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The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed
in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The
study is performed within the fully self-consistent quasiparticle random-phase-approximation method based
on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear
incompressibility, are considered. The calculations confirm earlier results that, because of the deformation-
induced E0-E2 coupling, the isoscalar E0 resonance attains a double-peak structure and significant energy
upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller
energy difference between the lower and upper peaks and thus a stronger E0-E2 coupling. This in turn results
in more pumping of E0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss
widths of the peaks and their negligible correlation with deformation.
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I. INTRODUCTION

The isoscalar giant monopole resonance (ISGMR) is of
fundamental interest because it provides information on the
nuclear incompressibility [1]; see early [2] and recent [3–5]
reviews. In deformed nuclei, the ISGMR exhibits an additional
remarkable feature: It couples strongly with the Kπ = 0+
branch of the isoscalar giant quadrupole resonance (ISGQR),
leading to a double-peak structure (splitting) of the ISGMR
strength [2]. In prolate nuclei, the high-energy peak constitutes
the basic ISGMR while the low-energy peak is produced
by the deformation-induced coupling of monopole (E0) and
quadrupole (E2) strengths. The energy difference between the
peaks is larger than the widths of ISGMR and ISGQR [2]. In
well-deformed nuclei, both peaks carry significant fractions of
the monopole strength. As a result, the deformation-induced
splitting of ISGMR can be observed experimentally, as, e.g.,
in 154Sm [6].

The main features of the E0-E2 coupling and related
splitting of the ISGMR were investigated about 30 years ago,
theoretically [7–11] and experimentally [7,12,13]. Various
models were used: bare Q-Q interaction [7], adiabatic cranking
[8], variational [9], fluid-dynamical [10], and quasiparticle
random-phase approximation (QRPA) with an effective inter-
action [11]. The fluid-dynamical study [10] was especially
successful. Being self-consistent and based on a simple
Skyrme functional, it provided reasonable numerical results
and useful analytical estimates.

The interest on ISGMR in deformed nuclei was revived
by (i) the appearance of new experimental data, e.g., for
Sm [6,14], Mo [15], and Cd [16,17] isotopes, and (ii)
the progress of modern self-consistent mean-field models
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(relativistic, Skyrme, Gogny) [18,19]. In recent self-consistent
QRPA calculations, the ISGMR in deformed Mg [20–23], Si
[20], Zr [24], and Nd-Sm [25,26] isotopes as well as in 238U
[27] was explored. The results of early studies [8–11] were
generally confirmed. The importance of self-consistency was
corroborated by showing that a self-consistent treatment leads
to a narrowing of the ISGMR splitting and thus to a much
better agreement with the experiment. Moreover, the influence
of neutron excess on the ISGMR properties was investigated
[24] and the combined effect of the nuclear incompressibility
K∞ and isoscalar effective mass m∗

0/m on the ISGMR splitting
was scrutinized [26].

In the present paper, we present a systematic Skyrme-RPA
analysis of the double-peak structure of the ISGMR in prolate
axially deformed nuclei. In extension of previous studies, we
cover a wide mass region involving medium (Cd), rare-earth
(Nd, Sm, Dy, Er, Yb), actinide (U, No), and superheavy (Fl)
nuclei. This allows one to check the main trends and analytical
estimations [9,10] for the ISGMR. The analysis goes up to the
region of superheavy nuclei where the ISGMR had not yet
been inspected.

In addition to this survey of deformation splitting, we
briefly discuss some contradictions in experimental data on
ISGMR from Research Center for Nuclear Physics (RCNP)
at Osaka University [14,16] and Texas A&M University
(TAMU) [6]. Both groups use the (α,α′) reaction and multipole
decomposition analysis (MDA) but get substantially different
results for the detailed structure of the ISGMR. For example, in
well-deformed 154Sm TAMU data [6] demonstrate a distinctive
two-peak structure of ISGMR while RCNP data [14] give
only one monopole peak. The discrepancies between TAMU
and RCNP data for ISGMR in spherical (Sn, Sm, Pb) and
deformed (Sm) nuclei were addressed already in our previous
studies [25,28]. Here we continue the discussion using RCNP
[16] and TAMU [17] results for Cd isotopes. In [16,17], these
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isotopes are treated as spherical, thus no deformation splitting
of ISGMR is assumed. Following experimental data [29]
and our calculations, Cd isotopes have a modest quadrupole
deformation. Thus some weak double-peak ISGMR structure
might be expected here.

Our calculations are performed within the self-consistent
QRPA method [30] based on the Skyrme energy functional
and specified for axially deformed nuclei [31]. To pin down the
E0-E2 coupling, the self-consistent separable random-phase
approximation (SRPA) model with Skyrme forces is used
[32,33]. In both cases, the pairing is treated within the
Bardeen-Cooper-Schrieffer (BCS) scheme [34].

The paper is organized as follows. In Sec. II, the calculation
details are outlined. In Sec. III, the results for ISGMR
strength functions are discussed. It is demonstrated that
just the E0-E2 coupling is responsible for the double-peak
structure of ISGMR. In Sec. IV, the trends for various
characteristics of ISGMR are analyzed and compared with
analytical estimations. In Sec. V, conclusions are given.

