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Signatures of shape phase transitions in odd-mass nuclei
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Quantum phase transitions between competing ground-state shapes of atomic nuclei with an odd number of
protons or neutrons are investigated in a microscopic framework based on nuclear energy density functional theory
and the particle-plus-boson-core coupling scheme. The boson-core Hamiltonian, as well as the single-particle
energies and occupation probabilities of the unpaired nucleon, are completely determined by constrained self-
consistent mean-field calculations for a specific choice of the energy density functional and paring interaction,
and only the strength parameters of the particle-core coupling are adjusted to reproduce selected spectroscopic
properties of the odd-mass system. We apply this method to odd-A Eu and Sm isotopes with neutron number
N ≈ 90, and explore the influence of the single unpaired fermion on the occurrence of a shape phase transition.
Collective wave functions of low-energy states are used to compute quantities that can be related to quantum order
parameters: deformations, excitation energies, E2 transition rates, and separation energies, and their evolution
with the control parameter (neutron number) is analyzed.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are a prominent fea-
ture of many-body systems in many fields of physics and
chemistry [1]. Nuclear QPTs [2] are transitions between
competing ground-state shapes (spherical, axially deformed
shapes that are soft with respect to triaxial deformations)
induced by variation of a nonthermal control parameter at zero
temperature. Gradual transitions between different shapes in
chains of isotopes or isotones predominate, but in a number of
cases, with the addition or subtraction of only few nucleons,
abrupt changes in ground-state properties are observed and
related critical phenomena emerge [3,4]. When considering
QPT in finite systems such as atomic nuclei, in particular,
an essential question is how to identify observables that can
be related to order parameters. In addition, discontinuities at a
phase transitional point are smoothed out in finite nuclei, and it
is not always possible to associate the point of phase transition
with a particular nucleus, because the control parameter of
shape phase transitions, that is, the nucleon number, is not
continuous. Numerous experimental studies of transitional
nuclei have been carried out in the last fifteen years, and
signatures of first- and second-order QPTs have been identified
and investigated with various theoretical methods (for a review
see Ref. [2] and references cited therein). New and very
active areas of research include excited-state quantum phase
transitions [5–8] and QPTs in odd-mass nuclei [5,9,10].

QPTs between equilibrium shapes of even-even nuclei, that
is, systems with both proton and neutron numbers (Z and
N ) even, have been extensively explored using a variety of
phenomenological [2] and microscopic [11–14] approaches.
A description of possible QPTs in odd-mass nuclei, in which
either Z or N is an odd number, is considerably more
complex. Because of the effect of pairing, in even-even systems
all nucleons are coupled pairwise to T = 1 pairs, and the
low-energy excitation spectra are characterised by collective
vibrational and rotational degrees of freedom [3]. For odd-A
nuclei both single-particle [unpaired fermion(s)] and collective

(even-even core) degrees of freedom determine the low-energy
excitations [15]. Important issues when considering QPTs in
odd-mass nuclei are the influence of the unpaired fermion(s)
on the location and nature of the phase transition, empirical
signatures of QPTs in odd-A nuclei, and the definition and
computation of order parameters [9,10]. To address these
questions, shape phase transitions in odd-mass systems have
mainly been investigated using empirical approaches such
as algebraic methods [9,10,16,17], and geometrical mod-
els [18,19]. Microscopic studies of QPTs in odd-mass nuclei,
and in particular studies of quantum order parameters, have
not been as extensively pursued as in the case of even-even
systems.

This work presents a microscopic study of nuclear shape
phase transitions in odd-mass systems in the rare-earth region
with N ≈ 90 and, in particular, an analysis of observables that
can be related to order parameters. Recently we have developed
a new theoretical method [20] based on nuclear density
functional theory [21–23] and the particle-core coupling
scheme [3,15]. The even-even core nucleus is modeled in terms
of s and d boson degrees of freedom [24], which represent
correlated pairs of valence nucleons, and the particle-core
coupling of the unpaired proton or neutron is described
in the framework of the interacting boson-fermion model
(IBFM) [25]. In the model of Ref. [20] the parameters of the
even-even boson-core Hamiltonian, and the single-particle en-
ergies and occupation probabilities of the odd-fermion states,
are completely determined by a constrained self-consistent
mean-field (SCMF) calculation for a specific choice of the
energy density functional (EDF) and pairing interaction. Only
the strength parameters of the fermion-boson coupling terms of
the Hamiltonian are specifically adjusted to reproduce selected
spectroscopic data for a given nucleus. The method has been
illustrated and tested in an analysis of axially deformed odd-A
nuclei 151–155Eu, and it has been shown that the approach
enables a systematic, accurate, and computationally feasible
description of low-energy spectroscopic properties of odd-
mass nuclei [20].
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In the present analysis we consider the structural evolution
of odd-mass Eu (Z = 63) and Sm (Z = 62) isotopes in the
region with neutron number N ≈ 90. For the low-energy
excitation spectra these systems can be treated as a single
unpaired proton and neutron, respectively, coupled to the
even-even core Sm nuclei. The boson-core nuclei, 146–154Sm,
provide an outstanding example of a first-order QPT from
spherical to axially deformed equilibrium shapes, with the
control parameter being the neutron number [2,26]. The odd
particle for the odd-A Sm nuclei is also a neutron, while
that of the odd Eu isotopes is a proton, and this means a
nucleon different from the control parameter of the boson
core. We analyze the influence of the unpaired nucleon on the
occurrence of a QPT in both cases.

