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We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal
energies based on the multinucleon short-range correlation (SRC) model. The approach is based on the effective
Feynman diagrammatic method which allows us to account for the relativistic effects important in the SRC
domain. In addition to two-nucleon (2N) SRC with center of mass motion we also derive the contribution of
three-nucleon SRCs to the nuclear spectral functions. The latter is modeled based on the assumption that 3N
SRCs are a product of two sequential short-range nucleon-nucleon (NN) interactions. This approach allows us to
express the 3N SRC part of the nuclear spectral function as a convolution of two NN SRCs. Thus the knowledge
of 2N SRCs allows us to model both two- and three-nucleon SRC contributions to the spectral function. The
derivations of the spectral functions are based on two theoretical frameworks for evaluating covariant Feynman
diagrams: In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the time
ordered noncovariant diagrams by evaluating nucleon spectators in the SRC at their positive energy poles,
neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred to as light-front
approximation, we formulate the boost invariant nuclear spectral function in the light-front reference frame in
which case the vacuum diagrams are generally suppressed and the bound nucleon is described by its light-front
variables such as momentum fraction, transverse momentum, and invariant mass.
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I. INTRODUCTION

The knowledge of the nuclear spectral functions at high
momenta of bound nucleon becomes increasingly important
for further studies of nuclear QCD such as medium modifica-
tion effects (EMC effects) or evolution equation of partons in
nuclear medium measured at very large Q2.

The importance of the high momentum properties of
bound nucleon for nuclear EMC effects follows from the
recent observations of apparent correlation between medium
modification of partonic distributions and the strength of
the two-nucleon short-range correlations (SRCs) in nuclei
[1,2]. Concerning the QCD evolution of nuclear partonic
distributions (PDFs), one expects that at very large Q2 the
knowledge of the high momentum component of the nuclear
spectral function becomes important due to the contribution of
quarks with momentum fractions larger than the ones provided
by an isolated nucleon (i.e., partons with x > 1) [3,4]. The
same is true for the reliable interpretation of neutrino-nuclei
scatterings in which case both medium modification of PDFs
as well as realistic treatment of SRCs are essential [5,6]. All
these require a reasonably good understanding of the nuclear
spectral functions at high momenta and removal energies of
bound nucleon. With the advent of the Large Hadron Collider
and expected construction of electron-ion colliders as well as
several ongoing neutrino-nuclei experiments the knowledge
of such spectral functions will be an important part of the
theoretical interpretation of the data involving nuclear targets.

Despite impressive recent progress in ab initio calculations
of nuclear structure (see, e.g., Ref. [7]) their relevance to the
development of the spectral functions at large momenta and
removal energies is rather limited. Not only the absence of
relativistic effects but also the impossibility of identifying the
relevant nucleon-nucleon (NN) interaction potentials makes
such a program unrealistic. One way for progress is to develop

theoretical models based on the short-range NN correlation
approach in the description of the high momentum part of
the nuclear wave function (see, e.g., [8–17]). In such an
approach one will be able to take into account the empirical
knowledge of SRCs acquired from different high energy
scattering experiments thus reducing in some degree the
theoretical uncertainty related to the description of the high
momentum nucleon in the nucleus.

Our current work is such an attempt, which is based
on the several phenomenological observations obtained in
recent years in studies of the properties of two-nucleon
(2N) SRCs [18–27]. We first develop the model describing
the nuclear spectral function at large momenta and missing
energies dominated by 2N SRCs with their center of mass
motion generated by the mean field of the A − 2 residual
nuclear system. We then develop a theoretical framework
for calculating the contribution of three-nucleon SRCs to the
nuclear spectral function based on the model in which such
correlations are generated by two sequential short-range NN
interactions. As a result in our approach the phenomenological
knowledge of the properties of NN SRCs is sufficient to
calculate both the 2N and 3N SRC contribution to the nuclear
spectral function. We expect the considered approach to be
valid for nucleon momenta p � ksrc, where ksrc—momentum
characteristic to NN SRC—is sufficiently large that NN
short-range interaction can be factorized from residual mean
field interaction. As a result our approach has limited validity
in the transitional region of kF � p < ksrc (kF is the Fermi
momentum) where the role of the long-range correlations are
more relevant.

In Sec. II we give a brief summary of recent advances in
studies of the structure of NN SRCs which provides us with the
phenomenology for developing the 2N and 3N SRC models of
nuclear spectral functions.
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Since the domain of multinucleon SRCs is characterized
by relativistic momenta of the probed nucleon, special care
should be given to the treatment of relativistic effects. To
identify the relativistic effects, in Sec. III, we first formulate
the nuclear spectral function as a quantity which is extracted
in the semiexclusive high energy process whose scattering
amplitude can be described through the covariant effective
Feynman diagrams. The covariance here is important since it
allows us to consistently trace the relativistic effects related
to the propagation of the bound nucleon. We then identify the
part of the covariant diagram which reproduces the nuclear
spectral function. Doing so, we adopt two approaches for
modeling the nuclear spectral function: virtual nucleon and
light-front, general features described in Sec. III. Section IV
outlines the calculation of nuclear spectral functions based
on the effective Feynman diagrammatic method, identifying
diagrams corresponding to the mean field, 2N SRC with center
of mass motion and 3N SRC contributions.

In Secs. V and VI we present the detailed derivation of
the spectral functions within virtual nucleon and light-front
approximations. In Sec. VII we discuss briefly the set of param-
eters which will be used for numerical estimates of the spectral
functions to be presented in Ref. [28]. Section VIII summarizes
the results. This work represents the theoretical foundation and
derivation of spectral functions; the follow-up paper [28] will
present numerical estimates and parametrizations that can be
used in practical calculations of different nuclear processes.

II. PHENOMENOLOGY OF TWO NUCLEON
SHORT-RANGE CORRELATIONS IN NUCLEI

Recent experimental studies of high energy eA and pA pro-
cesses [18–21,23,26,29,30] resulted in a significant progress
in understanding the dynamics of 2N SRCs in nuclei. The
series of electron-nucleus inclusive scattering experiments
[18,19,23] confirmed the prediction [31,32] of the scaling
for the ratios of inclusive cross section of a nucleus to the
deuteron cross section in the kinematic region dominated
by the scattering from the bound nucleons with momenta
p > kF ∼ 250 MeV/c. Within the 2N SRC model, these
ratios allowed us to extract the parameter a2(A,Z) which
characterizes the probability of finding 2N SRC in the nucleus
relative to the deuteron.

High energy semi-inclusive experiments [20,21] allowed
us for the first time to probe the isospin composition of the
2N SRCs, observing strong (by factor of 20) dominance
of the pn SRCs in nuclei, as compared to the pp and
nn correlations, for internal momentum range of ∼250–
650 MeV/c. This observation is understood [20,33,34] based
on the dominance of the tensor forces in the NN interaction at
this momentum range corresponding to the average nucleon
separations of ∼1.1 fm. The tensor interaction projects the
NN SRC part of the wave function to the isosinglet–relative
angular momentum, L = 2, state, almost identical to the high
momentum part of the D-wave component of the deuteron
wave function. As a result pp and nn components of the NN
SRC are strongly suppressed since they are dominated by the
central NN potential with relative angular momentum L = 0.

Based on the observation of the strong dominance of pn
SRCs in Refs. [35,36] it was predicted that single proton or
neutron momentum distributions in the 2N SRC domain are
inverse proportional to their relative fractions in nuclei. This
prediction is in agreement with the results of variational Monte
Carlo calculation of momentum distributions of light nuclei
[37] as well as for medium to heavy nuclei based on the SRC
model calculations of Ref. [15]. The recent finding of the pn
dominance in heavy nuclei (up to 208Pb) [26] validates the
universality of the above prediction for the whole spectrum
of atomic nuclei. The inverse proportionality of the high
momentum component to the relative fraction of the proton
or neutron is important for asymmetric nuclei and they need
to be included in the modeling of nuclear spectral functions in
the 2N SRC region.

The pn dominance in the SRC region and its relation to the
high momentum part of the deuteron wave function makes the
studies of the deuteron structure at large internal momenta a
very important part for the SRC studies in nuclei. In this respect
the recent experiments [38,39] and planned new measurements
[40] of high energy exclusive electrodisintegration of the deu-
teron opens up new possibilities in the extraction of the
deuteron momentum distribution at very large momenta. The
measured distributions can then be utilized in the calculation of
the nuclear spectral functions in the multinucleon SRC region.

Finally, another progress relevant to the SRC studies was
the extraction of the center of mass momentum distribution
of 2N SRCs from the data on triple coincidence scattering
in A(p,ppn)X [41] and A(e,e′,pn)X [42,43] reactions. The
Gaussian form and the width of the extracted distributions were
in a good agreement with the predictions made in Ref. [10],
which were based on the estimate of the mean kinetic energy
of the NN pair in the shell-model description of the nuclei.
Similar results have been also obtained within the correlated
wave function method of Ref. [44].

As it will be elaborated in the text, all above discussed
results will provide us with the necessary empirical input for
modeling nuclear spectral function in the SRC region.

III. FORMULATION OF NUCLEAR
SPECTRAL FUNCTION

Our approach in the definition of nuclear spectral functions
is based on identifying a nuclear “observable” which can be ex-
tracted from the cross section of the large momentum (�MN ,
the nucleon mass) transfer semi-inclusive h + A → h′ + N +
(A − 1)∗ reaction in which the N can be unambiguously
identified as a struck nucleon carrying almost all the energy
and momentum transferred to the nucleus by the probe h. The
reaction is specifically chosen to be semi-inclusive that allows
us, in the approximation in which no final state interactions are
considered, to relate the missing momentum and energy of the
reaction to the properties of bound nucleon in the nucleus. With
above conditions satisfied the extracted observable, referred to
as a nuclear spectral function, represents a joint probability
of finding bound nucleon in the nucleus with given missing
momentum and energy.

In Refs. [45–47] we developed an effective Feynman dia-
grammatic approach for calculation of the h + A → h′ + N +
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FIG. 1. Representation of the covariant Feynman amplitude through the sum of the time ordered amplitudes. Panel (b) corresponds to the
scenario in which first, the bound nucleon is resolved in the nucleus which interacts with the incoming probe h. In panel (c), initially, the
incoming probe produces N̄N pair with N̄ being subsequently absorbed in the nucleus.