II. CALCULATION SCHEME

The calculations are performed within a two-dimensional
(2D) QRPA approach [31]. The method is fully self-consistent
because (i) both the mean field and residual interaction are
obtained from the same Skyrme functional, (ii) the residual
interaction includes all the terms of the initial Skyrme
functional as well as the Coulomb direct and exchange terms
(the latter in the local-density approximation). Both time-even
and time-odd densities are taken into account.

The QRPA code employs a mesh in cylindrical coordinates.
The calculation box reaches three nuclear radii. The mesh size
is 0.4 fm for medium and rare-earth nuclei, 0.7 fm for U and
No and 1.0 fm for superheavy Fl. The single-particle spectrum
implements all the levels from the bottom of the potential well
up to +30 MeV. Pairing with a contact δ-force interaction (also
called volume pairing) is treated at the BCS level [34]. The
pairing particle-particle channel is taken into account in the
residual interaction.

The ISGMR and ISGQR are computed in terms of E0 and
E2 strength functions:

S0(Eλ; E) =
∑

ν

|〈ν|M̂(Eλ)|0 〉|2 ξ�(E − Eν), (1)

where M̂(E0) = ∑A
i (r2Y00)i and M̂(E2) = ∑A

i (r2Y20)i are
isoscalar (T = 0) transition operators, |0〉 is the ground-state
wave function, |ν〉 and Eν are QRPA states and energies. The
strength functions include a Lorentz folding with ξ�(E −
Eν) = �/(2π [(E − Eν)2 + �2/4]) and a folding width �.
The Lorentz function approximately simulates smoothing
effects beyond QRPA (coupling to complex configurations
and escape widths) and so allows comparison of calculated
and experimental strengths. In the present study, an averaging
of � = 2 MeV is found optimal. The same folding width was
used in the previous studies of the ISGMR [25,26,28].

Two Skyrme forces, SV-bas [35] and SkP, with δ-force
pairing [36] are used. Their key properties are characterized
by nuclear matter parameters given in Table I. It is seen that
these two forces essentially differ by their incompressibilities.

TABLE I. The key parameters of symmetric nuclear matter
(incompressibility K∞, effective mass m∗

0/m, symmetry energy J ,
slope of symmetry energy L, TRK sum-rule enhancement κTRK) for
the two Skyrme parametrizations used in this paper.

K∞ m∗
0/m J L κTRK

(MeV) (MeV) (MeV)

SV-bas 234 0.9 30 32 0.40
SkP 202 1.0 30 20 0.35

The QRPA calculations employ a large configuration
space with particle-hole (two-quasiparticle) energies up to
70–75 MeV. Depending on the nucleus, the space involves
8500–9700 configurations with K = 0. The spurious mode lies
below 2–3 MeV, i.e., safely beyond the ISGMR structures
located at 9–20 MeV. For SV-bas, the monopole strength
summed in the relevant energy interval 9–45 MeV exhausts
the energy weighted sum rule EWSR = �

2/(2πm)A〈r2〉0 by
100%–105%. A similar result is obtained for SkP.

At one place, the quasiparticle separable RPA model
(SRPA) [32,33] is also used. SRPA exploits a self-consistent
factorization of the residual interaction, which drastically re-
duces the computational expense while keeping high accuracy
of the calculations. The method was successfully applied for
description of ISGMR in spherical [28] and deformed [25]
nuclei. Here we employ SRPA for analyzing purposes because
this model can switch deliberately the E0-E2 coupling [25]
and so allows one to scrutinize the deformation effect in the
splitting of the ISGMR. We use in SRPA the same calculational
parameters [two-dimensional (2D) cylindrical mesh, size of
the configuration space, etc.] as in QRPA.

The QRPA calculations are performed for 24 nuclei from
medium, rare-earth, actinide, and superheavy regions. Mainly
well-deformed nuclei are considered. The particular isotopic
chains (Cd, Nd, Er, No, Fl) are involved. Some chains (Nd, Fl)
cover a transition from spherical to deformed nuclei.

For all nuclei, with the exception of Cd isotopes, the
equilibrium axial quadrupole deformation β is determined by
minimization of the total energy of the system. For soft Cd
isotopes, our calculations give shallow energy surfaces with
very weak minima. Thus for the Cd chain we use experimental
deformation parameters [29].

III. RESULTS AND DISCUSSION

We first consider the ISGMR strength functions which
allow a direct inspection of the deformation-induced splitting
of the resonance. The low-energy peak appearing from E0-E2
coupling and high-energy (main) peak tending to the ISGMR
in the spherical limit will be discussed.