Section II contains a concise outline of the theoretical
method used in the present study. In Sec. III we analyze the
theoretical low-energy positive- and negative-parity excitation
spectra of odd-A Sm nuclei in comparison with available
data, and explore signatures of spherical to axially deformed
shape transitions in odd-mass Eu (Z = 63) and Sm (Z = 62):
equilibrium deformation parameters, spectroscopic properties,
and separation energies. Section IV includes a summary and a
brief outlook for future studies.

II. MODEL FOR ODD-MASS NUCLEI

In Ref. [20] we introduced a novel method for calculating
spectroscopic properties of medium-mass and heavy atomic
nuclei with an odd number of nucleons, based on the
framework of nuclear energy density functional theory and
the particle-core coupling scheme. The model Hamiltonian
Ĥ used to describe an odd-A nucleus contains a term that
corresponds to the even-even boson-core ĤB [built from
monopole s (with spin and parity Jπ = 0+) and quadrupole
d (Jπ = 2+) bosons], a single-particle Hamiltonian ĤF that
describes the unpaired nucleon(s), and an interaction term ĤBF

that couples the boson and fermion degrees of freedom:

Ĥ = ĤB + ĤF + ĤBF . (1)

The number of bosons NB and the number of odd fermions NF

are conserved separately and, since we consider low-energy
excitation spectra of odd-mass systems, NF = 1. In the present
version, therefore, the model space does not include three
and higher (quasi)particle states. Since a boson represents a
collective pair of valence nucleons, NB corresponds to the
number of fermion pairs, particle or hole, in the major valence
shell [27]. In the present case NB equals the number of fermion
pairs outside the doubly magic nucleus 132Sn, that is, from 7
to 11 for the boson-core nuclei 146–154Sm. We employ for the
boson-core Hamiltonian the following form:

ĤB = εd n̂d + κQ̂B · Q̂B + κ ′L̂ · L̂, (2)

with the d-boson number operator n̂d = d† · d̃ , the quadrupole
operator Q̂B = s†d̃ + d†s̃ + χ [d† × d̃](2), and the angular
momentum operator L̂ = √

10[d† × d̃](1). εd , κ , κ ′, and χ are
parameters. The fermion Hamiltonian for a single nucleon
reads ĤF = ∑

j εj [a†
j × ãj ](0), with εj the single-particle

energy of the spherical orbital j . For the particle-core coupling

ĤBF we use the simplest form [25,28]:

ĤBF =
∑
jj ′

�jj ′Q̂B · [a†
j × ãj ′ ](2) +

∑
jj ′j ′′

�
j ′′
jj ′ : [[d† × ãj ](j ′′)

× [a†
j ′ × d̃](j ′′)](0) : +

∑
j

Aj [a† × ãj ](0)n̂d , (3)

where the first, second, and third terms are referred to as the
quadrupole dynamical, exchange, and monopole interactions,
respectively. The strength parameters �jj ′ , �

j ′′
jj ′ , and Aj can

be expressed, by use of the generalized seniority scheme, in
the following j -dependent forms [29]:

�jj ′ = �0γjj ′ , (4)

�
j ′′
jj ′ = −2�0

√
5

2j ′′ + 1
βjj ′βj ′j ′′ , (5)

Aj = −A0

√
2j + 1, (6)

where γjj ′ = (ujuj ′ − vjvj ′ )Qjj ′ and βjj ′ = (ujvj ′ +
vjuj ′ )Qjj ′ , and the matrix element of the quadrupole operator
in the single-particle basis Qjj ′ = 〈j ||Y (2)||j ′〉. The factors
uj and vj denote the occupation probabilities of the orbit j ,
and satisfy u2

j + v2
j = 1. �0, �0, and A0 denote the strength

parameters. A more detailed discussion of each term of the
Hamiltonian in Eq. (1) is included in Ref. [20].