(A − 1)∗ reactions. In this approach the covariant Feynman
scattering amplitude is expressed through the effective nuclear
vertices, vertices related to the scattering of the probe h with
the bound nucleon, as well as vertices related to the final-state
NN interactions. The nuclear vertices with the propagator of
bound nucleon cannot be associated a priori with the single
nucleon wave function of the nucleus, since they contain
negative energy components which are related to the vacuum
fluctuations rather than the probability amplitude of finding
nucleon with given momentum in the nucleus. This problem is
illustrated in the diagrammatic representation of the reaction
shown in Fig. 1, in which the covariant diagram (a) is a
sum of two noncovariant time ordered scattering diagrams
(b) and (c). Here, for the calculation of the Lorentz invariant
amplitude of Fig. 1(a) one can use the Feynman diagrammatic
rules given in Ref. [47]. However the nuclear spectral function
can only be formulated for the diagram of Fig. 1(b), where
the time ordering is such that it first exposes the nucleus as
being composed of a bound nucleon and residual nucleus,
followed by an interaction of the incoming probe h off the
bound nucleon. The other time ordering [Fig. 1(c)] presents
a very different scenario of the scattering in which the probe
produces a N̄N pair with subsequent absorption of the N̄ in
the nucleus. The latter is usually referred to as a Z graph and is
not related to the nuclear spectral function. It is worth noting
that the Z-graph contribution is a purely relativistic effect and
does not appear in the nonrelativistic formulation of the nuclear
spectral function. Its contribution however increases with an
increase of the momentum of the bound nucleon (see, e.g.,
Ref. [8]).

The above discussion indicates that while defining the
nuclear spectral function is straightforward in the nonrel-
ativistic domain (no Z-graph contribution), its definition
becomes increasingly ambiguous with an increase of bound
nucleon momentum. This ambiguity is reflected in the lack
of uniqueness in defining the nuclear spectral function in the
domain where one expects to probe SRCs.

In the present work we consider two approaches in defining
the nuclear spectral function from the covariant scattering
amplitude. In the first approach we neglect the Z-graph
contribution considering only the positive energy pole for the
nucleon propagators in the nucleus. The energy and momen-
tum conservation in this case requires the interacting nucleon
to be virtual which renders certain ambiguity in treating the
propagator of the bound nucleon. The approach we follow

is to recover the energy and momentum of the interacting
nucleon from kinematic parameters of on-shell spectators (see
Ref. [48] for general discussion of the spectator model of
relativistic bound states). The advantage of this approximation
is that the spectral function is expressed through the nuclear
wave function defined in the rest frame of the nucleus which
in principle can be calculated using the conventional NN
potentials. One shortcoming of the approximation is that while
it satisfies baryonic number conservation, the momentum sum
rule is not satisfied reflecting the virtual nature of the probed
nucleon in the nucleus. We will refer to this approach as
virtual-nucleon (VN) approximation [49,50].

In the second approach the nuclear spectral function is
defined on the light front which corresponds to a reference
frame in which the nucleus has infinite momentum. In this
approach, referred to as light-front (LF) approximation, the
Z-graph contribution is kinematically suppressed1 and as a
result the invariant sum of the two light-cone time ordered
amplitudes in Fig. 1 is equal to the contribution from the
graph of Fig. 1(b) only (see, e.g., Refs. [8,51–53]). This
situation allows us to define the boost invariant LF spectral
function in which the probed nucleon is the constituent of the
nucleus with given light-front momentum fraction, transverse
momentum, and invariant mass. It is worth noting that the
LF approximation satisfies both baryonic and momentum
sum rules, thus providing a better framework for studies of
the effects associated with nuclear medium modification of
interacting particles. Our approach is field-theoretical in which
Feynman diagrams are constructed with effective interaction
vertices and the spectral functions are extracted from the
imaginary part of the covariant forward scattering nuclear
amplitude. Another approach, in LF approximation, is the
construction of the nuclear spectral function based on the
relativistic Hamiltonian dynamics representing the interaction
of fixed number on-mass shell constituents [54].

IV. DIAGRAMMATIC METHOD OF CALCULATION
OF NUCLEAR SPECTRAL FUNCTION

In both VN and LF approximations we can use the
diagrammatic approach of Ref. [47] to calculate the spectral

1This statement is exact for a specific component of the interacting
nucleon spinor which in electromagnetic interaction constitutes the
“good” component of the nuclear electromagnetic current.
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FIG. 2. Expansion of the nuclear spectral function into the contributions of mean field (a), 2N (b), and 3N (c) SRCs. For each case the
initial nuclear transition vertices are different, corresponding to transition of A → N,A − 1; A → NN,A − 1; and A → NNN,A − 3 for the
mean field, 2N, and 3N SRCs respectively. The NN (b) and NNN (c) labels identify 2N and 3N SRCs with effective NN and NNN vertices
elaborated in the text.

functions. For this we identify the effective interaction vertices
V̂ such that the imaginary part of the covariant forward
scattering nuclear amplitude will reduce to the nuclear spectral
function either in VN or LF approximations. The specific form
of these vertices can be established by considering amplitude
of Fig. 1(b), taking into account the kinematics of mean field,
2N and 3N SRC scattering within VN and LF approximations,
with subsequent factorization of the scattering factors related
to the external probe h. As a result the V̂ vertices will be
different for mean field, 2N and 3N SRCs. They will also
depend on the VN or LF approximations used to calculate the
scattering amplitude.

In applying the diagrammatic approach one can express the
forward nuclear scattering amplitude as a sum of the mean field
and multinucleon SRC contributions as presented in Fig. 2,
with (a), (b), and (c) corresponding to the contributions from
mean field, 2N, and 3N short-range correlations.

Since the mean field contribution is dominated by the
momenta of interacting nucleon below the characteristic
Fermi momentum kF , one can approximate the corresponding
spectral function to the result following from nonrelativistic
calculation. In this case both VN and LF approximations are
expected to give very close results.

For 2N SRCs, the momenta of probed nucleon is kF <
p � 600–700 MeV/c and the nonrelativistic approximation
is increasingly invalid. Currently there is a rather robust
phenomenology on 2N SRCs in nuclei [18–21,23,24,26],
which should be taken into account in the calculation of the
2N SRC contribution to the nuclear spectral function.

Finally, Fig. 2(c), corresponds to 3N SRCs. Currently, there
are a few rather contradictory experimental evidences on 3N
SRCs [19,23,55] and the first high-energy dedicated studies
are expected in the near future [56]. In the present work we
develop a model for 3N SRC which is based on the assumption
that 3N SRCs are a result of the sequential short-range NN
interactions. The final result represents a convolution of two
2N SRCs. In this way just the knowledge of 2N SRCs will
be sufficient to account for both two- and three-nucleon short-
range correlation contributions to the nuclear spectral function.

In the calculation we apply the effective Feynman rules [47]
to the covariant forward scattering amplitudes corresponding
to mean field, two-, and three-nucleon SRC contributions
(Fig. 2) separately. Then, within VN or LF approximation,
we estimate the loop integrals through the on-mass shell

conditions of intermediate states. Doing so we absorb nuclear
to nucleon transition vertices into the definition of nuclear
wave functions. Such a definition is based on the identification
of the interaction diagrams for the bound sates with the
corresponding equations for the bound state wave function. For
example in the nonrelativistic limit, the interaction diagrams
for the bound state, calculated based on effective Feynman di-
agrammatic rules, is identified with the Lippmann-Schwinger
equation [57,58] in the nonrelativistic limit. In the relativistic
case, similar identifications are made with Bethe-Salpeter type
[48] (for VN approximation) or Weinberg type [51] (for LF
approximation) equations for the relativistic bound state wave
function.

In the following calculations we express the covariant
forward scattering amplitude, A, in the following form:

A = AMF + A2N + A3N + · · · , (1)

where AMF ,A2N , and A3N correspond to the contributions
from the diagrams of Figs. 2(a)–2(c) respectively, and then
consider each contribution separately.

A. Mean field contribution

In the mean field approximation the probed nucleon
interacts with the nuclear field induced by the A − 1 residual
system. In such approximation the spectral function corre-
sponds to the nuclear configuration in which the residual
nuclear system is identified as a coherent A − 1 state with
excitation energy in the order of tens of MeV.

Applying the effective Feynman rules to the diagram of
Fig. 2(a) corresponding to the mean field contribution of
nuclear spectral function one obtains

ImAMF = −Im
∫

χ
sA,†
A �

†
A→N,A−1

p/1 + MN

p2
1 − M2

N

V̂ MF p/1 + MN

p2
1 − M2

N

×
[

GA−1(pA−1,α)

p2
A−1 − M2

A−1 + iε

]on

�A→N,A−1χ
sA

A

d4pA−1

i(2π )4
,

(2)

where MN and MA−1 are the masses of nucleon and residual
A − 1 nuclear system, χA is the nuclear spin wave function,
�A→N,A−1 represents the covariant vertex of A → N + (A −
1) transition, GA−1 describes the propagation of the A − 1

064318-4



MULTINUCLEON SHORT-RANGE CORRELATION MODEL . . . PHYSICAL REVIEW C 94, 064318 (2016)

p

p p

2

1 1

V
^

p
3

x
x

k

k
k
k

k
k

3

11

2 2
3

3N

FIG. 3. Diagram corresponding to 3N SRC contribution to the
spectral function.

residual nucleus in the intermediate state having an excitation
α. The label [. . . ]on indicates that one estimates the cut diagram
in which the residual nuclear system is on mass shell.