In Fig. 1, the double-peak structure of ISGMR is illustrated
for the case of Nd isotopes. Considered are spherical 142Nd,
slightly deformed 146Nd, and well-deformed 150Nd. The low-
energy peak in the E0 strength grows with deformation. It is
absent in spherical 142Nd and significant in strongly deformed
150Nd where the double-peak structure of the ISGMR becomes
obvious. The energy of the low-energy peak precisely matches
the position of the K = 0 branch of the ISGQR (lower panels).
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FIG. 1. ISGMR (top panels) and ISGQR(K = 0) (bottom panels)
strength functions in 142,146,150Nd, calculated within QRPA. The
calculated deformation parameters are indicated for each isotope.
The experimental data (energy centroids and widths) [13] are shown
by arrows and horizontal bars.

This indicates that the low-energy peak in the E0 strength is
caused by the deformation-induced E0-E2 coupling between
ISGMR and ISGQR.

The splitting of the ISGMR strength is further demonstrated
in Fig. 2 for well-deformed 154Sm. This example is especially
interesting because for 154Sm two sets of experimental data,
RCNP [14] and TAMU [6], are available. For convenience
of the comparison, we converted the TAMU data [6] given
in fractions of the EWSR to units fm4 MeV−1 used in RCNP
[14]. In the upper panels, the monopole strength from SRPA
calculated without the E0-E2 coupling is shown (note that,

FIG. 2. Isoscalar E0 strength functions in deformed 154Sm calcu-
lated within SRPA (red dotted lines) and QRPA (black solid lines)
with the forces SV-bas (left) and SkP (right). The SRPA calculations
are performed without (top panels) and with (bottom panels) the
E0-E2 coupling. For the comparison, the E0 data from RCNP [14]
(blue filled squares) and TAMU [6] (green filled circles) experiments
are depicted. In bottom panels, the calculated peak energies of the
λμ = 20 branch of ISGQR are marked by arrows.

unlike QRPA, SRPA allows one to suppress the E0-E2
coupling in deformed nuclei by skipping the quadrupole
terms in the input generators [33]). In this case, the ISGMR,
despite the strong deformation, does not exhibit any distinctive
double-peak structure but instead comes as one broad peak
with some fine structure. However, if we take into account the
E0-E2 coupling (bottom plots), then an additional low-energy
peak appears and ISGMR attains a double-peak structure.
Moreover, the energy of the low-energy peak coincides with
the energy of ISGQR(K = 0) resonance (marked in the plots by
arrows). This takes place in both QRPA and SRPA calculations
with Skyrme parametrizations SV-bas and SkP. So Fig. 2 once
more proves that just E0-E2 coupling causes the double-peak
structure of ISGMR.

The lower panels of Fig. 2 also show that QRPA calculations
with SV-bas correctly reproduce the measured energies of
ISGMR peaks, while the calculations with SkP underestimate
them. So the incompressibility of SV-bas K∞ = 234 MeV is
more reasonable for 154Sm than the SkP value K∞ = 202 MeV.
It is worth mentioning that the K∞ = 234 of SV-bas is in
accordance with a good reproduction of ISGMR in 208Pb
together with the charge form factor in nuclear ground states
[37,38].

As seen from Fig. 2, the RCNP [14] and TAMU [6] data for
ISGMR in 154Sm deviate from each other. Unlike the TAMU
data, the RCNP data (i) give a strong tail of the monopole
strength above the ISGMR and (ii) do not exhibit the ISGMR
splitting with its pronounced low-energy monopole peak, in
spite of the fact that 154Sm is strongly prolate. The discrepancy
between RCNP and TAMU data is surprising because both
groups use (α,α′) reaction and exploit similar multipole
decomposition techniques to extract the monopole strength
[6,14]. This problem was briefly discussed in our previous
studies of ISGMR in spherical [28] and deformed nuclei [25].
As mentioned in [28], a possible reason for the discrepancy
could be that different incident energies of α-particle beams
had been used in TAMU and RCNP experiments, 240 MeV
[6] and 386 MeV [14], respectively. Because (α,α′) is a
peripheral reaction, the TAMU and RCNP experiments may
probe different surface slices and thus experience different
compression responses. Indeed, the compression response
depends on the nuclear density which significantly varies in the
surface region. The TAMU and RCNP discrepancy, being yet
unresolved, calls for additional measurements and analysis.

Figure 3 shows results for the chain of Cd isotopes. Here we
use recent RCNP data [16] for 106,110,112,114,116Cd and TAMU
data [17] for 116Cd. The data are obtained for α-particles with
incident energies 400 MeV (RCNP) and 240 MeV (TAMU). In
the analysis of [16,17], the open-shell Cd isotopes are treated
as spherical. However, the experimental data [29] give for these
isotopes a modest axial quadrupole deformation which steadily
grows from 106Cd (β = 0.173) to 112Cd (β = 0.186) and then
sharply drops toward 114Cd (β = 0.130) and 116Cd (β = 0.135).
Note that earlier experiments [39] deliver similar deformations
for 110−112Cd but much larger for 114Cd (β = 0.190) and 116Cd
(β = 0.191). Anyway, unlike [16,17], it is more relevant
to treat Cd isotopes as slightly deformed. As mentioned
above, our calculations demonstrate for these nuclei shallow
energy surfaces with too weak minima. So, in our analysis of
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FIG. 3. Isoscalar E0 strength functions in Cd isotopes, calculated
within QRPA with the forces SV-bas (black solid line) and SkP
(red dotted line). For the comparison, the E0 data from RCNP [16]
(blue filled squares) and TAMU [17] (green filled circles, only for
116Cd) experiments are depicted. The calculated peak energies of
the quadrupole branch with K = 0 are marked by arrows. The
experimental deformation parameters β [29] are indicated for each
isotope.

