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Chiral potential renormalized in harmonic-oscillator space
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We renormalize the chiral effective field theory potential in harmonic-oscillator (HO) model space. The low
energy constants (LECs) are utilized to absorb not just the ultraviolet part of the physics due to the cutoff, but
also the infrared part due to the truncation of model space. We use the inverse J -matrix method to reproduce the
nucleon-nucleon scattering phase shifts in the given model space. We demonstrate that by including the NLO
correction, the nucleon-nucleon scattering in the continuum could be well reproduced in the truncated HO trap
space up to laboratory energy Tlab = 100 MeV with number of HO basis nmax as small as 10. A perturbative
power counting starts at subleading order is adopted in this work, and how to extract the perturbative contribution
is demonstrated. This work serves as the input to perform ab initio calculations.

DOI: 10.1103/PhysRevC.94.064004

I. INTRODUCTION

With the development of computational power and tech-
nique, the input of ab initio calculation—nucleon-nucleon
(NN ) interaction—has become one of the main uncertainties
in the few- and many-body calculations. Due to the fact that
calculations needed to be performed within a model space,
an effective and model-independent NN potential which
converges fast enough within the model space is required.
Except for Fadeev-like approaches (e.g., the Monte Carlo
techniques and in general ab initio nuclear reaction approaches
that use wave functions with proper boundary conditions)—
which only involves the ultraviolet cutoff—the model space is
usually truncated in both the ultraviolet (�) and infrared (λ)
scales. Therefore, before trusting the results one has to check
carefully the convergent pattern with respect to � and λ.

In the past two decades, an interaction deduced from
effective filed theory (EFT) [1–10] has been developed and
significant effort has been spent on the goal of providing
good and model-independent description of data. The bare
NN interaction obtained in the continuum cannot be directly
applied into few- or many-body calculations since: (a) The
model space to perform calculations usually contains both
ultraviolet and infrared cutoffs. (b) Ultraviolet cutoff of the
bare potential is too hard.1 One common treatment is to
perform an unitary transformation [such as Lee-Suzuki or
similarity renormalization group (SRG)] to generate effective
interactions from the bare one [11]. However, in addition
to losing some level of resolution—which is unavoidable
when model space is reduced—the unitary transformation
also generates at least one additional scale, such as the SRG
flow parameter and the induced higher body force. Since the
EFT power counting is usually organized in the continuum
with respect to � alone, those extra cutoffs (due to λ and
other additional scales from unitary transformation) could in
principle destroy the power counting after the transformation.
Without a complete check, the interaction serves as input will
lose its model independent feature.

*yangjerry@ipno.in2p3.fr
1The bare potential usually has an ultraviolet cutoff which is too

high for the results to converge within the limited number of basis.

It is therefore desirable to build the effective interactions
within a limited number of bases in an alternative way. The
philosophy of the present work is that, instead of renormalizing
the interaction in the continuum first and transforming it into a
given model space later, hoping to find a method of truncation
(along with certain conditions) which does not affect the
model-independent feature of the original interaction, one
performs the renormalization directly in a given model space
by utilizing the low energy constants (LECs) in the EFT.

This direction has been advocated by the Arizona group
[12–18], where the pionless potential is direct renormalized
in a given harmonic oscillator (HO) space with or without a
physical trap. The use of the physical trap allows one to connect
the phase shifts (δ) to eigenvalues of the matrix element by
Busch formula [19,20]. Similar applications to the bosonic
system are carried out in Ref. [21]. An alternative approach is
to adopt the J -matrix formalism to relate δ to the eigenvalues
[22]. Finally, an approach which deduces the potential through
the Bloch-Horowitz equation—the HO-based effective theory
(HOBET)—is also explored [23,24].