B. Two-nucleon src contribution

In the two-nucleon SRC model one assumes that the
intermediate nuclear state consists of two correlated fast (>kF )
nucleons and a slow (<kF ) coherent A − 2 nuclear system. The
corresponding Feynman diagram is presented in Fig. 2(b), for
which using the same diagrammatic rules [47] one obtains

ImA2N = Im
∫

χ
sA,†
A �

†
A→NN,A−2

G(pNN )

p2
NN − M2

NN

�
†
NN→NN

p/1 + MN

p2
1 − M2

N

V̂ 2N p/1 + MN

p2
1 − M2

N

[
p/2 + MN

p2
2 − M2

N + iε

]on

×�NN→NN

G(pNN )

p2
NN − M2

NN

[
GA−2(pA−2)

p2
A−2 − M2

A−2 + iε

]on

�A→NN,A−2χ
sA

A

d4p2

i(2π )4

d4pA−2

i(2π )4
, (3)

where MNN is the mass of the 2N SRC system, �A→NN,A−2 now describes the transition of the nucleus A to the NN SRC and
coherent A − 2 residual state, while the �NN→NN vertex describes the short-range NN interaction that generates two-nucleon
correlation in the spectral function.

C. Three-nucleon SRC contribution in collinear approximation

The spectral function due to 3N short-range correlations is described in Fig. 2(c) in which the intermediate state consists of
three fast (>kF ) nucleons and a slow (<kF ) coherent A − 3 residual system. The dynamics of 3N SRCs allow more complex
interactions than that of 2N SRCs. One of the complexities is the irreducible three-nucleon forces that cannot be described by
NN interaction only. Such interactions may contain inelastic transitions such as NN → N�. As our early studies demonstrate
[33,59] irreducible three-nucleon forces predominantly contribute at very large magnitudes of missing energy characteristic to the
� excitations ∼300 MeV/c. Thus for spectral functions for which the missing energy does not exceed the � resonance threshold
∼M� − MN , one can consider the contributions of NN → NN interactions only. In the present work we will follow the two
sequential NN short-range interaction scenario of the generation of 3N SRCs. In this approximation, the 3N SRC contribution to
the spectral function can be represented through the diagram of Fig. 3. Here we factored out the low momentum residual A − 3
system from consideration. This is justified by the fact that much larger momenta are involved in the 3N SRCs as compared
to the one in the 2N SRCs discussed in the previous section. As a result the effects due to center of mass motion of the A − 3
system are neglected. The present approximation assumes that the initial three collinear nucleons undergo two short-range NN
interactions generating one nucleon with much larger momenta than the other two. The collinear approximation is commonly
used in the calculation of the quark structure function of the nucleon in the valence quark region. In this respect, our calculations
for the LF approximation are analytically similar to the QCD calculation of the nucleon structure function. Here one assumes that
the momentum fractions of 3N SRCs carried by each initial nucleon is unity and their transverse momenta are neglected. Within
VN approximation the collinear approximation assumes that the initial momenta of the three nucleons are much smaller than
ksrc—momenta characteristic to NN SRC—and therefore can be neglected. Note that the momenta of all three nucleons in the
intermediate state of the scattering in Fig. 3 should exceed the nuclear Fermi momentum kF to satisfy the three-particle–three-hole
condition in the Fermi distribution of nucleons in the nucleus.

Using the effective Feynman diagrammatic rules for the diagram of Fig. 3 one obtains

ImA3N = Im
∫

ū(k1,λ1)ū(k2,λ2)ū(k3,λ3)�†
NN→NN

p/2′ + MN

p2
2′ − M2

N

�
†
NN→NN

p/1 + MN

p2
1 − M2

N

V̂ 3N p/1 + MN

p2
1 − M2

N

×
[

p/2 + MN

p2
2 − M2

N + iε

]on

�NN→NN

p/2′ + MN

p2
2′ − M2

N

[
p/3 + MN

p2
3 − M2

N + iε

]on

�NN→NNu(k1,λ1)u(k2,λ2)u(k3,λ3)
d4p3

i(2π )4

d4p2

i(2π )4
,

(4)

where “2′” labels the intermediate state of the nucleon 2
after the first short-range NN interaction, λi is the spin of
the ith nucleon, and the �NN→NN is the same short-range
NN interaction vertex included in Eq. (3). Note that there
are several other 3N SRC diagrams which differ from that of

Fig. 3 by the ordering of the two sequential NN short-range
interactions. In collinear approximation these diagrams result
in the same analytic form both in VN and LF approximations
(see, e.g., Ref. [3]), thus their contribution can be absorbed
in the definition of the parameter nN

3N [see Eq. (36)], which
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defines the contribution of the norm of the 3N SRCs to the
total normalization of the nuclear wave function.

D. Models of calculation

To calculate the spectral functions from the forward
scattering amplitudes in Eqs. (2)–(4) one needs to define the
effective vertices V̂ which identify the bound nucleon in the
mean field, 2N, and 3N SRCs, as well as to define the poles
at which the cut propagators of the intermediate states are
estimated. Both depend on the approximation used to reduce
the covariant diagrams to the time ordered diagrams which
allow an introduction of the nuclear spectral function. In the
following section we will derive these spectral functions from
the covariant forward scattering amplitudes AMF , A2N , and
A3N within VN and LF approximations.

V. SPECTRAL FUNCTION IN VIRTUAL
NUCLEON APPROXIMATION

Our first approach is VN approximation which describes
the nucleus in the laboratory frame treating an interacting
bound nucleon as a virtual particle while spectators are put on
their mass shells. In VN approximation the spectral function,
SN

A (p,Em) defines the joint probability of finding a nucleon in
the nucleus with momentum p and removal energy Em defined
as

Em = EA−1 + MN − MA − p2

2MA−1
, (5)

where EA−1 and MA−1 are the energy and the mass of
the residual A − 1 nuclear system. Note that in the above
expression we followed the conventional definition of Em, in
which the nonrelativistic expression for the kinetic energy of
the A − 1 system is subtracted. However in our calculation
the kinetic energy of the (A − 1) system depends on the mean
field, 2N SRC or 3N SRC picture of nuclear wave function. For
each particular case, the kinetic energy of the (A − 1) system
is accordingly defined in the text.

The normalization condition for the spectral function can
be fixed from the condition of the conservation of baryonic
number of the nucleus in hadron-nucleus scattering [61] or
from the condition for the charge form factor of nucleus at
vanishing momentum transfer, FA(0) = Z [49], which yields

A∑
N=1

∫
SN

A (p,Em)αd3pdEm = A, (6)

where α is the ratio of the flux factors of the (external probe)–
(bound nucleon) and (external probe)–(nucleus) systems,
which in high momentum limit of the probe (hadron or virtual
photon) yields

α = EN + pz

MA/A
= A

p+
pA+

. (7)

Here, p+ and pA+ are the light front longitudinal momenta of
the nucleon and nucleus respectively, EN is the energy of the
bound nucleon, and the z direction is defined opposite to the
direction of the incoming probe.

Following the decomposition of Fig. 2 we consider the mean
field, 2N, and 3N SRC contributions to the nuclear spectral
function separately. In VN approximation the cut diagrams of
Figs. 2 and 3 will be evaluated at positive energy poles of the
spectator residual system. For the mean field contribution it
corresponds to the positive energy pole of the coherent A − 1
system. For the case of 2N SRC it corresponds to the positive
energy poles of the correlated nucleon and A − 2 system,
whereas for the 3N SRC case these are positive energy poles
of the two correlated nucleons and A − 3 system.

A. Mean field contribution

In the mean field approximation the missing momentum
pm = −p ≡ −p1 and missing energy Em characterizes the
total momentum and excitation energy of the residual A − 1
system. In the nuclear shell model Em also defines the energy
needed to remove the nucleon from the particular nuclear shell.
For such a situation we can define the effective vertex V̂MF in
Eq. (2) as

V̂ MF = iā(p1,s1)δ3(p1 + pA−1)δ(Em − Eα)a(p1,s1), (8)

where Eα is the characteristic energy of the given nuclear shell.
The creation and annihilation operators are defined in such a
way that

a(p1,s1)(p/1 + MN ) = ū(p1,s1) and

(p/1 + MN )ā(p1,s1) = u(p1,s1). (9)

Hereafter the a(p1,s1) and ā (p1,s1) represent the annihilation
and creation operators in the Dirac space. We follow the
convention (see, e.g., Ref. [60]) for which the product of the an-
nihilation operator, the nucleon propagator projected to the
positive energy state, and the nuclear transition vertex produces
the Fock component of the nuclear wave function. Note that
this definition is different from the conventional definition
(see, e.g., Ref. [16]) in which the annihilation operator acts
on the nuclear wave function to produce nucleon-hole states.
However the final results in both approaches are similar in the
nonrelativistic limit.

Next, in Eq. (2) we take the integral by d0pA−1 through the
positive energy pole of the propagator of the A − 1 state:

dp0
A−1

p2
A−1 − M2

A−1 + iε
= − 2πi

2EA−1

∣∣∣∣
EA−1=

√
M2

A−1+p2
A−1

, (10)

and for the on-shell (A − 1) spectator state we use the sum
rule

GA−1(pA−1,α)

=
∑
sA−1

χA−1(pA−1,sA−1,Eα)χ †
A−1(pA−1,sA−1,Eα), (11)

where χA−1 is the spin wave function of the residual (A − 1)
nucleus. Note that in relativistic treatment the spin wave func-
tions are momentum dependent as indicated in the argument
of χA−1. Such a momentum dependence is also accounted for
the spin wave function of other particles discussed in the text.
The above relations allow us to introduce the single nucleon
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wave function for the given nuclear shell Eα , ψN/A in the form

ψ
sA

N/A(p1,s1,pA−1,sA−1,Eα)

= ū(p1,s1)χ †
A−1(pA−1,sA−1,Eα)�A→N,A−1χ

sA

A(
M2

N − p2
1

)√
(2π )32EA−1

, (12)

which, inserting into Eq. (2) and taking the d3pA−1 integration
through the δ3(p1 + pA−1), results in the mean field nuclear
spectral function SN

A,MF in the VN approximation:

SN
A,MF (p1,Em) =

∑
α

∑
s1,sA−1

∣∣ψsA

N/A(p1,s1,pA−1,sA−1,Eα)
∣∣2

× δ(Em − Eα), (13)

which defines the joint probability of finding a nucleon in
the mean field of the nucleus with momentum p and removal
energy Em.