ISGMR in 106−116Cd we use not calculated but experimental
deformations [29] given in Fig. 3.

Figure 3 shows that both SV-bas and SkP calculations
predict a slight low-energy peak related to the position of the
ISGQR(K = 0) mode. The experimental strength also indicates
a slight left shoulder. However, this shoulder is too small
and vague to conclude safely on a low-energy peak. So most
probable nuclei with β < 0.2 cannot develop a measurable
deformation splitting of ISGMR.

Note that both SV-bas and SkP in general reproduce the en-
ergy EISGMR of the main monopole peak, though the difference
between the predictions is 1–2 MeV. SV-bas well describes
EISGMR in 106Cd but somewhat overestimates it in 110−116Cd
while SkP underestimates EISGMR in 106Cd but performs better
in 110−116Cd. So we meet here again a well-known problem that
we do not get a simultaneous good description of ISGMR in
different nuclei with one and the same Skyrme force; see, e.g.,
discussions [3,4,16,28]. However, while in the previous studies
doubly magic and open-shell nuclei were compared (with a
noticeable compression “softness” in open-shell patterns), here
we see a different compression “softness” already between
open-shell nuclei. Namely, ISGMR favors a lower K∞ from
SkP in Cd isotopes and larger K∞ from SV-bas in 154Sm.
Mind that the difference in effective mass m∗

0/m does not
affect the ISGMR in spherical nuclei [34,35,38] so that K∞
remains as the only player in this case. But in deformed nuclei
there is a combined effect of K∞ and isoscalar effective mass
m∗

0/m. The effective mass can affect ISGQR and thus the
E0-E2 coupling. This in turn can result in a noticeable shift
of the main ISGMR peak. As discussed below, in Cd isotopes
we get a downshift of the main ISGMR peak (in contrast to
well-deformed nuclei which demonstrate a noticeable upshift).
Anyway our QRPA analysis of ISGMR in Cd isotopes is still

FIG. 4. The QRPA isoscalar E0 strength functions in deformed
164Dy, 168Er, 172Yb, and 238U, calculated with (black solid line) and
without (red dotted line) the equilibrium deformation (indicated in the
plots). The force SV-bas is used. The peak energies of ISGQR(K = 0)
branch are marked by arrows.

somewhat approximate. A more rigorous treatment should take
into account a softness of these nuclei to deformation, possible
nonaxiality, and coupling to complex configurations.

For 116Cd, Fig. 3 once more exhibits big deviations between
RCNP [16] and TAMU [17] experimental data. The deviations
are similar to those for 154Sm: As compared to TAMU,
RCNP gives a higher ISGMR energy and a strong strength
tail above the resonance. So, RCNP and TAMU deviations
have a systematic character and are pertinent to various mass
regions. Presently this is a serious obstacle for further progress
in ISGMR studies.

In Fig. 4, the ISGMR in strongly deformed nuclei is
inspected. Four typical rare-earth and actinide nuclei (164Dy,
168Er, 172Yb, 238U) are considered. The E0 strength in these
nuclei demonstrates a clear two-peak structure and the low-
energy peak originates from the deformation-induced E0-E2
coupling. In the spherical limit, only the main monopole peak
exists. Comparing the strengths in the spherical and deformed
cases, one can notice that, in accordance with earlier studies
[2,8], the E0-E2 coupling leads to some upshift of the main
ISGMR peak.

In Fig. 5, SV-bas results for ISGMR are shown in
242,254,270No and superheavy 264,284,304Fl(Z = 114). The No
chain includes only deformed isotopes. The larger the isotope
deformation, the stronger the low-energy monopole peak. In
all these isotopes, the peak energy coincides with the energy
of ISGQR(K = 0) mode. The Fl chain (Z = 114) represents
isotopes with zero (A = 304), modest (A = 284), and large
(A = 264) deformation. The low-energy peak is absent in
spherical 304114 but grows from 284114 to 264114. The peak
energy matches the ISGQR(K = 0) energy thus confirming
its origin from the E0-E2 coupling. So superheavy nuclei
confirm the physical mechanism of ISGMR splitting pertinent
to medium, rare-earth, and actinide nuclei.
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FIG. 5. The QRPA isoscalar E0 strength functions for isotopes
242,254,270Nd (left) and 264,284,304114 (right) calculated at equilibrium
deformations (indicated in the figure). The force SV-bas is used. The
peak energies of ISGQR(K = 0) branch are marked by arrows.

IV. TRENDS

Our calculations cover a wide mass region 106 < A < 304
and various deformations 0.17 < β < 0.35. So they are suitable
to analyze the trends of the deformation splitting of ISGMR
with mass number A and quadrupole deformation β. We do
this in terms of the following key features of ISGMR and
ISGQR in deformed nuclei.

