from the second 0+ state to the first 2+ state also show
the importance of the spin-orbit effect. The appearance of
negative parity states at low-lying excitation energy has been
considered the signature of the three-α cluster structure of
12C. Experimentally 3− and 1− states have been observed at
Ex = 9.6415 MeV and Ex = 10.84416 MeV, respectively, and
these states are also reproduced within the present framework
(9.8 and 12.6 MeV, respectively).
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