For numerical estimates of the above spectral function we
note that in the mean field approximation, the substantial
strength of the VN wave function ψN/A comes from the
momentum range of p1 � kF . Therefore in this case the
nonrelativistic approximation is valid, which allows us to
approximate this wave function by the nonrelativistic wave
function obtained from the conventional mean field calcu-
lations of single nucleon wave functions. Additionally, in
the nonrelativistic limit α ≈ 1 + p1,z

MA/A
, and from Eq. (6) one

observes that the p1,z

MA/A
part does not contribute to the integral

resulting in the condition for nonrelativistic normalization:∫
SN

A,MF (p,Em)dEmd3p = nN
MF , (14)

where nN
MF is the norm of the mean field contribution of

nucleon N to the total normalization of the nuclear spectral
function.

B. Two-nucleon short-range correlations

We consider now Eq. (3) with the effective vertex V̂2N

identified as

V̂2N = iā(p1,s1)δ3(p1 + p2 + pA−2)δ
(
Em − E2N

m

)
a(p1,s1),

(15)

where ā(p1,s1) and a(p1,s1) are creation and annihilation
operators of nucleon with four-momentum p1 and spin s1

satisfying the relations of Eq. (9).
The magnitude of E2N

m follows from the NN correlation
model (in which the correlated NN pair has a total momentum

−pA−2 in the mean field of A − 2 residual nuclear system)
according to which

E2N
m = E

(2)
thr + TA−2 + T2 − TA−1

= E
(2)
thr + EA−2 − MA−2 + T2 − p2

1

2MA−1
, (16)

where E
(2)
thr is the threshold energy needed to remove two

nucleons from the nucleus. In numerical evaluations, we
estimate it as E

(2)
thr ≈ 2MN + MA−2 − MA. Furthermore, T2

and TA−2 are kinetic energies of the correlated nucleon 2
and the residual (A − 2) nucleus respectively, that add up to
the actual kinetic energy of the A − 1 residual system in the

2N SRC model. The additional subtraction of the p2
1

2MA−1
term

follows from the definition of missing energy in Eq. (5).
According to VN prescription we perform integrations by

dp0
2 and dp0

A−2 in Eq. (3) through the positive energy poles of
the propagators of 2 and A − 2 particles. This yields

dp0
2

p2
2 − M2

N + iε
= − 2πi

2E2

∣∣∣∣
E2=

√
M2

N +p2
2

,

dp0
A−2

p2
A−2 − M2

A−2 + iε
= − 2πi

2EA−2

∣∣∣∣
EA−2=

√
M2

A−2+p2
A−2

. (17)

Since 2 and A − 2 are now on mass shell, we can write the
sum rule relations for the numerator of their propagators as

p/2 + MN =
∑
s2

u(p2,s2)ū(p2,s2),

G(pA−2) =
∑
sA−2

χA−2(pA−2,sA−2)χ †
A−2(pA−2,sA−2), (18)

where χA−2 is the spin wave function of the A − 2 nucleus.
The s2 and sA−2 are the spin projections of the nucleon 2 and
A − 2 nucleus respectively.

In the 2N SRC model we assume that the center of mass
momentum of the NN SRC is small which justifies the use of
the on-mass-shell sum rule condition:

G(pNN ) =
∑
sNN

χNN (pNN,sNN )χ †
NN (pNN,sNN ), (19)

where χNN is the spin wave function and sNN is the projection
of the total spin of the NN correlation with the three-
momentum, pNN = pA − pA−2. As one will see below, the
above equation allows us to introduce the wave function of
the center of mass motion of the 2N SRC thus decoupling the
center of mass and relative motions of the NN correlation.

Inserting Eqs. (9) and (17)–(19) in Eq. (3) reduces the latter to the NN SRC part of the nuclear spectral function, for which
one obtains

SN
A,2N (p1,Em) =

∑
s2,sA−2,sNN ,s ′

NN

∫
χ

sA,†
A �

†
A→NN,A−2

χNN (pNN,sNN )χ †
NN (pNN,sNN )

p2
NN − M2

NN

�
†
NN→NN

× u(p1,s1)

p2
1 − M2

N

δ3(p1 + p2 + pA−2)δ
(
Em − E2N

m

) ū(p1,s1)

p2
1 − M2

N
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×u(p2,s2)ū(p2,s2)

2E2
�NN→NN

χNN (pNN,sNN )χ †
NN (pNN,sNN )

p2
NN − M2

NN

×χA−2(pA−2,sA−2)χ †
A−2(pA−2,sA−2)

2EA−2
�A→NN,A−2χ

sA

A

d3p2

(2π )3

d3pA−2

(2π )3
, (20)

which defines the joint probability of finding a nucleon in NN SRC with momentum p1 and removal energy Em.
Now we introduce A → (NN ) + (A − 2) and (NN ) → N + N transition wave functions defined in the rest frame of the

nucleus A and the 2N SRC respectively (see, e.g., Ref. [47]):

ψ
sA

CM (pNN,sNN,pA−2,sA−2) = χ
†
NN (pNN,sNN )χ †

A−2(pA−2,sA−2)�A→NN,A−2χ
sA

A(
M2

NN − p2
NN

)√
2EA−2(2π )3

,

ψ
sNN

NN (p1,s1,p2,s2) = ū(p1,s1)ū(p2,s2)�NN→NNχNN (pNN,sNN )(
M2

N − p2
1

)√
2E2(2π )3

, (21)

which allows us to present the 2N SRC part of the nuclear spectral function in the following form:

SN
A,2N (p1,Em) =

∑
s1,s2,sA−2,sNN ,s ′

NN

∫
ψ

sA,†
CM (pNN,s ′

NN,pA−2,sA−2)ψ
s ′
NN ,†

NN (p1,s1,p2,s2)

×ψ
sA

CM (pNN,sNN,pA−2,sA−2)ψsNN

NN (p1,s1,p2,s2)δ3(p1 + p2 + pA−2)δ
(
Em − E2N

m

)
d3p2d

3pA−2. (22)

We use pNN = −pA−2 and integrate by d3p2 through δ3(p1 + p2 + pA−2). Furthermore based on the 2N SRC model in which the
wave function of the relative motion is dominated by the pn component with spin 1 with the low momentum CM wave function
being in the S state, one can perform the summation by sA−2 resulting in δsNN ,s ′

NN
. Using the latter relation one obtains

SN
A,2N (p1,Em) =

∑
s1,s2,sA−2,sNN

∫ ∣∣ψsA

CM (pNN,sNN,sA−2)
∣∣2∣∣ψsNN

NN (p1,s1,p2,s2)
∣∣2

δ
(
Em − E2N

m

)
d3pNN, (23)

where p2 = pNN − p1. The above expression is simplified further by introducing effective momentum distribution of the nucleon
in the NN SRC, nNN , as well as distribution of the center of mass momentum of the NN correlation, nCM , which results in

SN
A,2N (p1,Em) =

∫
nCM (pNN )nNN (prel)δ

(
Em − E2N

m

)
d3pNN, (24)

where prel = p1−p2
2 .

The normalization of this spectral function should be related to the total probability of finding a nucleon in such a correlation.
This can be defined from the normalization condition of Eq. (6) which yields∫

SN
A,2N (p1,Em)α1dEmd3p1 = nN

2N, (25)

where for the 2N SRC model α ≡ α1 = MN −Em−TA−1+p1,z

MA/A
and nN

2N is the norm of the 2N SRC contribution of nucleon N in the
total normalization of the nuclear wave function.

As it follows from Eq. (24), given the relative and center of mass momentum distributions of the NN correlations we can
numerically calculate the 2N SRC part of the nuclear spectral function. Since it is assumed that the center of mass momenta
of the NN SRCs are small, for nCM we use the distribution obtained in Ref. [10] through the overlap of two Fermi momentum
distributions which results in the simple Gaussian distribution:

nCM (pNN ) = N0(A)e−β(A)p2
NN (26)

normalized to unity:
∫

nCM (pNN )d3pNN = 1. The parameter β(A) is estimated from the nuclear mean field distribution, while
N0(A) is found from the normalization condition. The relative momentum distribution of the NN SRC, nNN (prel), can be modeled
according to Refs. [35,36], where the high momentum strength of the nucleon momentum distribution is predicted to be inverse
proportional to the relative fraction of the nucleon in the nucleus. Such a distribution is in agreement with the recently observed
dominance of pn SRCs [20,21,26] and can be expressed in the form

nN
NN (prel) = a2(A,Z)

(2xN )γ
nd (prel)(prel − ksrc)

MN−Em−TA−1

MA/A

, (27)

where xN = N/A with N being the number of protons (Z) and neutrons (A − Z) in the nucleus A, the parameter a2(A,Z) is
related to the probability of finding 2N SRC in the nucleus A relative to the deuteron, and γ is a free parameter γ � 1. The
nd (prel) is the high momentum distribution in the deuteron, and ksrc � kF is the momentum threshold at which a NN system
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with such relative momentum can be considered in the short-range correlation. The factor MN−Em−TA−1

MA/A
is the generalization of

the normalization scheme of [61] which enforces the normalization condition of Eq. (6). The normalization of the above defined
distribution,

∫
nN

NN (p)d3p = nN
2N , defines the contribution of the 2N SRCs to the total norm of the momentum distribution for

the nucleon N .
It is worth mentioning that in the nonrelativistic limit, and assuming an equal 2N SRC contributions from proton and neutron,

nN
NN (prel) = a2(A)nd (prel), the expression in Eq. (24) reduces to the “NN SRC-CM motion” model of Ciofi-Simula [10].

C. Three-nucleon short-range correlations

For the 3N SRC model in collinear approximation we consider the covariant amplitude of Eq. (4) in which the effective vertex
V̂3N is defined as

V̂3N = iā(p1,s1)δ3(p1 + p2 + p3)δ
(
Em − E3N

m

)
a(p1,s1), (28)

where ā(p1,s1) and a(p1,s1) are the creation and annihilation operators defined in Eq. (9).
The magnitude of E3N

m is calculated based on the considered 3N SRC model in which the recoil nuclear system consists of
two fast nucleons and a slow A − 3 nuclear system whose excitation energy is neglected. In this case

E3N
m = E

(3)
thr + T3 + T2 − p2

1

2MA−1
, (29)

where E
(3)
thr is the threshold energy needed to remove three nucleons from the nucleus. Similar to the case of 2N SRC, we

estimate it as E
(3)
thr ≈ 3MN + MA−3 − MA. Within the considered 3N SRC model the kinetic energy of residual nucleus is due to

kinetic energies of correlated spectator nucleons T2 and T3 which are treated relativistically. Here, as in the case of 2N SRC, the

additional subtraction of the p2
1

2MA−1
follows from the definition of missing energy in Eq. (5).