In this work the HO basis is adopted. I construct the chiral
EFT interaction directly in a given model space without the
HO trap. Similar to Ref. [22], the renormalization of the EFT
interaction under the given infrared cutoff λ and ultraviolet
cutoff � is done through the inverse scattering J -matrix
method [25–27], which enables a direct connection between
the eigenstates in a truncated HO space to the NN scattering
phase shifts. The truncated model space is characterized
by an ultraviolet cutoff � ∼

√
M(Nmax + 3/2)�ω and an

infrared cutoff λ ∼
√

Mω
(Nmax+7/2) . Here M is the nucleon mass,

Nmax = 2nmax + l, with nmax the maximum number of shells
included in the calculation and l the angular momentum
quantum number, ω is the oscillator frequency associated with
the HO basis used. Note that under the condition that the
ultraviolet cutoff is saturated, detailed studies in Refs. [28–30]
suggest that λ =

√
Mω

4(Nmax+7/2) should be adopted, and � =√
M(Nmax + 7/2)�ω.2 The main advantage of our approach is

2A comparison between a more conservative definition of infrared

cutoff λ = √
M�ω and λ =

√
Mω

4(Nmax+7/2) can be found in Ref. [31].
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that the truncation is only controlled by two scales (λ,�), and
this allows a straightforward renormalization group analysis.
Moreover, recent studies [10,32] suggest that the subleading
chiral potential cannot be included nonperturbatively, if one
requires the result to be renormalization group (RG) invariant.
Therefore, in this work I adopt the new power counting [33–35]
which treats the subleading order potential perturbatively and
indicates how the perturbative treatment of chiral potential
can be applied in few- and many-body calculations. Note that
although the exact power counting in chiral EFT at the NN
sector is still an open question, this method can be applied to
any arrangement of power counting.

The structure of the present work is as follows. In Sec. II,
I introduce the inverse J -matrix method. In Sec. III, I apply
the J -matrix method to the renormalization of the leading
order chiral EFT potential. In Sec. IV, I apply the chiral EFT
potential up to NNLO and show how to extract its perturbative
contribution. Finally, I summarize these findings in Sec. V.

II. J-MATRIX METHOD

The J -matrix method was initially derived in atomic
physics [36], and later in nuclear physics using the harmonic
oscillator basis [37,38]. The main idea is to express the
asymptotic scattering wave function in terms of an infinite
series of a chosen basis. In the following I just provide the
necessary formula used in this calculation. A more detail
derivation can be found in Ref. [25].

The Schrödinger equation reads

H� =
(
−∇2

2μ
+ V

)
� = E�. (1)

Here, μ = M/2 is the reduced mass of the NN system and V
represents the NN potential.

After partial-wave decomposition, the radial part of the
wave function can be expanded in the HO basis:

�l(r) = ul(r)

r
=

nmax∑
n=0

cnlφnl(r). (2)

Here, l denotes the angular momentum quantum number, cnl

are constants, and I have truncated the model space to nmax

shells. The HO wave function φnl(r) reads

φnl(r) = (−1)n[2π	(l + 3/2)]−1/2b−3/2[L(l+1/2)
n (0)]−1/2

×
( r

b

)l

exp

[
− r2

2b2

]
L(l+1/2)

n

(
r2

b2

)
(3)

with b = 1√
μω

, L(α)
n the generalized Laguerre polynomial.

φnl(r) satisfies∫ ∞

0
φ2

nl(r)4πr2dr = 1,

(
2n + l + 3

2

)
ω =

∫ ∞

0
φnl(r)

[
1

2μ

(
−1

r

d2

dr2
r + l(l + 1)

r2

)

+ 1

2
μr2ω2

]
φnl(r)4πr2dr.

The maximum accessible energy in the model space is charac-
terized by the ultraviolet cutoff � =

√
M(2nmax + l + 3/2)�ω.

The kinetic energy under HO basis reads

T l
n,n−1 = − 1

2

√
n(n + l + 1/2), (4)

T l
n,n = 1

2 (2n + l + 3/2), (5)

T l
n,n+1 = − 1

2

√
(n + 1)(n + l + 3/2), (6)

T l
n,m = 0(for |n − m| � 2). (7)

For the potential, we adopt the momentum space form, and
one has

Vll′ (r,r
′) = 2

π

∫ ∞

0
k2dk

∫ ∞

0
p2dpjl(kr)Vll′(k,p,�)jl′ (pr ′),

(8)

where l(l′) represents the angular momentum quantum num-
bers. The momentum space potential is given by

Vll′ (k,p,�) = [
V LR

ll′ (k,p) + V SR
ll′ (k,p)