(1) The peak energy EM of the high-energy (main) ISGMR
bump (tending to the principle ISGMR in the spherical
limit).

(2) The peak energy EQ of the K = 0 branch of ISGQR.
(3) The deformation-induced splitting �EM of the

monopole strength (the difference between peak en-
ergies of low- and high-energy ISGMR bumps).

(4) The deformation-induced shift dEM of the high-energy
ISGMR bump (the difference between its peak energies
computed with and without the deformation).

(5) The fractions S1 and S2 of E0 strength of low- and
high-energy ISGMR bumps.

(6) The widths w1 and w2 of the low- and high-energy
ISGMR bumps.

The method of calculation of the fractions and widths is
described below in discussion of Figs. 9 and 10.

We use for the analysis the nuclei considered above and
additionally: 148Nd (β = 0.22), 156Er (β = 0.215), 160Er
(β = 0.304), and 164Er (β = 0.337). Altogether the list
of the nuclei covers 106,108,110,112,114,116Cd, 142,146,148,150Nd,
154Sm, 164Dy, 156,160,164,168Er, 172Yb, 238U, 242,254,270No, and
264,284,304Fl. The isotopic chains for medium (Cd), rare-earth
(Nd, Er), and superheavy (No, Fl) regions are considered.

A. Model and empirical estimations

The main characteristics of the impact of deformation on
the ISGMR were estimated about three decades ago in various
models; for a review see [2]. Between them, estimations within
the cranking model (CM) [8], variational method (VM) [9], and

fluid-dynamical model in the simple scaling approximation
(SS) [10] are most often used. SS is self-consistent and based
on the simplified Skyrme functional. Here we mainly focus on
VM and SS estimates as the most detailed and robust ones.
Following [8–10], we consider the estimates in terms of the
deformation parameter δ = 0.946β. Note that the estimates
below concern only energies. We were not able to find any
reliable analytical estimates for E0 strengths.

In SS [10], the estimates for the observables of our interest
read

EM ≈ E0
M

[
1 − 2

9
δ2 + 4

9
γMδ2

]
(2a)

≈ E0
M[1 − 0.22δ2 + 1.23δ2] (2b)

≈ E0
M[1 + 1.01δ2], (2c)

γM =
(
E0

M

)2

(
E0

M

)2 − (
E0

Q

)2 = 2.777, (2d)

EQ ≈ E0
Q

[
1 − 1

3
δ − 1

18
δ2 − 4

9
γQδ2

]
(3a)

≈ E0
Q[1 − 0.33δ − 0.06δ2 − 0.79δ2] (3b)

≈ E0
Q[1 − 0.33δ − 0.85δ2], (3c)

γQ =
(
E0

Q

)2

(
E0

M

)2 − (
E0

Q

)2 = 1.777, (3d)

dEM ≈ E0
M1.01δ2, (4)

�EM ≈ EM − EQ (5a)

≈ E0
M[0.2 + 0.27δ − 0.18δ2 + 1.87δ2] (5b)

≈ E0
M[0.2 + 0.27δ + 1.69δ2], (5c)

where

E0
M ≈ 80A−1/3MeV, (6)

E0
Q ≈ 64A−1/3MeV (7)

are empirical values for the ISGMR and ISGQR energies in
spherical nuclei [2]. The terms with γM and γQ in Eqs. (2a)
and (3a) arise from the E0-E2 coupling [note the relation
γM/γQ = (E0

M/E0
Q)2]. In (2b), (3b), and (5b), these terms

are underlined to emphasize the impact of coupling. Note
that values γM = 2.777 and γQ = 1.777 are obtained from
empirical estimations (6) and (7) (unlike [10] where less
realistic values E0

M ≈ 89A−1/3MeV and E0
Q ≈ 65A−1/3MeV

were implemented).
The VM [9] provides the following estimates:

EM = E0
M(1 + 0.86δ2), (8)

EQ = E0
Q(0.93 − 0.27δ − 0.26δ2), (9)

dEM = E0
M0.86δ2, (10)

�EM = = E0
M(0.26 + 0.22δ + 1.1δ2). (11)
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For completeness, we quote also the recent empirical sys-
tematics [40] for the ISGQR(K = 0) energy, obtained from
self-consistent calculations with Skyrme forces,

EQ = E0
Q(1 − 0.240δ − 0.672δ2). (12)

Equations (2a)–(11) show that, despite some modest dif-
ferences in numerical coefficients, SS and VM lead to similar
important qualitative conclusions:

(i) Because of their large numerical coefficients, the δ2

corrections cannot be omitted. For well-deformed
nuclei with δ ∼ 0.3, these terms become of the same
order of magnitude as the linear δ terms; see (3c),
(5c), (9), (11), and (12). Moreover, in (2c), (4), (8),
and (10), the terms linear in δ are absent at all and
deformation corrections are represented only by the
quadratic terms.

(ii) The δ2 corrections take place even without E0-E2
coupling. But then their effect is small. The E0-E2
coupling delivers additional large δ2 terms which
render the δ2 terms significant.