According to VN prescription we take integrations by dp0
2 and dp0

3 in Eq. (4), at the positive energy poles of propagators of 2
and 3 particles, i.e.,

d0p2,3

p2
2,3 − M2

N + iε
= − 2πi

2E2,3

∣∣∣
E2,3=

√
M2

N +p2
2,3

. (30)

Using this and the relations of Eq. (9), as well as assuming the sum rule relations [similar to Eq. (18)] for the spinors of 2′
intermediate state, from Eq. (4) one obtains for the 3N SRC contribution to the nuclear spectral function

SN
A,3N (p1,Em) =

∑
s2′ ,s̃2′ ,s2,s3

∫
ū(k1,λ1)ū(k2,λ2)ū(k3,λ3)�†

NN→NN

u(p2′ ,s2′ )ū(p2′ ,s2′)

p2
2′ − M2

N

×�
†
NN→NN

u(p1,s1)

p2
1 − M2

N

δ3(p1 + p2 + p3)δ
(
Em − E3N

m

) ū(p1,s1)

p2
1 − M2

N

u(p2,s2)ū(p2,s2)

2E2

×�NN→NN

u(p2′ ,s̃2′)ū(p2′ ,s̃2′ )

p2
2′ − M2

N

u(p3,s3)ū(p3,s3)

2E3
�NN→NNu(k1,λ1)u(k2,λ2)u(k3,λ3)

d3p3

(2π )3

d3p2

(2π )3
, (31)

which defines the joint probability of finding a nucleon in 3N SRC with momentum p1 and removal energy Em.
Introducing 2N SRC wave functions in analogy with Eq. (21),

ψNN (p1,s1,p2,s2; p1i ,s1i ,p2i ,s2i) = ū(p1,s1)ū(p2,s2)�NN→NNu(p1i ,s1i)u(p2i ,s2i)(
M2

N − p2
1

)√
2
√

2E2(2π )3
, (32)

where subscript “i” indicates incoming nucleons with their spin projections, Eq. (31) can be expressed as follows:

SN
A,3N (p1,Em) =

∑
s2′ ,s̃2′ ,s2,s3

∫
ψ

†
NN (p1,s1,p2,s2; k1,λ1,p2′ ,s2′)ψ†

NN (p2′ ,s2′ ,p3,s3; k2,λ2,k3,λ3)

×ψNN (p1,s1; p2,s2; k1,λ1,p2′ ,s2′ )ψNN (p2′ ,s̃2′ ; p3,s3; k2,λ2,k3,λ3)

× δ3(p1 + p2 + p3)δ
(
Em − E3N

m

)
d3p3d

3p2. (33)

Based on the assumption that NN SRC is dominated by spin-1 short-range pn configuration, and using similar arguments as in
Eq. (23), one can sum over the polarizations of 2 and 3 particles resulting in s2 = s2′ = s̃2′ . Then, taking the d3p2 integration
through the δ3(p1 + p2 + p3) function, one obtains

SN
A,3N (p1,Em) =

∑
s1,s2,s3

∫
|ψNN (p2′ ,s2,p3,s3; k2,λ2,k3,λ3)|2|ψNN (p1,s1; p2,s2; k1,λ1,p2′ ,s2)|2δ(Em − E3N

m

)
d3p3. (34)
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The above expression can be represented in a more simple form by noticing that the NN correlation wave functions depend on
their relative momenta and we sum over the final and average by all possible initial polarization configurations. This yields

SN
A,3N (p1,Em) =

∫
nNN (p2′,3)nNN (p12)δ

(
Em − E3N

m

)
d3p3, (35)

where p12 = p1−p2
2 = p1 + p3

2 and p2′,3 = p2′−p3

2 ≈ −p3. The normalization condition for the 3N SRC spectral function is defined
as follows: ∫

SN
A,3N (p1,Em)α1d

3p1dEm = nN
3N, (36)

where nN
3N is the norm of the 3N SRC contributing to the total normalization of the nuclear wave function for the given nucleon

N .
Within the model of pn dominance of two-nucleon SRCs one predicts that the 3N SRCs are generated predominantly through

the two sequential short-range pn interactions. As a result our model of 3N SRCs predicts that the overall probability of finding
such correlations is proportional to the factor a2

2(A,Z), where a2(A,Z) is defined in Eq. (27). Using the relations similar to
Eq. (27), one approximates

nNN (p2′,3)nNN (p12) = a2
2(A,Z)C(A,Z)

nd (p2′,3)nd (p12)
MN −Em−TA−1

MA/A

(p2′,3 − ksrc)(p12 − ksrc), (37)

where ksrc > kF is the relative momentum threshold at which the NN system can be considered as a short-range correlation. Here
C(A,Z) is a function which accounts for the effects associated with the isospin structure of two-nucleon recoil system. Namely,
in the collinear approximation two recoil nucleons emerge with small relative momenta (or invariant mass). In Ref. [33] it was
demonstrated that the NN system with small relative momenta is strongly dominated in the isosinglet pn channel. This situation
introduces an additional restriction on the isospin composition of the 3N SRCs, in which the recoil NN system predominately
consists of a pn pair. For example, one direct consequence of such dynamics is that high momentum neutrons in 3He nucleus
cannot be generated in 3N SRCs while protons can.

VI. SPECTRAL FUNCTION IN LIGHT-FRONT
APPROXIMATION

The nuclear spectral function on the light front was
formulated in Ref. [31] however its calculation from the first
principles is impossible due to the lack of the knowledge of
nuclear light-front wave functions. The current work uses two
assumptions which allow us to obtain calculable LF nuclear
spectral functions. The first assumption is that the nuclear
mean field contribution to the light-front spectral function
corresponds to the nonrelativistic limit of the momentum and
missing energy of a bound nucleon. As a result the mean field
part of the LF spectral function can be related to the mean
field contribution of conventional nuclear spectral function
discussed in the previous section. The second assumption
is that the dynamics of the LF spectral function in the high
momentum domain is defined mainly by the pn interaction at
short distances. Thus to obtain the calculable spectral function
in relativistic domain one will need only a LF model for the
deuteron wave function at short distances.

Before we proceed with the above approach we first define
the kinematic parameters that characterize the bound nucleon
in the light front as well as the sum rules that the light-front
nuclear spectral function should satisfy.

In defining the light-front nuclear spectral function the
primary requirement is that it is a Lorentz boost invariant
function in the direction of the large CM momentum of the
nucleus pA. To satisfy this condition we require that the bound
nucleon N is described by a light-front “+” momentum fraction
αN = ApN+

pA+
, transverse (to pA) momentum pN⊥ and invariant

mass M̃2
N = pN−pN+ − p2

N,⊥. As it will be shown below M̃N

is related to the excitation energy of the residual nucleus.
For future derivations it is useful to present the invariant
phase space of bound nucleon, d4pN , through these light-front
variables as follows:

d4pN = 1

2
dpN−,dpN+d2pN,⊥ = dαN

2αN

d2pN,⊥dM̃2
N . (38)

After identifying the kinematic variables describing the
bound nucleon, one now defines the light-front nuclear spectral
function, PA(αN,pN,⊥,M̃2

N ), as a joint probability of finding
a bound nucleon in the nucleus with light-front momentum
fraction αN , transverse momentum pN,⊥, and invariant mass
M̃2

N . The normalization condition for such spectral functions
is defined from the requirements of baryonic number and total
light-front momentum conservations [31,61]:

A∑
N=1

∫
P N

A

(
αN,pN,⊥,M̃2

N

)dαN

2αN

d2pN,⊥dM̃2
N = A,

A∑
N=1

∫
αNP N

A

(
αN,pN,⊥,M̃2

N

)dαN

2αN

d2pN,⊥dM̃2
N = A, (39)

where the second relation is exact if one assumes that all
the momentum in the nucleus is carried by the constituent
nucleons. From Eq. (39) one deduces the relation between
the LF spectral function and the light-front density matrix,
ρN

A (αN,pN,⊥), in the form

ρN
A (αN,pN,⊥) =

∫
P N

A

(
αN,pN,⊥,M̃2

N

)1

2
dM̃2

N . (40)
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To proceed with the derivations, similar to the VN approx-
imation, we follow the decomposition of Fig. 2 considering
mean field, 2N, and 3N SRC contributions separately. In LF
approximation the cut diagrams of Figs. 2 and 3 will be
evaluated at the positive light-front (“−” component) energy
poles of the spectator residual system. For the mean field
contribution the spectator residual system consists of A − 1
nucleus, while for the SRC case it consists of one or two
on-energy-shell nucleons correlated with the bound nucleon,
as well as A − 2 and A − 3 uncorrelated nuclear systems for
2N and 3N correlations respectively.

A. Mean field approximation

To calculate the light-front nuclear spectral function in
mean field approximation one needs in principle to start with
Eq. (2) and proceed by evaluating the integral at the pole of the
“minus” component of four-momentum of the A − 1 residual
nucleus. Such an integration will express the spectral function
through the unknown light-front mean field wave function of
the nucleus.