]
R(k,p,�), (9)

where the superscript LR (SR) denotes the long-(short-)range
part of the potential. R(k,p,�) is a regulator, and in this work
I adopt

R(k,p,�) = exp

(
−p4 + k4

�4

)
. (10)

Once the coordinate space representation Vll′ (r,r ′) is obtained,
the matrix element of the Hamiltonian Hll′ reads

〈Hll′ 〉nm = T ll′
n,m +

∫ ∞

0
4πr2dr

∫ ∞

0
4πr ′2dr ′φnl(r)

×Vll′ (r,r
′)φml′(r

′) (11)

with

T l 	=l′
n,m = 0. (12)

Moreover, due to the special property of the HO potential,
one can further simplify the above equation into

〈Hll′ 〉nm = T ll′
n,m + 2

π

∫ �c

0
k2dk

∫ �c

0
p2dpφnl(k)

×Vll′ (k,p,�)φml′(p), (13)

= T ll′
n,m + V ll′

n,m, (14)

where φnl(k) has the same form as φnl(r) with r replaced by k
and b = √

μω. The energy spectrum, En, can be obtained by
diagonalizing Hll′ (for coupled channels, all possible ll′ need
to be included). Note that although the regulator R(k,p,�)
alone is sufficient for the integral to converge, I also impose an
additional sharp cutoff �c (which is set to �c = � + 200 MeV
throughout this work) in Eq. (13) just to reduce the numerical
task. The ultraviolet property of the potential is majorly
determined by the intrinsic cutoff �.

The key of connecting the NN scattering phase shifts to En

is to evaluate the potential 〈Vll′ 〉nm up to n = m = nmax, but
keep the size of the kinetic part to infinity. Then the formula
connecting the asymptotic wave function to the scattering
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phase shift can be shown to have the following form:

tan δ(E) = − Snmaxl(E) − GnmaxnmaxT
l
nmax,nmax+1Snmax+1,l(E)

Cnmaxl(E) − GnmaxnmaxT
l
nmax,nmax+1Cnmax+1,l(E)

(15)

with

Snl(E) =
√

πbn!

	(n + l + 3/2)

(
2E

ω

) l+1
2

× exp

[
−E

ω

]
Ll+1/2

n

(
2E

ω

)
, (16)

Cnl(E) =
√

πbn!

	(n + l + 3/2)

(
2E
ω

)−l/2

	(−l + 1/2)
exp

[
−E

ω

]

×�

(
−n − l − 1/2, − l + 1/2;

2E

ω

)
, (17)

Gnn′ = −
nmax∑
λ′=0

〈n|λ′〉〈λ′|n′〉
Eλ′ − E

. (18)

Here, �(a,b; z) is the confluent hypergeometric function of
the first kind, 〈n|λ′〉 and Eλ′ are eigenvector and eigenvalues
of the Hamiltonian 〈Hll′ 〉nm truncated up to n = m = nmax.

For cases where two partial waves with the same total
angular momentum quantum number J couple together, the
number of bases increases to Nmax = ns

max + nd
max + 13. Note

that here I have labeled the two channels as s (l = J − 1) and
d (l = J + 1). Define

ς		′ = −
Nmax∑
λ′=0

〈
n	

max

∣∣λ′〉〈λ′∣∣n	′
max

〉
Eλ′ − E

, (19)

where 〈n	(′)
max|λ′〉 is the 	(′)-wave component of the eigenvector.

Then the relation analog to Eqs. (15)–(18) can be obtained by
solving the following equations:

ςss = ss(E)

T s
Ns,Ns+1(E)

, (20)

ςdd = dd (E)

T d
Nd,Nd+1(E)

, (21)

ςsd = ςds = Ksd

2T s
Ns,Ns+1T

d
Nd,Nd+1(E)

, (22)

ss(E) = [
Sns

max,s
(E) + Kss(E)Cns

max,s
(E)

]
× [

Snd
max+1,d (E) + Kdd (E)Cnd

max+1,d (E)
]

−K2
sd (E)Cns

max,s
(E)Cnd

max+1,d (E), (23)

dd (E) = [
Sns

max+1,s(E) + Kss(E)Cns
max+1,s(E)

]
× [

Snd
max,d

(E) + Kdd (E)Cnd
max,d

(E)
]

−K2
sd (E)Cns

max+1,s(E)Cnd
max,d

(E), (24)

3Both s and d channel runs from 0 to ns,d
max, so Nmax = ns

max + nd
max +

1.