(iii) Just the E0-E2 coupling changes the sign and magni-
tude of the shift dEM as well as the sign and magnitude
of the δ2 contribution to the splitting �EM.

(iv) As seen from (5b), the E0-E2 coupling increases the
splitting �EM. The same takes place in CM and VM.
The result is natural because interaction between two
levels always increases the energy distance between
them [41].

(v) All deformation corrections in (2a)–(11) include E0
M,Q

and so exhibit the mass dependence A−1/3.

For a large deformation δ = 0.3, the SS and VM give
dEM = 7.2A−1/3MeV,�EM = 34.7A−1/3MeV and dEM =
6.2A−1/3MeV, �EM = 34.0A−1/3MeV, respectively. The
cranking model [8] gives �EM = 28.3A−1/3MeV. So, follow-
ing these estimates, the deformation effect in ISGMR should
be strong. The upshift dEM and deformation splitting �EM

can reach 10% and 35%–45% of the resonance energy E0
M,

respectively. However, as noted in review [2], the estimated
splitting significantly exceeds the values from the experiment
for 154Sm and schematic QRPA calculations. In this connec-
tion, it is interesting to perform a systematic comparison of
the estimates with the results of self-consistent QRPA, which
is just done below.

B. QRPA trends

In this section, we compare our QRPA results with the
estimates given above. Following the notation of Sec. III, we
deal here with the deformation parameter β instead of δ.

In Fig. 6, the dependence of the energy EM of the main
ISGMR peak on the mass number A is exhibited and compared
with the estimate (6). In general the calculated energies are well
aligned with the estimate, especially for spherical nuclei 142Nd
and 304Fl. However, in deformed nuclei we get EM < E0

M for
A < 150 and EM > E0

M for A > 150. These deviations seem
to be caused to a large extent by the deformation-induced shift
dEM of the main ISGMR peak. Indeed, as shown below, dEM

is negative for Cd isotopes and positive for deformed nuclei

FIG. 6. Dependence of the calculated ISGMR energies (black
filled symbols) on the mass number A. For 106−116Cd, 142,146,148Nd,
and 154Sm, the experimental values (red open symbols) are shown.
The red line gives the estimate E0

M ≈ 80A−1/3 MeV.

with A > 150, which is in accordance with the deviations. In
the isotopic chains for Nd and Er, the deformation and thus
dEM grow with A. As a result, EM in Er isotopes decreases with
A slower than ∼A−1/3. In Nd isotopes, the increase of dEM

with A even overrules the trend ∼A−1/3 and, as a result, the
resonance energy EM grows with A, both in experiment and our
calculations. Instead, in No and Fl isotopes the deformation
and thus dEM shrinks with A and so these isotopic chains
demonstrate even stronger decrease than ∼A−1/3. So the shift
dEM seems to play a noticeable role in determination of the
energy of the main ISGMR peak.

The shift dEM is inspected in detail in Fig. 7. The upper
panel shows that it varies between −0.4 and 1.0 MeV,
depending on the nucleus and its deformation. What is
interesting, dEM for Cd isotopes is negative in contradiction
with SS (4) and VM (10) estimates. This signals that SS and
VM estimates are not robust for modest deformations β < 0.2.
With the exception of Cd, all other nuclei give positive dEM,
i.e., an upshift. Its value varies from 0 to 0.6 MeV in rare-earth
nuclei to 0.5–1.0 MeV in actinides and superheavy nuclei. So,
in contradiction with the estimates, dEM rather increases than

FIG. 7. (a) Dependence of the calculated deformation shift dEM

on the mass number A. (b) Dependence of dEMA1/3 on the squared
deformation parameter β2. SS (red solid lines) and VM (blue dotted
line) estimates are depicted.
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FIG. 8. (a) Dependence of the calculated deformation splitting
�EM (black filled symbols) on the deformation parameter β. (b) The
same but for �EMA1/3. SS estimates (5a)–(5c) and VM estimates
(11) are depicted by red solid and blue dotted lines, respectively. For
SS, the estimates with (upper line) and without (lower line) E0–E2
coupling are shown. See more details in the text.

decreases with A. There are exceptional cases: For example,
164Dy demonstrates a negligible shift dEM = 0.02 MeV
despite a strong deformation β = 0.344. So one may state
that SS/VM estimates for dEM do not work at a quantitative
level.

This is additionally confirmed in the lower panel of
Fig. 7 where the values dEMA1/3 are depicted. Following the
estimates, these values should show a linear dependence on
the squared deformation parameter. However, in the chains of
Nd and Er isotopes, dEMA1/3 are about independent on β2.
For other isotopes, a definite linear dependence on β2 is also
not seen. In addition, the calculations give smaller values of
dEM than SS and VM estimates. Only heavy and superheavy
nuclei more or less match them. Anyway in rare-earth, actinide,
and superheavy regions the calculated dEM is basically large.
So this shift has to be taken into account in any analysis of
deformation effects in ISGMR.