We adopt a different approach in which one uses the fact
that the mean field nuclear spectral function is dominating at
small momenta and missing energies of bound nucleon, for
which the nonrelativistic limit of light-front approximation
is well justified. Then we need only to relate the mean field
light-front spectral function P N

A,MF (α1,p1,⊥,M̃2
N ) to the above

discussed VN mean field spectral function, SN
A,MF (Em,p)

in the nonrelativistic limit.2 The relation between P N
A,MF

and SN
A,MF (Em,p) can be found by using the normalization

condition:∫
P N

A,MF

(
α1,p1,⊥,M̃2

N

)dα1

2α1
d2p1,⊥dM̃2

N

=
∫

SN
A,MF (Em,p)dEmd3p1 = nN

MF , (41)

where we need to relate the LF phase space to dEmd3p.
For this, we use the relation between the total energy of
the A − 1 nucleus and missing energy Em in the mean field
approximation:

EA−1 =
√

M2
A−1 + p2

A−1 = MA − MN + Em + p2
1

2M0
A−1

,

(42)

where the last part of the equation follows from the definition
of the missing energy Em [Eq. (5)] which is inherently
nonrelativistic. In the above expression MA−1 is the mass of
the A − 1 residual nucleus which can be in the excited state,
while M0

A−1 represents the ground state mass of the residual
nucleus. With the above equation one obtains for α1

α1 = A − EA−1 − p1,z

MA/A
(43)

2Note that hereafter we will identify αN and pN,⊥ with α1 and p1,⊥
respectively, giving the subscript 1to the bound nucleon.

and for M̃2
N

M̃2
N = α1

A

(
M2

A − M2
A−1 + p2

1,⊥
(A − α1)/A

)
− p2

1,⊥. (44)

These relations allow us to relate

dM̃2
Ndα1 = 2α1dEmdp1,z. (45)

This, together with Eq. (38), results in d4p1 =
dα1
2α1

d2p1,⊥dM̃2
N = dEmd3p1, which substituting in Eq. (41)

allows us to obtain for the mean field approximation

P N
A,MF

(
α1,p1,⊥,M̃2

N

) = SN
A,MF (Em,p1), (46)

where α1 and M̃2
N are expressed through Em and p1 according

to Eqs. (42)–(44). Note that the above equation is valid for
up to the overall normalization factor, since VN and LF
approximations result in different normalizations for the mean
field contribution to the spectral function. (For more details
see Sec. VII.)

B. Two-nucleon short-range correlations

To calculate 2N SRC contribution to the light-front spectral
function P N

A,2N (α1,p1,⊥,M̃2
N ) we start with Eq. (3), with the

vertex operator defined as follows (see also [3]):

V̂2N = iā(p1,s1)2α2
1δ(α1 + α2 + αA−2 − A)

× δ2(p1,⊥+p2,⊥+pA−2,⊥)δ
(
M̃2

N −M̃
(2N),2
N

)
a(p1,s1),

(47)

where (α2,p2,⊥), (αA−2,pA−2,⊥) are light-front momentum
fractions and transverse momenta of correlated second nucleon
and residual (A − 2) nucleus. In the considered 2N SRC
model,

M̃
(2N),2
N = p1+(pA− − p2− − pA−2,−) − p2

1,⊥

= α1

A

(
M2

A − A
M2

N + (pA−2,⊥ − p1⊥)2

A − α1 − αA−2

−A
M2

A−2 + p2
A−2,⊥

αA−2

)
− p2

1⊥, (48)

where we consider the reference frame with the z axis in �pA

direction. To proceed, in Eq. (3) we treat the nucleon 2 and
residual nucleus ‘A − 2 on light-front energy shells. This is
achieved by integrating their respective − components through
the positive pole value of the propagators, provided that their
+ components are large and positive. For the 2 nucleon the
integration is performed as follows:

d4p2

p2
2 − M2

N + iε
=

1
2dp2−dp2+d2p2,⊥

p2+p2− − p2
2,⊥ + M2

N + iε

=
1
2dp2−dp2+d2p2,⊥

p2+
(
p2− − p2

2,⊥+M2
N

p2+
+ iε

)
= −iπ

dα2

α2
d2p2,⊥

∣∣∣∣
p2−= p2

2,⊥+M2
N

p2+

. (49)
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Similarly for the A − 2 residual nucleus,

d4pA−2

p2
A−2 − M2

A−2 + iε
= −iπ

dαA−2

αA−2
d2pA−2,⊥

∣∣∣∣
pA−2,−= p2

A−2,⊥+M2
A−2

pA−2,+

. (50)

Note that the above integrations project the intermediate state to the positive light-front energy state thus excluding the contribution
from the Z graph of Fig. 1(c). The Z diagram in this scheme will be suppressed by the inverse power of large + component
of the nucleon’s four-momentum (see, e.g., [51]). With the diminished contribution from the Z graph Eq. (3) will result in the
light-front spectral function P N

A,2N (α1,p1,⊥,M̃2
N ) of the 2N SRC.

The on-shell conditions for the nucleon 2 and residual nucleus A − 2 allows us to use the sum rule relations

p/2 + MN =
∑
s2

u(p2,s2)ū(p2,s2) and G(pA−2) =
∑
sA−2

χA−2(pA−2,sA−2)χ †
A−2(pA−2,sA−2). (51)

Using also the nonrelativistic limit for the center of mass motion of 2N SRC, kCM � MNN [for kCM see Eq. (65) below], we
approximate

G(pNN,sNN ) ≈
∑
sNN

χNN (pNN,sNN )χ †
NN (pNN,sNN ), (52)

where χNN is the spin wave function of the center of mass motion of the 2N SRC. Using also the relations a(p1,s1)(p/1 + MN ) =
ū(p1,s1) and (p/1 + MN )ā(p1,s1) = u(p1,s1) for the light-front spectral function, from Eq. (3) one obtains

P N
A,2N

(
α1,p1,⊥,M̃2

N

) =
∑

s2,sNN ,sA−2

∫
χ

sA,†
A �

†
A→NN,A−2χA−2(pA−2,sA−2)

× χNN (pNN,sNN )χ †
NN (pNN,sNN )

p2
NN − M2

NN

�
†
NN→NN

u(p1,s1)u(p2,s2)

p2
1 − M2

N

× [
2α2

1δ(α1 + α2 + αA−2 − A)δ2(p1,⊥ + p2,⊥ + pA−2,⊥)δ
(
M̃2

N − M̃
(2N),2
N

)] ū(p1,s1)ū(p2,s2)

p2
1 − M2

N

×�NN→NN

χNN (pNN,sNN )χ †
NN (pNN,sNN )

p2
NN − M2

NN

χ
†
A−2(pA−2,sA−2)�A→NN,A−2χ

sA

A

× dα2

α2

d2p2,⊥
2(2π )3

dαA−2

αA−2

d2pA−2,⊥
2(2π )3

. (53)

Light-front wave function of the NN SRC. We now focus on the following combination in Eq. (53):

ū(p1,s1)ū(p2,s2)

p2
1 − M2

N

�NN→NN · χNN (pNN,sNN ), (54)

which enters in Eq. (53) in a direct and complex-conjugated form. For the propagator in Eq. (54), using light-front momentum
and energy conservation at the �NN→NN vertex, one obtains

p2
1 − M2

N = (pNN − p2)2 − M2
N = (pNN,+ − p2,+)

(
pNN,− − p2,− − M2

N + p2
1⊥

pNN,+ − p2,+

)

= α1(pA+/A)

(
M2

NN + p2
NN,⊥

αNNpA+/A
− M2

N + p2
2,⊥

α2pA+/A
− M2

N + p2
1,⊥

α1pA+/A

)
, (55)

where in the last part of the equation we used the on-shell conditions for the nucleon 2 (p2− = M2
N+p2

2,⊥
p2+

) and the condition

kCM � MNN , which justifies the approximation, pNN− ≈ M2
NN+p2

NN,⊥
pNN+

. Equation (55) can be further simplified using relations
α1 + α2 = αNN and p1⊥ + p2⊥ = pNN,⊥ yielding

p2
1 − M2

N = α1

αNN

(
M2

NN − α2
NN

α1α2

[
M2

N +
(

p2
1⊥ − α1

αNN

pNN,⊥

)2
])

. (56)

The above propagator can be completely expressed though the internal momenta of the NN system by introducing the momentum
fraction of the 2N SRC carried by the nucleon 1, β1, and the relative transverse momentum, k1,⊥, as follows:

β1 = 2 − β2 = 2α1

αNN

and k1,⊥ = p1,⊥ − β1

2
pNN,⊥. (57)
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With these definitions Eq. (54) can be written as

ū(p1,s1)ū(p2,s2)

β1
1
2

[
M2

NN − 4
β1(2−β1)

(
M2

N + k2
1,⊥

)]�NN→NN · χNN (pNN,sNN ), (58)

where one observes that the term in the denominator which is subtracted from M2
NN represents the invariant energy of the NN

system, sNN . This allows us to introduce the relative momentum k1 in the NN system, which is invariant with respect to the
Lorentz boost in the pNN direction, in the form

sNN = 4

β1(2 − β1)

(
M2

N + k2
1,⊥

) = 4
(
M2

N + k2
1

)
. (59)

The above defined relative momentum k1 will be used to set a momentum scale for the 2N SRCs, requiring k1 � ksrc similar to
Eq. (24).

The expression in Eq. (58) can be presented in a more compact form if one introduces the light-front wave function of the
NN SRC [3,8] in the form

ψ
sNN

NN (β1,k1,⊥,s1,s2) = − 1√
2(2π )3

ū(p1,s1)ū(p2,s2)�NN→NN · χNN (pNN,sNN )
1
2

[
M2

NN − 4
(
M2

N + k2
1

)] , (60)

where χNN represents the spin wave function of the NN pair emerging from the nuclear vertex �A,NN,A−2. With this definition
for Eq. (54) one obtains

ū(p1,s1)ū(p2,s2)

p2
1 − M2

N

�NN→NN · χNN (pNN,sNN ) = −
√

2(2π )3

β1
ψ

sNN

NN (β1,k1,⊥,s1,s2). (61)

Light-front wave function of the NN (A − 2) system. Next we consider the combination that defines the wave function of the
NN (A − 2) system that will describe the motion of the center of mass of the NN correlation:

χ
†
NN (pNN,sNN )χ †

A−2(pA−2,sA−2)

p2
NN − M2

NN

�A→NN,A−2χA. (62)

We first elaborate on the propagator of the NN system using the on-shell conditions for the initial A and residual A − 2 nucleus:

p2
NN − M2

NN = pNN+

(
pA− − pA−2,− − M2

NN + p2
NN,⊥

pNN,+

)
= αNN

A

(
M2

A − sNN,A−2
)
, (63)

where in the last part of the equation we used the on-energy shell relations pA− = M2
A+p2

A,⊥
pA,+

, pA−2,− = M2
A−2+p2

A−2,⊥
pA−2,+

, the definition,

αNN = ApNN,+
pA+

, as well as introduced the invariant energy of the NN − (A − 2) system as follows:

sNN,A−2 = A2

[
M2

NN + αNN

A

(
M2

A−2 − M2
NN

) + (
pNN,⊥ − αNN

A
pA,⊥

)2]
αNN (A − αNN )