To build the boson-fermion Hamiltonian in a first step
one determines the parameters of the boson Hamiltonian
ĤB , following the procedure introduced in Ref. [30]: the
microscopic deformation energy surface, calculated with the
constrained self-consistent mean-field (SCMF) method for a
specific choice of the nuclear energy density functional (EDF)
and a pairing interaction, is mapped onto the corresponding
expectation value of the interacting boson Hamiltonian in the
boson coherent state [31]. This procedure uniquely determines
the parameters in the boson Hamiltonian ĤB .

The fermion model space contains all the spherical major
shell valence orbitals of the unpaired particle, proton or
neutron. In the present calculation we include spherical
single-particle orbitals in the proton major shell Z = 50–82
(positive parity 1g7/2,2d5/2,2d3/2,3s1/2 and negative parity
1h11/2) for the odd-Z Eu isotopes, and the orbitals in
the neutron major shell N = 82–126 (positive parity 1i13/2

and negative parity 1h9/2,2f7/2,2f5/2,3p3/2,3p1/2) for the
odd-N Sm nuclei. The canonical single-particle energies
and occupation probabilities of these orbitals determine the
terms ĤF and ĤBF of the Hamiltonian, respectively, and
are obtained from the SCMF calculation constrained to zero
deformation.

In the final step the strength parameters of the boson-
fermion Hamiltonian ĤBF are adjusted for each nucleus
separately. Optimal values of the corresponding strength
parameters (�0, �0, and A0) are adjusted to reproduce the
ground-state spin and/or the excitation energies of a few lowest
levels, separately for positive- and negative-parity states.

The resulting Hamiltonian of Eq. (1) is diagonalized
numerically [32] in the spherical basis |j,L,α,J 〉, where
α is a generic notation for a set of quantum numbers
nd,ν,n� that distinguish states with the same boson angular
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momentum L [24], and J is the total angular momentum of the
Bose-Fermi system (|L − j | � J � L + j ). Using the wave
functions resulting from the diagonalization, electromagnetic
transition rates can be calculated. The relevant decay mode
in the present study is the electric quadrupole (E2) transition.
The E2 transition operator of the Bose-Fermi system reads
T̂ (E2) = eBQ̂B + eF Q̂F , where Q̂B and Q̂F are the quadrupole
operators for the boson and fermion systems [20], respectively,
and eB and eF are the effective charges. eB is adjusted to
reproduce the experimental B(E2; 2+

1 → 0+
1 ) value for the

boson-core nucleus, while the constant value eF = 1.0 eb is
used for the fermion effective charge.

III. QUANTUM SHAPE PHASE TRANSITIONS
IN ODD-MASS Sm AND Eu ISOTOPES

Probably the best example of a QPT in atomic nuclei is in
the rare earth region with N ≈ 90 neutrons, where a transition
between spherical and axially symmetric equilibrium shapes
has been extensively investigated both experimentally [33–39]
and by using a number of theoretical methods [11,26,40–44].
Sm nuclei in this mass region, and 152Sm in particular, was the
first reported empirical example of a structure at the critical
point of a first-order transition between a vibrator and the
axial rotor phase [40]. Here we analyze low-energy states of
odd-proton Eu nuclei and odd-neutron Sm nuclei that can be
described by coupling the corresponding unpaired nucleon to
the even-even Sm boson core.

The deformation energy surfaces for a set of even-even Sm
core nuclei, which determine the parameters of the interacting-
boson Hamiltonian, are calculated as functions of the polar
deformation parameters β and γ , using the the constrained
self-consistent relativistic Hartree-Bogoliubov (RHB) model,
based on the energy density functional DD-PC1 [45], and
a separable pairing force of finite range [46]. The map of
the energy surface as a function of quadrupole deformation is
obtained by imposing constraints on the axial and triaxial mass
quadrupole moments. In Fig. 1 we display the self-consistent
RHB triaxial quadrupole binding energy maps of the even-even
148–154Sm in the β-γ plane (0 � γ � 60◦). The energy maps
clearly exhibit a gradual increase of deformation of the prolate
minimum with increasing neutron number, from spherical
146,148Sm to well-deformed prolate shapes at and beyond
154Sm, and the evolution of the γ dependence of the potentials.
The axial potential barrier at zero deformation increases with
mass number. With increasing N the prolate deformation
of Sm isotopes at equilibrium becomes more pronounced
and the shape evolution corresponds, in the language of the
interacting boson model, to a transition between the U(5) and
SU(3) limits of the Casten symmetry triangle [28]. The energy
surfaces of 150,152Sm indicate that these are transitional nuclei,
characterized by a softer potential around the equilibrium
minimum both in the β and γ directions. The softness of the
energy surface with respect to the quadrupole deformation
parameters β and/or γ around the mean-field equilibrium
minimum has been associated with the phenomenon of
quantum shape phase transition [2].