The splitting �EM of the ISGMR is illustrated in Fig. 8.
Both QRPA values as well as SS (5a)–(5c) and VM (11)
estimates are given. In QRPA, �EM is determined as the
difference between peak energies of the low- and high-energy
ISGMR bumps (as is used in experimental data and RPA
calculations). Instead, in SS and VM estimates, �E is defined
as the difference between the ISGMR and ISGQR(K = 0)
energies. The upper panel of Fig. 8 shows that �EM lies in the
range 2.5–5 MeV. Especially large �EM is found in 174Yb
(β = 0.337). In 154Sm, the computed splitting 4.34 MeV
well agrees with the experimental value 4.12 MeV [6]. The
lower panel compares QRPA values of �EMA1/3 with SS
and VM estimates. The SS data are given with and without
E0-E2 coupling [i.e., with and without the underlined term
in Eq. (5b)]. The SS (with the coupling) and VM estimates
give similar results and both overshoot QRPA splitting by
20%–35%. This result is in accordance to the earlier finding
[2] that observed ISGMR splitting is only two-thirds of the

FIG. 9. Calculated fractions S1 and S2 (in %) of E0 strength in
low- and high-energy branches of ISGMR in well-deformed nuclei.
The dependence on the mass number (a) and deformation (b) is
exhibited.

estimates. Only after removing E0-E2 coupling in SS this
estimate comes close to the QRPA values.

Note that this finding should not be treated as an insignif-
icance of E0-E2 coupling. Instead all our results (spectacular
two-bump structure of ISGMR caused by E0-E2 coupling)
testify that the coupling is strong and important. Perhaps Fig. 8
rather indicates that SS overestimates the deformation effect,
which gives a false impression that the E0-E2 coupling is
excessive. This is partly confirmed by the comparison of EQ

values from the empirical formula (12) and SS analytical
estimation (3c): It is seen that (12) gives much smaller
deformation correction than (3c).

Because, as compared to SS, QRPA produces a smaller
energy difference between the lower and upper ISQMR
peaks, it should effectively lead to even stronger coupling
between them and to pumping more E0 strength into the lower
peak. This is demonstrated in Fig. 9, where the calculated
relative strengths S1 and S2 of the lower and upper ISGMR
branches are exhibited. The strengths are obtained by fitting
the ISGMR strength function by two Lorentzians at the
energy interval 8–18 MeV, embracing both ISGMR branches.
To minimize ambiguities, only well deformed nuclei with
β > 0.27 are considered. Because of using a narrow interval
β = 0.27–0.35, the dependence of S1 and S2 on β is not so
evident. However Fig. 9 allows one to demonstrate typical
values of S1 and S2 in different mass regions. Remarkably
large values of S1 are obtained for heavy and superheavy nuclei
284Fl (β = 0.170,S1 = 28%), 238U (β = 0.275,S1 = 38%),
and 242No (β = 0.294,S1 = 43%). So heavy and superheavy
nuclei are promising samples to observe the E0-E2 coupling.
In addition to that, large values of S1 � 35% are obtained in
well-deformed rare-earth nuclei 150Nd(β = 0.313,S1 = 35%),
154Sm (β = 0.339,S1 = 40%, as compared to the experimen-
tal value 32 ± 2% [6]), 164Dy (β = 0.344,S1 = 36%), and
168Er (β = 0.342,S1 = 39%). In general our calculations for
well-deformed nuclei give larger S1 ≈ 35%–40% as compared
with S1 ≈ 20%–25% in early estimates [8–10]. As mentioned
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FIG. 10. Calculated widths w1 and w1 of lower and upper ISGMR
branches in well-deformed nuclei. The dependence on the mass
number (a) and deformation (b) is exhibited.

above, this can be caused by a smaller energy distance between
the lower and upper ISGMR peaks in our QRPA calculations.
At the same time, our results are in reasonable agreement with
available experimental data which in average give a higher
monopole peak twice stronger than the lower one [2].

Figure 10 shows the calculated widths w1 and w2 of the
low- and high-energy branches of ISGMR. The widths are
also obtained by fitting of the ISGMR strength function by two
Lorentzians. And again only nuclei with a large deformation
β > 0.27 are considered. Figure 10 shows that both widths
vary in the range 2.5–4 MeV, which is in accordance with the
summary in [2]. In average, w1 and w2 are of the same order
but various ratios w1 > , ≈ , < w2 are realized. Following the
bottom panel, there is no definite dependence of the widths on
the nuclear deformation. Instead, they fluctuate from nucleus
to nucleus and seem to be mainly determined by the actual level
structure (spectral fragmentation). The absence of definite
dependence on β may be explained by two opposite trends
caused by the deformation. On the one hand, the deformation
should increase the width of the main ISGMR branch. But, on
the other hand, the larger the deformation, the more E0 strength
is transferred to the low-energy branch, which effectively
decreases the width of the main resonance. Note that different
ratios w1/w2 were also found in the previous study [26] for
Nd-Sm isotopes.