. (64)

This invariant energy can be used to estimate the relative three-momentum in the NN − (A − 2) system:

kCM =
√

[sNN,A−2 − (MNN + MA−2)2)(sNN,A−2 − (MNN − MA−2)2]

2
√

sNN,A−2
, (65)

where, kCM,⊥ = pNN,⊥. Note that kCM can be used to calculate the light-front momentum fraction of the NN pair as follows:

αNN = A(ENN + kCM,z)

ENN + EA−2
, (66)

where ENN =
√

M2
NN + k2

CM and EA−2 =
√

M2
A−2 + k2

CM .
With the above definitions, similar to Eq. (60), one introduces the light-front wave function of the NN − (A − 2) system:

ψ
sA

CM (αNN,kNN,⊥,sNN,sA−2) = − 1√
A−2

2

1√
2(2π )3

χ
†
NN (pNN,sNN )χ †

A−2(pA−2,sA−2)�A→NN,A−2χ
sA

A

2
A

[
M2

A − sNN,A−2
] . (67)

The coefficients in the above equation are chosen such that in the nonrelativistic limit, kCM � MNN ,

ψ
sA

CM (αNN,kNN,⊥,sNN,sA−2) ≈ ψNR
CM (kCM )2MN. (68)
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Substituting Eqs. (67) and (63) in Eq. (62) one obtains

χ
†
NN (pNN,sNN )χ †

A−2(pA−2,sA−2)

p2
NN − M2

NN

�A→NN,A−2χA = −
√

A−2
2

√
2(2π )3

αNN/2
ψ

sA

CM (αNN,kNN,⊥,sNN,sA−2). (69)

Using Eqs. (61) and (69) in Eq. (53), for the 2N SRC unpolarized light-front spectral function one obtains

P N
A,2N

(
α1,p1,⊥,M̃2

N

) = A − 2

2

∑
s2,sNN ,sA−2

∫
ψ

sA,†
CM (αNN,kNN,⊥,sNN,sA−2)

×ψ
sNN ,†
NN (β1,k1,⊥,s1,s2)

[
2δ(α1 + α2 + αA−2 − A)δ2(p1,⊥ + p2,⊥ + pA−2,⊥)δ

(
M̃2

N − M̃
(2N),2
N

)]
×ψ

sA

CM (αNN,kNN,⊥,sNN,sA−2)ψsNN

NN (β1,k1,⊥,s1,s2)
dβ2

β2
d2p2,⊥

dαA−2

αA−2
d2pA−2,⊥. (70)

To obtain the spin averaged spectral function, using similar arguments as in Eq. (23), the above equation can be diagonalized
in terms of spin projections and simplified further by introducing spin averaged density matrices for the relative motion in the
2N SRC (Refs. [3,8]):

ρN
NN (β1,k1,⊥) = 1

2

1

2sNN + 1

∑
sNN ,s1,s2

∣∣ψsNN

NN (β1,k1,⊥,s1,s2)
∣∣2

2 − β1
, (71)

and for the center of mass motion of the 2N SRC:

ρCM (αNN,kNN,⊥) = 1

2

A − 2

2sA + 1

∑
sNN ,sA−2

∣∣ψsA

CM (αNN,kNN,⊥,sNN,sA−2)
∣∣2

A − αNN

. (72)

With the above definitions, for the 2N SRC unpolarized light-front spectral function one obtains

P N
A,2N

(
α1,p1,⊥,M̃2

N

) = 1

2

∫
ρN

NN (β1,k1,⊥)ρCM (αNN,kNN,⊥)2δ(α1 + α2 − αNN )

× δ2(p1,⊥ + p2,⊥ − pNN,⊥)δ
(
M̃2

N − M̃
(2N),2
N

)
dβ2d

2p2,⊥dαNNd2pNN,⊥. (73)

The normalization conditions for the above introduced density matrices are defined from the sum-rule conditions of Eqs. (39)
and (40). For the density matrices of NN SRC, ρN

NN , the normalization conditions to satisfy the baryonic and momentum sum
rules [8] yield ∫

ρN
NN (β,k⊥)

dβ

β
d2k⊥ =

∫
ρN

NN (β,k⊥)β
dβ

β
d2k⊥ = nN

2N, (74)

where nN
2N is the contribution of the 2N SRCs to the total norm of the spectral function. Similar to Eq. (27) we can model the

light-front density matrix of the 2N SRC through the high momentum part of the light-front density matrix of the deuteron
ρd (β1,k1,⊥) in the form

ρN
NN (β1,k1,⊥) = a2(A,Z)

(2xN )γ
ρd (β1,k1,⊥)(k1 − ksrc), (75)

where k1 is defined in Eq. (59), and a2(A,Z) in Eq. (27). In the second part of the current work [28] we will discuss the specific
models for ρd (β1,k1,⊥) which will allow us to perform numerical estimates.

For the light-front density function of the center of mass motion the conditions of Eq. (39) require the following normalization
relations: ∫

ρCM (αNN,kNN,⊥)
dαNN

αNN

d2kNN,⊥ = 1 and
∫

ρCM (αNN,kNN,⊥)αNN

dαNN

αNN

d2kNN,⊥ = 2. (76)

Since in the considered 2N SRC model the CM motion is nonrelativistic (kNN � 2MN ), we can use the momentum distribution
used in VN approximation [Eq. (26)] which can be related to ρCM as follows:

ρCM (αNN,kNN,⊥) = ENNEA−2

(ENN + EA−2)/A

nCM (kCM )

A − αNN

≈ 2MNnCM (kCM ), (77)

where nCM is defined in Eq. (26). Note that for the “middle” form of the ρCM the first normalization condition of Eq. (76) is
exact while the second one is approximate satisfying it only in the nonrelativistic limit (last part of the equation).

Finally, it is worth mentioning that in the nonrelativistic limit of the density matrix of 2N SRC, ρ(β1,k1,⊥) ≈ nNN (p1)MN

and Eq. (73), similar to VN approximation, reduces to the SRC model of spectral function of Ref. [10].

064318-14



MULTINUCLEON SHORT-RANGE CORRELATION MODEL . . . PHYSICAL REVIEW C 94, 064318 (2016)

C. Three-nucleon short-range correlation model

To calculate the contribution of the 3N SRCs to the light-front spectral function we adopt the collinear approach discussed
in Sec. IV C. In this approach the assumption of the total momentum of 3N SRCs being negligible imposes several kinematic
restrictions on the light-front momenta of nucleons in the correlation. The vertex operator V̂3N entering in Eq. (4) takes into
account these kinematic restrictions in the following form:

V̂3N = iā(p1,s1)2α2
1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ

(
M̃2

N − M̃
(3N),2
N

)
a(p1,s1), (78)

where in the considered 3N SRC model

M̃
(3N),2
N = p1+(pA− − p2− − p3− − pA−3,−) − p2

1,⊥ = α1

3

(
M2

3N − M2
N + p2

2,⊥
α2/3

− M2
N + p2

3,⊥
α3/3

)
− p2

1,⊥, (79)

with the mass of the 3N SRC defined as

M2
3N = 3

A
M2

A − 3
M2

A−3

αA−3
. (80)

The following derivation is in many ways similar to the one in the previous section. We first substitute the vertex function V3N

into Eq. (4), expressing four-dimensional differentials through the light-front momenta. Then we estimate the dp2,− and dp3,−
integrals at the pole values of the propagators of 2 and 3 nucleons corresponding to the positive values of their + components as
follows:

d4p2/3

p2
2/3 − M2

N + iε
= −i(2π )

dp2/3,+d2p2/3,⊥
2p2/3,+

= −iπ
dα2/3

α2/3
d2p2/3,⊥

∣∣∣∣
p2/3−

= M2
N + p2

2/3,⊥
p2/3+

. (81)

The above integrations allow us to use the on-mass-shell sum rule relations for the numerators of the propagators of 2 and 3
nucleons p/ + MN = ∑

s u(p,s)ū(p,s). Using a similar approximate relation for the 2′ propagator which represents the nucleon
between consecutive NN interaction vertices, as well as the properties of creation, ā(p1,s1), and annihilation a(p1,s1) operators,
for the 3N SRC light-front spectral function one obtains from Eq. (4)

P N
A,3N

(
α1,p1,⊥,M̃2

N

) =
∑

s2,s3,s2′ ,s̃2′

∫
ū(k1)ū(k2)ū(k3)�†

NN→NN

u(p2′ ,s̃2′ )ū(p2′ ,s̃2′)

p2
2′ − M2

N

�
†
NN→NN

u(p1,s1)

p2
1 − M2

N

u(p2,s2)

× [
2α2

1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ
(
M̃2

N − M̃
(3N),2
N

)]
ū(p2,s2)

ū(p1,s1)

p2
1 − M2

N

�NN→NN

× u(p2′ ,s2′ )ū(p2′ ,s2′)

p2
2′ − M2

N

u(p3,s3)ū(p3,s3)�†
NN→NNu(k1)u(k2)u(k3)

dα2

α2

d2p2,⊥
2(2π )3

dα3

α3

d2p3,⊥
2(2π )3

, (82)

where we suppress the spin notations of the initial and final collinear nucleons for simplicity of expressions.
Next we consider the following combination from the above expression:

ū(p1,s1)ū(p2,s2)�NN→NNu(p2′ ,s2′ )u(k1)

p2
1 − M2

N

. (83)

Here the denominator, similar to the previous section, can be expressed through the relative light-front momentum variables:

p2
1 − M2

N = β1

2

[
M2

12 − 4
[
M2

N + (p1,⊥ − β1

2 p12,⊥)2
]

(2 − β1)β1

]
, (84)

where we also applied the kinematic conditions following from the collinear approximation:

M2
12 = (k1 + k2 + k3 − p3)2 ≈ M2

3N

(
1 − α3

3

)
− 3

M2
N + p2

3,⊥
α3

+ M2
N,

p12,⊥ ≈ −p3,⊥ and β1 = 2α1

α12
= 2α1

3 − α3
, (85)

with α12 = α1 + α2 = 3 p1++p2+
k1++k2++k3+

.
Using Eq. (84) one introduces the light-front wave function of NN SRC similar to Eq. (60):