(E) = [
Sns

max+1,s(E) + Kss(E)Cns
max+1,s(E)

]
× [

Snd
max+1,d (E) + Kdd (E)Cnd

max+1,d (E)
]

−K2
sd (E)Cns

max+1,s(E)Cnd
max+1,d (E), (25)

Kss(E) = tan δs + tan2 ε tan δd

1 − tan2 ε tan δs tan δd

, (26)

Kdd (E) = tan δd + tan2 ε tan δs

1 − tan2 ε tan δs tan δd

, (27)

Ksd (E) = Kds(E) = tan ε

cos δs cos δd (1 − tan2 ε tan δs tan δd )
.

(28)

One first obtains ςss,sd,dd from the eigenvalues and
eigenvectors using Eq. (19), then solves for Kss,sd,dd (E) in
Eqs. (20)–(25). Finally, the phase shifts (δs,δd ) and the mixing
angle ε can be solved from Eqs. (26)–(28).

In principle, once one has the eigenvalues and eigenvectors,
the above approach allows to obtain the phase shifts at any
energy. In this approach, we adjust the LECs in the chiral
potential and perform a best fit of the resulting phase shifts to
the Nijmegen analysis [39,40].

III. LEADING ORDER RESULTS

The leading order potential entered in Eq. (9) is the one-
pion-exchange potential (OPE). In this work I consider partial
waves 1S0, 3S1 -3D1, 1P1, 3P0, 3P1, 3P2 -3F2. The associated
contact terms are listed in Table I in terms of O(Qn): the
order where the final amplitude is summed up to. Note that
for singular attractive P waves (3P0, 3P2 -3F2), the contact
terms are promoted to appear one order earlier with respect
to the Weinberg power counting [1,2]. The contact terms,
when presented, are renormalized to produce a best fit to the
Nijmegen phase shifts at laboratory energy Tlab � 10 MeV.
The two exceptions are the 1S0 and 3S1 -3D1 channels, where I
renormalize to their scattering length a0. Once renormalization
is completed, I examine how well the NN scattering phase
shifts could be reproduced in the truncated HO space. In Fig. 1
I plot the 1S0 phase shift obtained with nmax = 10–40 and

TABLE I. Power counting for pion exchanges, S- and P -wave
counterterms up to O(Q3). p (p′) is the magnitude of the center-of-
mass incoming (outgoing) momentum. The two-by-two matrices are
for the coupled channels.

O(1) OPE, C1S0
,
(C3S1

0
0 0

)
, C3P0

p′p,
(C3P2

p′p 0

0 0

)
O(Q) D1S0

(p′2 + p2)

O(Q2) TPE0, E1S0
p′2p2,

(D3S1
(p′2 + p2) ESD p2

ESD p′2 0

)
,

D3P0
p′p(p′2 + p2), p′p

(D3P2
(p′2 + p2) EPF p2

EPF p′2 0

)
,

C1P1
p′p, C3P1

p′p
O(Q3) TPE1, F1S0

p′2p2(p′2 + p2)
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FIG. 1. 1S0 LO phase shift as a function of laboratory energy
Tlab = 0–50 MeV. Here the black-dot represent the Nijmegen phase
shift, and each colored line represents the phase shift with various
nmax, where ω is fixed to 20 MeV except for the one with the “+”
sign. Here the result is renormalized to give a0 = −23.7 fm, and the
potential has intrinsic cutoffs �c = 800 MeV, � = 600 MeV.

ω = 20 MeV. The two cutoffs in Eq. (13) are set to �c =
800 MeV, � = 600 MeV. As one can see, with the increase
of nmax—which implies the increase of ultraviolet cutoff the
decrease of the infrared cutoff λ—all of the LO phase shifts
converge to those obtained by solving Lippmann-Schwinger
equation in the continuum.