A phase transition is characterized by a significant variation
of one or more order parameters as functions of the control

FIG. 1. Self-consistent RHB triaxial quadrupole binding en-
ergy maps of the even-even 148–154Sm isotopes in the β-γ plane
(0 � γ � 60◦). For each nucleus the energy surface is normalized
with respect to the binding energy of the absolute minimum.

parameter. Even though shape phase transitions in nuclei have
been explored extensively by considering potential energy
surfaces, the deformation parameters that characterize these
surfaces are not observables and, therefore, a quantitative study
of QPT must go beyond the simple Landau approach and
include the direct computation of observables related to order
parameters. In the following we will consider spectroscopic
properties of odd-mass Eu and Sm isotopes that can be
associated with order parameters of a shape phase transition.
To illustrate the capability of the present method to describe
low-energy spectra of odd-mass nuclei in this region, in
Figs. 2–5 we show results for the three lowest positive-
and negative-parity bands of 149,151,153,155Sm isotopes, in
comparison with the available experimental values [47]. The
calculated energy levels are grouped into bands according
to the dominant E2 decay pattern. We note that the energy
spectrum of 147Sm is very similar to that of the adjacent
nucleus 149Sm, and available data are not sufficient for a
detailed comparison. The calculated excitation spectra of
odd-mass Eu nuclei have already been compared to data in
Ref. [20], including E2 and M1 transition rates, spectroscopic
quadrupole moments and magnetic moments, and this is why
these spectra are not explicitly shown here.

For 149Sm, in Fig. 2 one notices that both positive- and
negative-parity bands exhibit a vibrational level structure
characterized by the �J = 2 systematics of the weak-coupling
limit. The agreement between the calculated and experimental
spectra is fairly good. The excitation spectrum of 151Sm, shown
in Fig. 3, is less harmonic and the levels are more compressed in
energy. All bands, however, still display the �J = 2 structure
indicating that the odd neutron is not strongly coupled to the
boson core.

A significant change in the structure of excitation spectra
occurs between 151Sm and 153Sm (Fig. 4). Both in experiment
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K. NOMURA, T. NIKŠIĆ, AND D. VRETENAR PHYSICAL REVIEW C 94, 064310 (2016)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

3.9

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

17/2
-

5/2
-

(21/2
+
)

(23/2
+
)

9/2
-13/2

+

13/2
-

11/2
+

15/2
+

7/2
-

9/2
-

(13/2
-
)

9/2
-

19/2
+

149
Sm

Expt. Th.7/2
-

11/2
-

15/2
-

15/2
-

13/2
-

11/2
-

13/2
+

17/2
+

21/2
+

(15/2
+
)

(19/2
+
)

5/2
-9/2

-

13/2
-

17/2
-

(19/2
-
)

(21/2
-
)

11/2
+

(25/2
+
)

17/2
+

19/2
-

11/2
+

15/2
+

7/2
+

(21/2
+
)

(25/2
+
)

(17/2
+
)

(13/2
+
)

(23/2
-
)

(27/2
-
)

(25/2
-
)

(29/2
-
)

(27/2
+
)

(29/2
+
)

23/2
+

25/2
+

17/2
-

21/2
-

19/2
+

FIG. 2. The lowest three negative- and positive-parity bands of 149Sm. Available data are compared to model calculation in which states
are classified in bands according to dominant E2 transitions. The data are from Ref. [47], and parentheses denote states with only a tentative
assignment of spin and parity.

and model calculations �J = 1 bands characteristic for the
strong-coupling limit are formed, and coexist with bands that
exhibit the weak-coupling �J = 2 systematics. In addition,
153Sm is the only nucleus among all the odd-mass Sm isotopes
considered in which the ground state has positive parity,
originating from the neutron 1i13/2 orbit. The spectrum of
153Sm reflects the abrupt change of structure at N = 90 in the
even-even boson core, that can approximately be characterized
by the X(5) analytic solution at the critical point of the
first-order quantum phase transition between spherical and

axially deformed shapes [44]. We note that in experiment
all the negative-parity bands display the strong-coupling
structure, whereas both �J = 2 and �J = 1 sequences of
negative-parity states are obtained in the model calculation.
This discrepancy can most probably be attributed to the
occupation probabilities of the corresponding single-particle
orbitals obtained in the SCMF calculation. In addition, some
structures could be based on intruder orbitals that develop from
the shell below the neutron N = 82 closure and, therefore,
beyond the model space in which the IBFM Hamiltonian is
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FIG. 3. Same as in the caption to Fig. 2, but for 151Sm.
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FIG. 4. Same as in the caption to Fig. 2, but for 153Sm.

diagonalised. For instance, the experimental band built on the
state 11/2−

1 has been attributed to the neutron configuration
11/2−[505] [47].