V. CONCLUSIONS

The deformation-induced splitting of isoscalar giant
monopole resonance (ISGMR) was systematically investi-
gated for a variety of axially deformed nuclei in a wide
mass region 106 � A � 304, including medium, rare-earth,
actinide, and superheavy nuclei. Altogether 24 nuclei were
involved. The analysis was carried out in the framework of
the self-consistent quasiparticle random-phase-approximation
(QRPA) method based on the Skyrme functional [31]. Some
auxiliary calculations were performed with the separable self-
consistent QRPA [32,33]. The Skyrme force SV-bas [35] with

incompressibility K∞ = 234 MeV and isoscalar effective mass
m∗

0/m = 0.9 was mainly used, complemented by the results
from the Skyrme force SkPδ with lower K∞ = 202 MeV and
somewhat higher m∗

0/m = 1. To the best of our knowledge, this
is the first systematic self-consistent study of the deformation-
induced splitting of ISGMR, covering nuclei from different
mass regions.

The calculations confirmed the earlier result [2]
that deformation-induced coupling between monopole and
quadrupole excitations leads to the splitting of ISGMR into
low- and high-energy branches. The energy of the lower branch
coincides with the energy of K = 0 part of isoscalar giant
quadrupole resonance (ISGQR). This effect was found in all
considered deformed nuclei, including superheavy ones.

Following our analysis, the splitting of ISGMR cannot be
easily discriminated in nuclei with modest deformation β <
0.2. In particular, it can hardly be observed in soft Cd isotopes.
At the same time, in rare-earth, actinide, and superheavy mass
regions there are many well-deformed (β > 0.3) nuclei where
the splitting is strong enough to be observed experimentally.
Our calculations well reproduce experimental distributions of
the monopole strength in 154Sm [6] and Cd isotopes [16].
However, it should be noted that available experimental data
on ISGMR in well-deformed nuclei are still sparse and even
contradicting. For example, in well-deformed 154Sm a clear
ISGMR splitting takes place in the TAMU experiment [6] but
not in the data from RCNP [14]. Our QRPA results agree
well with the TAMU data. Anyway, there is a need for further
high-accuracy experimental studies. Moreover these studies
should cover more of the well-deformed nuclei.

Because our investigation involves nuclei from different
mass regions, it allows one to check various systematics, e.g.,
the trends with the mass number A and deformation β. In
this connection, we analyzed and tested early estimates of
different characteristics of deformation splitting [9,10]. The
qualitative features following from the estimates were gener-
ally confirmed. At the same time essential differences at the
quantitative level were found. Altogether, our QRPA analysis
has revealed the following peculiarities of ISGMR splitting:

(i) The E0-E2 coupling leads to a noticeable (from −0.4
to 1.0 MeV) energy shift dEM of the main (upper) ISGMR
peak. In particular for isotopic chains, this shift can noticeably
affect the dependence of the ISGMR energy on mass number.
The effect is strong and should be taken into account in any
analysis of ISGMR in deformed nuclei. Unlike the estimates
[9,10], the shift dEM is negative in Cd isotopes. In other nuclei,
it is positive but not proportional to the squared deformation
parameter β2 as was predicted [9,10].

(ii) The QRPA result for the energy splitting �EM of
ISGMR is 20%–30% smaller than estimated in simple models
[9,10], which is in accordance with earlier conclusions [2].
This has an important consequence: Smaller energy distance
between the lower and upper ISGMR peaks results in stronger
E0-E2 coupling and thus in more pumping of E0 strength to
the lower peak.

(iii) As a result, QRPA predicts in well-deformed nuclei a
large fraction of E0 strength in the lower peak. This fraction
can reach 30%–40% as compared to ∼30% in earlier studies
[2] and recent experiment for 154Sm [6]. The large strength of
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the lower peak opens promising perspectives for experimental
observation of the splitting of ISGMR strength.

(iv) In accordance to recent QRPA study of ISGMR in Nd
and Sm isotopes [26], our analysis shows that widths w1 and w2

of the lower and upper ISGMR peaks are generally of the same
order of magnitude (2.5–4 MeV), although they may exhibit
different ratios, depending on the nucleus. It is remarkable that
both widths do not demonstrate a definite dependence on the
deformation β. This can be explained, at least for the upper
peak, by two opposite trends caused by the deformation. On
the one hand, the deformation should increase the width of the
main upper ISGMR peak (deformation spread). But, on the
other hand, the larger the deformation, the more E0 strength is
transferred to the lower peak, which effectively decreases the
width of the main peak.

Finally note that the deformation-induced coupling of
the monopole and quadrupole giant resonances is the only
example of a strong and measurable coupling between giant
resonances. This coupling is of crucial importance when using
the ISGMR in deformed nuclei for the exploration of the

nuclear incompressibility. Further, the E0-E2 coupling can be
useful for a combined investigation of nuclear incompress-
ibility and isoscalar effective mass [26]. The lower peak of
ISGMR could be a useful indicator of the K = 0 branch of
ISGQR.

The study of the deformation-induced ISGMR splitting in
self-consistent models still leaves many open questions. This
subject needs both a strong theoretical effort and new high-
accuracy experiments for a variety of deformed nuclei.
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