One feature of the J -matrix method can be seen in the
nmax = 10 curve in Fig. 1 is the oscillatory behavior in phase
shift δ. Note that here

√
M(Nmax + 3/2)�ω = 628 MeV >

600 MeV. Thus, the model space’s ultraviolet cutoff is already
larger than the ultraviolet cutoff in the potential. However,
the nmax = 10 curve shows that the matrix element is still
not saturated by enough bases to reproduce the continuum
properties at all Tlab. This is also observed in Ref. [22]. In
general, I found that

√
M(Nmax + 3/2)�ω > R� is required

to eliminate the oscillatory behavior, where R is a constant
greater than 1. The exact value of R depends on the strength
and form of interaction, I found that for OPE, R ∼ 2.4 I note
that this feature is not linked to the infrared cutoff, as one can
increase ω to 120 MeV and use the same nmax—which increase
ultraviolet and infrared cutoff at the same time—to eliminate
the oscillatory phase shift. This is shown by the curve with
plus sign in Fig. 1.

In order to have a further look at the problem, I insert a
physical HO-trap ( 1

2μr2ω2) into the Hamiltonian. Equation
(11) then becomes

〈Hll′ 〉nm = T ll′
n,m + 1

2
μr2ω2 +

∫ ∞

0
4πr2dr

×
∫ ∞

0
4πr ′2dr ′φnl(r)Vll′(r,r

′)φml′(r
′), (29)

4I observed that the factor R increases for coupled channels and
more singular potentials.
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FIG. 2. 1S0 LO phase shift as a function of laboratory energy
Tlab = 0–300 MeV. Here the black circles represent phase shift
obtained by the Busch formula, and the red line represents the phase
shift obtained by the J -matrix method. Here nmax = 10, ω = 20 MeV,
and the potential has intrinsic cutoffs �c = 800 MeV, � = 600 MeV.

= δll′δnm

(
2n + l + 3

2

)
ω +

∫ ∞

0
4πr2dr

×
∫ ∞

0
4πr ′2dr ′φnl(r)Vll′(r,r

′)φml′(r
′). (30)

Here, for Vll′ I insert the same LO potential renormalized by
the J -matrix method. Then the Busch formula can then be
adopted to extract the phase shift. The result is presented in
Fig. 2. As one can see, the phase shift obtained by the J -matrix
method (δJ -matrix) oscillates around the one obtained by the
Busch formula (δBusch). For every c.m. energy Ec.m. ∼ 2ω
(Tlab = 2Ec.m.), one cycle of oscillation is completed. To show
this is not a coincidence, I increase the intrinsic cutoffs of
the potential to �c = 1000 MeV, � = 800 MeV and present
the same comparison in Fig. 3. Figures 2 and 3 confirm that
the oscillatory phase shift given by the J -matrix method is an
artifact of using (not enough) HO bases to represent continuum
properties. The phase shift between the two intervals just
cannot be trusted. Therefore, in the J -matrix method without
a sufficient combination of Nmax and ω, one needs to carefully
choose the energies where the renormalization is performed.
Otherwise, an additional error would appear due to adopting
an untrustable δJ -matrix(E) in the renormalization procedure.

The effect of
√

M(Nmax + 3/2)�ω < R� appears to be
less problematic for bound-state-related properties. In Fig. 4,
I compare the 3S1 phase shift with the LEC fixed by the
scattering length a0 = 5.4 fm to the one fixed by the deuteron
binding energy Eb = −2.225 MeV. From the converge pattern
nmax = 8 to nmax = 16, one clearly sees that the oscillation is
more centralized to its final converged value (nmax = 16 curve)
in the right panel of Fig. 4 than in the left panel. This shows
that the bound state indeed acts as one of the energies where
δBusch(E) = δJ -matrix(E).

The role of the additional cutoff �c in Eq. (13) is just
to provide the numerical definiteness for the integral. I have
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FIG. 3. 1S0 LO phase shift as a function of laboratory energy
Tlab = 0–300 MeV. Here phase shifts obtained by the Busch formula
(colored symbol) are compared to those obtained by the J -matrix
method (colored line). Here nmax = 20,40,60, and ω = 20 MeV. The
potential has intrinsic cutoffs �c = 1000 MeV, � = 800 MeV.

verified that the phase shifts presented above are almost
unchanged (relative difference <1%) by replacing the above
�c (800 MeV or 1000 MeV) by �c → ∞.