The transition to a well deformed, axially symmetric
shape, is completed in 154Sm (cf. Fig. 1), and this is clearly
reflected in the excitation spectrum of 155Sm, shown in Fig. 5.
Sequences of both negative- and positive-parity states exhibit
the �J = 1 structure of the strong-coupling limit and the
excitation energies follow to a good approximation the simple
rotational J (J + 1) pattern.

We note that, as already shown in our previous article of
Ref. [20], a similar level of quantitative agreement with data

is obtained for the odd-mass Eu isotopes. The band structure
of Eu nuclei is simpler than that of the corresponding odd Sm
isotopes: in 147–151Eu the lowest three positive-parity bands
follow the �J = 1 systematics of the strong-coupling limit,
while the lowest three negative-parity bands exhibit the weak-
coupling �J = 2 structure; in 153,155Eu the lowest three bands
of both positive- and negative-parity are characterized by the
strong-coupling �J = 1 sequence of states.

To analyze the overall systematics of excitation spectra in
the transition from spherical to deformed equilibrium shapes,
in Figs. 6 and 7 we plot the calculated spectra for the low-
lying positive (π = +1) and negative parity (π = −1) yrast
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FIG. 5. Same as in the caption to Fig. 2, but for 155Sm.
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FIG. 6. Evolution of excitation energies of low-lying [(a) and (b)] positive- (π = +1) and [(c) and (d)] negative-parity (π = −1) yrast
states as functions of neutron number in the isotopes 147–155Eu, in comparison with available data taken from Ref. [47].

states in the isotopes 147–155Eu and 147–155Sm, as functions of
neutron number, and compare them with available data [47].
For both odd-A Eu and Sm isotopes the model reproduces
the experimental systematics, except for a few states in odd-
A Sm isotopes with N = 89 or 91. The phase transition is
characterized by a change in the spin of the ground state for
a particular nucleus [10]. Indeed one notices that the ground-
state spin changes at N = 90 in the Eu isotopes for negative
parity, and at N = 89 in odd-A Sm for both parities. For the
positive-parity states in Eu, however, the change does not occur
and the 5/2+ level remains the ground state for all isotopes.

In the remainder of this section possible signatures of
QPTs are explored in odd-mass Eu (odd proton) and Sm
(odd neutron) nuclei at N ≈ 90. We start by considering
the equilibrium axial deformation parameter β which, even
though it is not an observable, can nevertheless be used in a
theoretical analysis to describe the evolution of deformation
with the control parameter and as a signature of QPT in both
even-even and odd-mass systems, as shown in the classical
study of Ref. [9] using the IBFM. However, in contrast to
a mean-field description of QPT based on the analysis of
potential energy surfaces around equilibrium minima, we

FIG. 7. Same as in the caption to Fig. 6, but for the isotopes 147–155Sm.
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FIG. 8. Evolution of characteristic mean-field quantities calculated for the lowest three positive- (π = +1) and negative-parity (π = −1)
bands of the odd-A Eu and Sm nuclei, and Kπ = 0+ bands in the even-A Sm isotopes, as functions of mass number: the mean value β (a)
and variance �β (b) of the equilibrium deformation parameter for the bandhead state. “band 1,” “band 2,” and “band 3” denote the lowest,
second-lowest, and third-lowest bands, respectively. See the main text for the definition of each quantity.

explicitly compute the deformation parameter for a given state
using the wave function obtained by diagonalizing the IBFM
Hamiltonian Ĥ in Eq. (1). Figure 8 displays the mean value
of axial quadrupole deformation β =

√
〈β2〉 [panels (a-1),

(a-2), (a-3)] and the variance �β =
√

〈β2〉 − 〈β〉2 [(b-1),
(b-2), (b-3)] for the considered odd Eu and Sm isotopes, as
well as the corresponding even-even Sm cores, calculated
for the bandheads of three lowest positive (π = +1) and
negative-parity (π = −1) bands. Note that for the even-even
Sm nuclei all values included in Fig. 8 correspond to the lowest
three Kπ = 0+ bands, where Kπ denotes the projection of the
total angular momentum on the symmetry axis of the intrinsic
frame. The expectation value 〈βλ〉 (λ = 1,2) for the state with
spin and parity Jπ , which is used in the calculation of β and
�β, is defined by the relation

〈βλ〉 = 〈�J,k|βλ|�J,k〉

=
∫

dβ〈�J,k|φJ,k(β)〉βλ〈φJ,k(β)|�J,k〉

=
∫

dββλ|〈φJ,k(β)|�J,k〉|2, (7)

where |�J,k〉 is the eigenstate of the IBFM Hamiltonian,
with k distinguishing states with the same J , and |φJ,k(β)〉
is the projected intrinsic state of the coupled boson-fermion
system [48,49]. In the integral of Eq. (7) the expectation value
is computed in the interval |β| < 0.6. Values of β larger than
0.6 are not relevant because of the restricted boson model
space built from a limited number of valence nucleon pairs.
Consistent with the evolution of the equilibrium minimum at
the mean-field level (cf. Fig. 1), the average deformation β
in most cases increases monotonically with nucleon number
to a value of approximately 0.35 for heavier isotopes. In the
odd-mass Eu and Sm nuclei one notices a significant change
from A = 151 to 153. Similarly, the variance �β changes
(either increases or decreases) mostly for the transitional

nuclei with A = 151 or 153. The calculated values of β
and �β evolve as expected; that is, the fluctuations in shape
variables increase as a result of comparatively softer potentials
in transitional nuclei.