ψNN (β1,k̃1,⊥,s1,s2) = − 1√
2(2π )3

ū(p1,s1)ū(p2,s2)�NN→NNu(p2′ ,s2′ )u(k1)

1
2

[
M2

12 − 4
M2

N +k̃2
1,⊥

β1(2−β1)

] , (86)
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where k̃1,⊥ = p1,⊥ − β1
2 p12,⊥ and we also define the relative momentum in the NN center of mass frame as

k̃2
1 = M2

N + k̃2
1,⊥

β1(2 − β1)
− M2

N . (87)

With the above definitions for Eq. (83) one obtains

ū(p1,s1)ū(p2,s2)�NN→NNu(p2′ ,s2′ )u(k1)

p2
1 − M2

N

=
√

2(2π )3
ψNN (β1,k̃1,⊥,s1,s2)

β1
. (88)

For the second NN SRC contribution in Eq. (82) we consider the term

ū(p2′ ,s2′)ū(p3,s3)�NN→NNu(k2)u(k3)

p2
2′ − M2

N

, (89)

for which the denominator, similar to Eq. (84), can be represented in the form

p2
2′ − M2

N = 2 − β3

2

[
M2

23 − 4
M2

N + p2
3,⊥

β3(2 − β3)

]
, (90)

where the several relations below follow from the collinear approximation:

M2
23 = (k2 + k3)2 ≈ 4M2

N ; p2′,⊥ ≈ −p3,⊥; α2′3 = p2′,+ + p3+
k1+ + k2+ + k3+

≈ 2; β2′ = α2′3 − β3 ≈ 2 − β3, (91)

and the relative momentum in the NN center of mass frame can be defined as

k̃2
3 = M2

N + p2
3,⊥

β3(2 − β3)
− M2

N . (92)

Equations (90) and (91) allow us to use the definition of the NN SRC wave function of Eq. (86) with the replacements of
M12 → M23, β1 → 2 − β3 = β2′ , k̃1,⊥ → −p3,⊥ to describe the wave function of the second NN correlation. This results in the
following expression for Eq. (89):

ū(p2′ ,s2′)ū(p3,s3)�NN→NNu(k2)u(k3)

p2
2′ − M2

N

=
√

2(2π )3
ψNN (β2′ ,p3,⊥,s2′ ,s3)

2 − β3
. (93)

Using Eqs. (88) and (93) in Eq. (82) for the 3N SRC light-front spectral function one arrives at

P N
A,3N

(
α1,p1,⊥,M̃2

N

) =
∑

s1,s2,s3,s2′

∫
ψ

†
NN (β2′ ,p3,⊥,s2′ ,s3)

2 − β3

ψ
†
NN (β1,k̃1,⊥,s1,s2)

β1

× [
2α2

1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ
(
M̃2

N − M̃
(3N),2
N

)]
× ψNN (β1,k̃1,⊥,s1,s2)

β1

ψNN (β2′ ,p3,⊥,s2′ ,s3)

2 − β3

dα2

α2
d2p2,⊥

dα3

α3
d2p3,⊥. (94)

In the above expression, the polarizations are summed similar to the one in VN approximation [Eq. (23)] which allows us to
express the unpolarized spectral function in the form of the convolution of two NN light-front density matrices, as those defined
in Eq. (71), as follows:

P N
A,3N

(
α1,p1,⊥,M̃2

N

) =
∫

3 − α3

2(2 − α3)2
ρNN (β2′ ,p3,⊥)ρNN (β1,k̃1,⊥)2δ(α1 + α2 + α3 − 3)

× δ2(p1,⊥ + p2,⊥ + p3,⊥)δ
(
M̃2

N − M̃
(3N),2
N

)
dα2d

2p2,⊥dα3d
2p3,⊥, (95)

where within collinear approximation β3 = α3, β1 = 2α1
3−α3

as well as k̃1,⊥ = p1,⊥ + β1
2 p3,⊥.

In the above expression, similar to Eq. (37) for VN approximation, the product of the two density matrices is expressed
through the product of high momentum parts of the deuteron density matrices in the form

ρNN (β2′ ,p3,⊥)ρNN (β1,k̃1,⊥) = a2
2(A,Z)C(A,Z)ρd (β2′ ,p3,⊥)(k̃1 − ksrc)ρd (β1,k̃1,⊥)(k̃3 − ksrc), (96)

where k̃1 and k̃3 are defined in Eqs. (87) and (92) respectively. The factors a2(A,Z) and C(A,Z) are the same as in the case of
3N SRCs within VA approximation.
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VII. RANGE ON VALIDITY AND OVERVIEW
OF PARAMETERS ENTERING THE MODEL

Here we discuss briefly the range of validity and set of
parameters which will be used for numerical estimates of the
spectral functions to be presented in Ref. [28].

The main assumption on which our models are based is the
dominance of NN SRC in the nuclear dynamics for internal
momenta p � ksrc. Next major assumption is the dominance
of the isosinglet pn component in the NN SRC. The empirical
evidence of the dominance of NN SRCs was accumulated
during the last several decades (see, e.g., [18,19,23,29–32])
in high energy electro- and hadroproduction reactions. Recent
triple-coincident experiments [20,21,26] indicated that the pn
dominance in the nucleon-nucleon SRC persists for up to the
heavy nuclei such as A = 208. With this one expects that our
model should be valid for the wide range of atomic nuclei.

The most important parameter that defines the strength
of 2N SRC is a2(A,Z). Within the short-range correlation
framework, this parameter can be extracted from the ratios
of the cross sections of high momentum transfer inclusive
electronuclear scattering off nuclei A and the deuteron [31,32].
Recent measurements at Jefferson Lab [18,19,23] provided the
magnitudes of a2(A,Z) for a rather wide spectrum of atomic
nuclei.

In addition to a2(A,Z), the two other parameters ksrc and γ
define the momentum distribution of NN SRC in Eqs. (27)
and (75). The value of ksrc is defined from the condition
that it is sufficiently large for mean field contribution to be
insignificant, as well as close to the threshold value for which
pn dominance is observed empirically [20,21,26]. Another
condition in defining ksrc is the onset of the dominance of
the d-wave contribution in the high momentum part of the
deuteron wave function. With these conditions we evaluate
ksrc ∼ 300 − 350 MeV/c. In the current model we neglected
the contribution of isotriplet NN SRCs. To account for the
effects due to these correlations we introduce the parameter
γ . Based on the experimental observation [26] that in the 2N
SRC regions pn dominates by almost a factor of 20 for a wide
range of nuclei (up to A = 208) we take γ ≈ 0.8 − 0.9.

For the width of the center of mass distribution, β(A) in
Eq. (26), we use the estimates based on the convolution of the
mean field distribution of two independent nucleons according
to Ref. [10]. The parameter N0 in Eq. (26) is defined from the
normalization condition.

For the case of 3N SRCs, the only additional parameter
needed to define the spectral function is the suppression
factor C(A,Z) in Eqs. (37) and (96). This factor accounts for
the suppression of the 3N configurations with two identical
spectators like pp and nn pairs. It affects only the distribution
of the minority component in the asymmetric nucleus. For
example, according to the considered model, the neutron
cannot be generated from 3N SRC in the 3He nucleus, since
it will produce two “parallel” protons in the final state.
For parametrization of these effects we use the expression
C(A,Z) = 1 − 3(y/A) for the minority component, where
y = |1 − 2Z

A
| is the asymmetry parameter, and C(A,Z) = 1

for the majority component.
Note that the above discussed parameters are independent

of the use of the VN or LF approximations. Therefore one

can achieve further refinement in their values for lightest
nuclei (A � 12) by considering the nonrelativistic limit of
our approximations and comparing them with the results from
ab initio calculations like one based on the variational Monte
Carlo methods [37].

With the parameters for 2N and 3N SRCs fixed one can
calculate the normalization factors nN

2N and nN
3N within VN

and LF approximations. Note that these factors will be model
dependent since the 2N and 3N momentum distributions
predicted in VN and LF approximations are different. Once
these normalizations are calculated one can estimate the
norm of the mean field distributions from the relation nN

MF =
1 − nN

2N − nN
3N . Thus the estimates for the normalization of

mean field distributions will be indirectly VN or LF model
dependent.

VIII. SUMMARY

Based on the NN short-range correlation picture of the
high-momentum component of nuclear wave function we
developed a model for the nuclear spectral functions in the
domain of large momentum and removal energy of bound
nucleon in the nucleus. Our main focus is in treating the
relativistic effects which are important for the bound nucleon
momenta exceeding characteristic Fermi momentum, kF , in
the nucleus. The relativistic effects in this work are treated
based on the effective Feynman diagrammatic approach, in
which one starts with Lorentz covariant amplitudes reducing
them to the nuclear spectral functions that allows us to trace
the relativistic effects entering in these functions. One of the
main ambiguities related to the treatment of the relativistic
effects is the account for the vacuum fluctuations (Z graphs)
which ultimately alter the definition of the spectral function
as a probability of finding a bound nucleon in the nucleus
with the given momentum and removal energy. We employed
two: virtual nucleon and light-front approaches in treating the
relativistic effects.

The results for the 2N SRC model within VN [Eq. (24)] and
LF [Eq. (73)] approximations agree with the 2N SRC (with
center of mass motion) model of Ref. [10] in the nonrelativistic
limit. Our results represent an attempt to account for the
relativistic effects in the domain of 2N SRCs with center of
mass motion of the NN pair.

We extended both approaches to calculate also the contribu-
tions from three-nucleon short-range correlations. Derivations
in this case are based on the collinear approach in which
one assumes negligible center of mass momentum for the
residual or uncorrelated (A − 3) nuclear system. The derived
spectral functions within VN [Eq. (35)] and LF [Eq. (95)]
approximations represent results for 3N SRC contribution to
the nuclear spectral functions.

The main property of the obtained spectral functions is
that to describe them quantitatively in a high momentum
domain one needs only the knowledge of the high momentum
deuteron wave function either in the laboratory frame (for VN
approximation) or on the light front (for LF approximation).
In the follow-up work [28] we will present the quantitative
studies of the properties of nuclear spectral functions based on
specific models of the deuteron wave functions.
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