The 3D1, ε1, and p-waves phase shifts are shown in Fig. 5.
They present a similar converge pattern as shown in S waves.

In Figs. 6 and 7, we plot the phase shifts generated by the LO
potential with larger intrinsic cutoffs, i.e., �c = 1000 MeV,
� = 800 MeV. Here I demonstrate that by increasing ω =
120 MeV, the convergence can be reached with a much lower
nmax. This is due to (a) the ultraviolet part of the potential
being saturated with smaller nmax; (b) the oscillatory behavior
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FIG. 4. 3S1 LO phase shift as a function of laboratory energy
Tlab = 0–60 MeV. Here the black-dot represent the Nijmegen phase
shift, and each colored line represents the phase shift with various
nmax, where ω is fixed to 20 MeV. The LEC is renormalized
to reproduce a0 = 5.4 fm in the left panel, and is renormalized
to reproduce the deuteron binding energy Eb = −2.225 MeV in
the right panel. The potential has intrinsic cutoffs �c = 800 MeV,
� = 600 MeV.

FIG. 5. Leading order phase shifts as a function of laboratory
energy Tlab. Here the black dot represents the Nijmegen phase shift,
and each colored line represents the phase shift with various nmax,
where ω is fixed to 20 MeV, and the potential has intrinsic cutoffs
�c = 800 MeV, � = 600 MeV.

is reduced at the same time for larger ω. In most of the channels,
nmax = 8 is enough to reach convergence. Meanwhile, the
mixing angle ε1 and those singular attractive P waves (3P0 and
3P2 -3F2) require a higher nmax(= 16) to reach convergence.
Note that for nmax = 8,

√
M(Nmax + 3/2)�ω ∼ 1385 MeV,

which already exceeds the intrinsic ultraviolet cutoffs in the
potential. Therefore the rate of convergence in these channels
(ε1, 3P0, and 3P2 −3F2) appears to be more sensitive to
the residue-infrared-cutoff dependence—the remaining cutoff
dependence after using contact terms to renormalize both the
short- and long-range physics.

FIG. 6. Leading order phase shifts as a function of laboratory
energy Tlab. Here the black dot represents the Nijmegen phase shift,
and each colored line represents the phase shift with various nmax,
where ω is fixed to 120 MeV, and the potential has intrinsic cutoffs
�c = 1000 MeV, � = 800 MeV.

064004-5



C.-J. YANG PHYSICAL REVIEW C 94, 064004 (2016)

0 30 60 90 120 150
0

3

6

9

12

δ(
3 P

0) 
[d

eg
]

n
max

=12

n
max

=16

n
max

=20

Nijm

0 10 20 30 40 50 60
0

5

10

15

20

25

30

δ(
3 P

2) 
[d

eg
]

0 10 20 30 40 50 60
T

lab
 [MeV]

0

1

2

3

4

5

δ(
3 F

2) 
[d

eg
]

0 10 20 30 40 50 60
T

lab
 [MeV]

-12

-9

-6

-3

0
ε 2 [

de
g]

ω=120 MeV(a)

(b)

(c)

(d)

FIG. 7. Leading order phase shifts as a function of laboratory
energy Tlab. Here the black dot represents the Nijmegen phase shift,
and each colored line represents the phase shift with various Nmax,
where ω is fixed to 120 MeV, and the potential has intrinsic cutoffs
�c = 1000 MeV, � = 800 MeV.

IV. PERTURBATIVE TREATMENT

A. Treatment for subleading potentials

If one follows Weinberg power counting, all potentials are
added up and treated nonperturbatively. The renormalization

would follow exactly the same procedure as the LO performed
in the previous section. However, in order to achieve renor-
malization group (RG) invariance at arbitrary high �a , it is
shown that at least some of the subleading chiral potentials
needed to be added perturbatively [33–35,41]. Here I adopt the
new power counting proposed in Ref. [35], with contact terms
listed in Table I. Starting from next-to-leading order (NLO),
the potentials are treated perturbatively. The Hamiltonian I
want to solve then has the form

H = HLO + V (1) + V (2) + . . . , (31)

where HLO = H0 + VLO is the part to be iterated to all
orders, and the rest (V (1) + V (2) + . . .) are to be treated
as perturbation. Here the superscript denotes the order in
perturbation theory where the potential enters.