The evolution of E2 transition rates with neutron number
can also indicate a sudden change of deformation. In analogy
to the quadrupole shape invariant q2 which provides a measure
of axial deformation in even-even nuclei [50,51], here we
consider the quantity B(E2), defined as the average B(E2)
for transitions between the band-head of a given band with
spin J0 and the lowest n states with spin J0 + �J :

B(E2) = 1

n

n∑
k=1

B(E2; (J0 + �J )k → J0), (8)

where �J = 1 or 2, and the sum is in order of increasing
excitation energies of the levels J0 + �J . Only a few lowest
transitions will contribute significantly to this quantity and,
therefore, n = 5 terms have been included in the sum. In the
following the average B(E2) transition defined in Eq. (8) is
referred to as q invariant.

In the case of even-even nuclei quadrupole shape invariants
have been used to quantify the first-order QPT between
spherical and axially deformed shapes. In Ref. [43], based
on the available data on deformed Gd isotopes and on a
schematic IBM-1 calculation, the crossing of q invariants
of the ground and first excited 0+ states has been shown to
occur near the point of shape phase transition. In Figs. 9(a)
and 9(b) we plot the evolution of B(E2) for the ground (0+

1 )
and first excited 0+

2 states in the even-even Sm isotopes, and
their difference as functions of mass number. Even though
the present model calculation does not exhibit the crossing
of the q invariants for 0+

1 and 0+
2 , some basic features are

still observed in Figs. 9(a) and 9(b): for the lighter isotopes
the two q invariants are almost identical in magnitude and
display a similar increase with mass number whereas, starting
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FIG. 9. Left: calculated values of B(E2) for the two lowest 0+

states (a), and the difference B(E2)(0+
2 ) − B(E2)(0+

1 ) (b) for the
even-even Sm isotopes. Right: the excitation energies E(2+,0+

k ) (k =
1,2) of the states 2+ (c) and the energy ratio of the 4+ to the 2+

excited states R(4+,2+,0+
k ) (d) for the Kπ = 0+

1 and 0+
2 bands of

the even-even core nuclei 146–154Sm. In panel (d) the corresponding
values of the energy ratio E(4+

1 )/E(2+
1 ) in the U(5), X(5), and SU(3)

limits: 2.00, 2.91 (k = 1), 2.79 (k = 2), and 3.33, respectively, are
also indicated by dotted lines.

from the point of phase transitions between 150Sm and 150Sm,
their difference B(E2)(0+

2 ) − B(E2)(0+
1 ) increases rapidly in

magnitude and the q invariant (deformation) of the ground
state becomes considerably larger.

To analyze how the odd particle influences the location
and nature of the QPT observed in the even-even core, in
Figs. 10(a)–10(d) we display the calculated values of the
q invariant B(E2) of bandhead states for the three lowest
positive- (π = +1) and negative-parity (π = −1) bands in the
odd-A Eu and Sm isotopes, for the two cases of �J = 1 and
�J = 2 transitions. In analogy to the even-even case shown
in Figs. 9(a) and 9(b), one expects the q invariants to increase
with neutron number. This feature does not seem to generally
apply in the present calculation on the odd-A Eu and Sm nuclei;
rather it depends on whether a band exhibits a weak-coupling
or strong-coupling systematics. In the negative-parity bands
of the odd-A Sm nuclei in Figs. 10(b) and 10(d), for instance,
the q invariants of the bandhead states of the lowest and
second-lowest bands do not display a notable change from
A = 151 to 155 in the �J = 1 case, whereas the q invariant
of the bandhead state of the third-lowest band increases. In
the �J = 2 case the opposite is observed: the q invariants
of the lowest and second-lowest bands increase with neutron
number, whereas that of the third-lowest band remains almost
unchanged. As shown in Figs. 4 and 5, the lowest two negative-
parity bands of 153,155Sm follow the �J = 2 decay systematics
typical of the weak-coupling limit, whereas the third-lowest
negative-parity band follows the strong-coupling systematics
and E2 transitions with �J = 1 dominate. Nevertheless, one
expects that the most significant change (either an increase
or decrease) of the q invariants occurs between A = 149 and

151, or between A = 151 and 153, in accordance with the
even-even case exhibiting an abrupt change of this quantity
between A = 150 and 152.