The corresponding wave function and energy are

� = �LO + �(1) + �(2) + . . . , (32)

E = ELO + E(1) + E(2) + . . . . (33)

In perturbation theory one has to solve
LO (ELO):

(HLO − ELO)�LO = 0; (34)

NLO (E(1)):

(HLO − ELO)�(1) = (E(1) − V (1))�LO; (35)
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FIG. 8. NLO and NNLO coupled-channel phase shifts as a function of laboratory energy Tlab. Here the black sdot represent the Nijmegen
phase shift, and each colored line represents the phase shift with various nmax, where ω is fixed to 120 MeV and the intrinsic cutoffs are
�c = 800 MeV, � = 600 MeV.
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FIG. 9. NLO and NNLO uncoupled-channel phase shifts as a
function of laboratory energy Tlab. Here the black dot represents the
Nijmegen phase shift, and each colored line represents the phase
shift with various nmax, where ω is fixed to 120 MeV and the intrinsic
cutoffs are �c = 800 MeV, � = 600 MeV.

NNLO (E(2)):

(HLO − ELO)�(2) = (E(2) − V (2))�LO + (E(1) − V (1))�(1).

(36)

However, the above is difficult to deal with, especially when
the basis state grows, as each higher order correction demands
accurate information from all eigenstates at previous order.
Moreover, the above procedure is difficult for the implement
into few- and many-body calculations.

A better way to perform the perturbative calculation is to
associate a small parameter σv to V (v),

H (v,σ ) = HLO + σV (1) + σ 2V (2) + . . . + σvV (v), (37)

where v denotes order of truncation. The perturbative solution,
which is the one I would like to extract, is

E(v) = ELO + E(1) + E(2) + . . . E(v). (38)

On the other hand, denote the full nonperturbative eigenen-
ergy [obtained by directly diagonalizing Eq. (37) truncated at
order v] by ξ (v,σ ). One can express ξ (v,σ ) as

ξ (v,σ ) = ELO + σE(1) + σ 2E(2) + . . . σ vE(v)

+O(σv+1Qv+1). (39)

Then by varying σ and diagonalizing H (v,σ ), one can extract
E(1,2,3,...) in Eq. (38).

I note that this method is very general and can be directly
applied to few- and many-body calculations without modifying
the existing codes.

0 10 20 30 40 50 60

60

90

120

150

180

δ(
3 S

1) 
[d

eg
]

NLO (A)
NNLO (A)
NLO (B)
NNLO (B)
Nijm

0 10 20 30 40 50 60

-8

-6

-4

-2

0

δ(
3 D

1) 
[d

eg
]

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

ε 1 [
de

g]

0 10 20 30 40 50 60
T

lab
 [MeV]

0

2

4

6

8

δ(
3 P

2) 
[d

eg
]

0 10 20 30 40 50 60
T

lab
 [MeV]

0

0.3

0.6

0.9

1.2

δ(
3 F

2) 
[d

eg
]

0 10 20 30 40 50 60
T

lab
 [MeV]

-2

-1.5

-1

-0.5

0

ε 2 [
de

g]

(a) (b) (c)

(d) (e) (f)

FIG. 10. NLO and NNLO coupled-channel phase shifts as a function of laboratory energy Tlab. Here the intrinsic cutoffs are �c = 1000 MeV,
� = 800 MeV, and black dot represents the Nijmegen phase shift. Each colored line represents the phase shift at various order and combination
of (ω,nmax). Label (A) stands for (ω,nmax) = (120 [MeV],8) for the 3S1 -3D1 channel and (120 [MeV],6) for the 3P2 -3F2 channel, and (B)
stands for (ω,nmax) = (60 [MeV],19) for the 3S1 -3D1 channel and (60 [MeV],15) for the 3P2 −3F2 channel.
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FIG. 11. NLO and NNLO uncoupled-channel phase shifts as a
function of laboratory energy Tlab. Here the intrinsic cutoffs are �c =
1000 MeV, � = 800 MeV, and the black dot represents the Nijmegen
phase shift. Each colored line represents the phase shift at various
order and combination of (ω,nmax). Label (A) stands for (ω,nmax) =
(120 [MeV],8), and (B) stands for (ω,nmax) = (60 [MeV],17).