Shape transitions can be also characterized by the evolution
of excitation energies, as shown in Figs. 10(e) and 10(f) where
we plot, for the three lowest bands of both parities, the energy
difference

E(J1,J0) = E(J1) − E(J0). (9)

E(J0) and E(J1) (J1 = J0 + �J with �J = 1,2) are the
energies of the bandhead and the first excited state in a band,
respectively. With the exception of an increase from mass
A = 147 to 149 for two bands in odd-A Eu isotopes that can
probably be attributed to a more pronounced band mixing, the
quantity E(J1,J0) decreases with neutron number, with a rapid
change in the transitional nuclei at N ≈ 90. Indeed, the 2+
excitation energies in the bands Kπ = 0+

1 and 0+
2 belonging to

the corresponding even-even Sm nuclei and plotted in Fig. 9(c)
exhibit a sudden decrease from A = 148 to 150 that reflects the
abrupt rise of deformation. As another signature of the shape
phase transition related to excitation energies, we consider the
energy ratio between the lowest two excited states (with spin
J1 = J0 + �J and J2 = J0 + 2�J ) in a given band:

R(J2,J1,J0) = E(J2) − E(J0)

E(J1) − E(J0)
. (10)

In the even-even case this is nothing but the ratio of the 4+
to 2+ excitation energies in Kπ = 0+ bands and, especially
the ratio in the yrast band, R(4+

1 ,2+
1 ,0+

1 ) = E(4+
1 )/E(2+

1 ) has
often been used as a signature of phase transition between
vibrational and rotational nuclei. In Fig. 9(d) we plot the
evolution of the ratio R(4+,2+,0+) for the lowest two bands
with Kπ = 0+ in the even-A Sm isotopes as function of the
mass (neutron) number. The ratio R(4+

1 ,2+
1 ,0+

1 ) exhibits a
typical increase as a function of A, from close to the vibrational
[or U(5)] limit [R(4+

1 ,2+
1 ,0+

1 ) = 2.00], to the rotational [or
SU(3)] limit [R(4+

1 ,2+
1 ,0+

1 ) = 3.33]. The R(4+
1 ,2+

1 ,0+
1 ) value

of 2.91, predicted by the X(5) critical-point symmetry model
for the phase transition [26], is located between A = 148 and
150. The ratio R(4+,2+,0+

2 ) also exhibits an increase, but
is always smaller than R(4+

1 ,2+
1 ,0+

1 ), and smaller than the
value predicted by the X(5) model. The value of the ratio
R(4+,2+,0+

2 ) differs from that of R(4+
1 ,2+

1 ,0+
1 ) particularly

in the transitional nuclei, reflecting the different intrinsic
structures of the two lowest 0+ states. A similar trend is
observed in the odd-A nuclei: Figs. 10(g) and 10(h) show the
calculated values of the ratio R(J2,J1,J0) for the lowest three
positive- and negative-parity bands in the considered odd-A
Eu and Sm isotopes, respectively. In the vibrational (A = 147
and 149) and deformed rotational (A = 153 and 155) nuclei,
the calculated ratios exhibit similar values in all bands of a
given parity, but differ significantly in the transitional nuclei
with A = 151.

We have shown that the characteristic mean-field and
spectroscopic properties of odd-A Eu and Sm nuclei as
functions of the neutron number, as well as those of the
even-even Sm isotopes, exhibit a rapid change close to the
transitional nuclei with mass A = 151 or 153. To identify
more precisely the location of discontinuities characteristic of
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FIG. 10. Dependence on mass number of the calculated spectroscopic quantities for the odd-A Eu and Sm isotopes: average B(E2; J0 +
�J → J0) (in units of e2b2) for transitions between the bandhead J0 of a given band and the lowest five states with J0 + �J , with �J = 1
[(a) and (b)] and 2 [(c) and (d)]; the excitation energy E(J1,J0) (J1 = J0 + �J , in MeV) of the second-lowest state in a band relative to the
bandhead [(e) and (f)], and the energy ratio R(J2,J1,J0) with J2 = J0 + 2�J [(g) and (h)]. See the main text for the definition of each quantity.

shape phase transitions we consider the differentials of these
quantities, that is, the difference of their values in neighboring
isotopes. The relevance of differential observables for studies
of structural evolution of nuclear systems, especially in
exotic nuclei, was already pointed out in Ref. [52], where
experimental differential observables related to mean-square
charge radii, spectroscopic properties, and mass observables
of even-even nuclei were analyzed for different regions in
the nuclear chart. To facilitate a similar analysis in the case
of odd-A nuclei in which the density of low-energy levels is
much higher, here we define the differential of a given quantity
O for a nucleus with mass A as its absolute value averaged
over the lowest bands i, that is,

δO = 1

n

n∑
i=1

|Oi,A − Oi,(A−2)|. (11)

Figure 11 displays the differentials of the mean value δβ
[panels (a-1) and (a-2)] and variance δ�β [(b-1) and (b-2)]

of the quadrupole deformation β, the q invariants δB(E2)
in the cases of �J = 1 [(c-1) and (c-2)] and �J = 2 [(d-1)
and (d-2)], the energy δE(J1,J0) [(e-1) and (e-2)], and the
ratio δR(J2,J1,J0) [(f-1) and (f-2)], averaged over the lowest
three (n = 3) positive- and negative-parity bands in the odd-A
Eu and Sm isotopes. One notices that apart from only a few
exceptions, that is, δB(E2) in the case of �J = 2 for the
positive-parity states in odd Sm [Fig. 11(d-2)] and δE(J1,J0)
for the positive-parity states in odd Eu [Fig. 11(e-1)], the
differentials of the considered quantities exhibit a pronounced
discontinuity at the transitional nuclei, where the potential
becomes notably soft in both deformation parameters β and
γ (cf. Fig. 1): either at A = 151 or 153. In Fig. 12 we plot
the differentials of the same quantities but for the even-even
Sm isotopes. Note that the average in Eq. (11) is taken over
the lowest three Kπ = 0+ bands for δβ and δ�β, and for
the lowest two Kπ = 0+ bands for δB(E2), δE(2+,0+) and
δR(4+,2+,0+). These plots clearly show that the differentials
of the characteristic quantities in the even-even core nuclei also
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FIG. 11. Differentials of the mean value δβ [(a-1) and (a-2)] and variance δ�β [(b-1) and (b-2)] of the quadrupole deformation parameter
β, q invariants B(E2) with �J = 1 [(c-1) and (c-2)], and �J = 2 [(d-1) and (d-2)], excitation energy δE(J1,J0) [(e-1) and (e-2)], and the
energy ratio δR(J2,J1,J0), for the odd-A Eu and Sm isotopes, as functions of the mass number.

exhibit abrupt changes between the nuclei with mass number
A = 150 and 152, and these changes correspond to the ones
observed in the odd-proton and odd-neutron systems.

Finally, as yet another clear signature of the QPT, we display
in Fig. 13 the proton and neutron separation energies [sp

(a) and sn (b)] and their corresponding differentials [δsp (c)
and δsn (d)] for the odd-A Eu and Sm isotopes, respectively.
The separation energies are obtained simply as the difference
between the eigenvalues of the Hamiltonians Ĥ and ĤB for the
corresponding ground states. Consistent with the results for the
other characteristic quantities discussed above, both δsp and

δsn exhibit a sharp irregularity at the transitional nuclei with
mass number A = 151 and 153, for the odd-A Eu and Sm
isotopes, respectively.

IV. CONCLUSIONS

A microscopic study of a quantum phase transition related
to the shape of odd-mass nuclei has been carried out using
a newly developed method of Ref. [20], based on nuclear
density functional theory (DFT) and the particle-core coupling
scheme. The deformation energy surface for the even-even
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FIG. 12. Same as in the caption to Fig. 11, but for the even-even
Sm core nuclei.

core nuclei, and the single-particle energies and occupation
probabilities of the odd fermion (proton or neutron), are
obtained from SCMF calculations based on a choice of
the energy density functional and pairing interaction. The
self-consistent mean-field results determine the parameters
of the IBFM Hamiltonian that is used to calculate spec-
troscopic properties of odd Eu and Sm nuclei with mass
number A = 147–155. The corresponding even-even core Sm
isotopes present one of the best examples of a QPT between
spherical and axially deformed shapes. By using this method,
characteristic mean-field and spectroscopic properties that can
be related to quantum order parameters of the QPT have

FIG. 13. Proton (a) and neutron (b) separation energies (sp and
sn), and their differentials δsp (c) and δsn (d), for the odd-A Eu and
Sm isotopes, respectively.

been analyzed and, in particular, the differentials of these
quantities that underline the QPT. Even though systems with
a finite number of particles have been investigated, and the
control parameter is the integer value of the nucleon number
rather than a continuous parameter, the differentials of several
characteristic quantities (deformation parameter, q invariants,
excitation energies, and separation energies) in the odd-A Eu
and Sm nuclei, as well as for the even-even Sm cores, all
exhibit a clear discontinuity close to N = 90 which signals
the QPT associated with the softness of the collective potential
in transitional nuclei. The results are robust and general, and
present a valuable contribution towards a systematic study of
shape phase transitions in odd-mass nuclei.
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