B. NLO and NNLO results

The NLO and NNLO phase shifts based on the power
counting of Ref. [35] are presented in Figs. 8–11. Here
Figs. 8 and 9 are for a potential with intrinsic cutoffs
�c = 800 MeV, � = 600 MeV, and Figs. 10 and 11 are for
�c = 1000 MeV, � = 800 MeV. The subleading phase shifts
are obtained perturbatively according to the method introduced
in Sec. IV A. The LECs are renormalized to reproduce the
Nijmegen phase shifts up to the maximum Tlab shown in each
channel. In the 3S1 -3D1 channel, the deuteron binding energy
Eb = −2.224 MeV is also adopted in the fit.

Unlike the conventional Weinberg counting, where the
order of chiral potential equals to the order in the final
amplitude, the same dose not necessarily hold for the new
power counting. Denote the leading (subleading) two-pion-
exchange potential as TPE0 (TPE1),5 in most of the channels
presented here, TPE0 enters at NLO and TPE1 enters at
NNLO. For these cases potentials up to TPE0 and TPE1
both enter as one insertion6 in the LO wave function, and
the resulting phase shifts are NLO and NNLO, respectively.
However, when a nonvanishing O(Q) potential appears, such
as in the 1S0 channel, NLO contains only contact terms and

5In Weinberg counting, TPE0 equals to the NLO(Q2) and TPE1
equals to the NNLO(Q3) potentials.

6This means one only extracts E(1) in Eq. (38).

TPE0 enters at NNLO. Here NNLO includes one insertion of
TPE0 and two insertions7 of the O(Q) contact term.

As one can see, with the inclusion of the NLO/NNLO
contribution, the phase shifts converge already at (ω,nmax) =
(120,10) for both of the potentials adopted here (the one
with �c = 800 MeV, � = 600 MeV and the other with �c =
1000 MeV, � = 800 MeV). The reproduction of Nijmegen
phase shifts is comparable to those obtained in the continuum
[35]. For a lower value of ω, i.e., ω = 60 MeV, the minimum
nmax required for the NNLO phase shifts to converge ranges
from nmax = 15–20 depends on the channels. In general, the
quality of fit I obtained is comparable to those obtained by
the standard Weinberg counting, with only one exception: the
NNLO 3P1 channel. In this case, the same behavior is observed
in the continuum as well [35]. This might suggest that the c1,3,4

adopted in TPE1 need to be readjusted, or an adoption of the
(1232)-included potential is necessary in order to cure this
behavior.

V. CONCLUSION

I have performed a new approach to generate the chiral EFT
potential in the truncated model space. I utilize the contact
interactions presented in EFT to absorb the effects coming
from both ultraviolet and infrared cutoffs. The connection
between the eigenstate of the HO basis and NN scattering
phase shift are established by the J -matrix formalism. This
allows a direct evaluation of NN scattering in the HO basis
without applying a physical trap. In this procedure, the RG
analysis can be carried out in a straightforward way as the
results depend only on two scales: the infrared cutoff λ and the
ultraviolet cutoff �. This paves a way to provide a truly model
independent procedure to perform ab initio calculations. Also,
the perturbative treatment of the chiral potential is carried
out in the truncated model space through a method which is
directly applicable to the many-body calculation.

There are many possibilities to extend the current study. In
particular, the interaction obtained in this work will be applied
to the three-, four-, and many-body calculations within the
no-core-shell-model framework [42].

ACKNOWLEDGMENTS

We thank A. Shirokov, N. Barnea, D. Lee, G. Hupin, M.
Grasso, B. R. Barrett, T. Papenbrock, R. J. Furnstahl, and
U. van Kolck for useful discussions and suggestions. More
importantly, the author is grateful for the valuable discussions
and support from G. Orlandini and W. Leidemann. Part of this
work was carried out in University of Trento under MIUR
grant no. PRIN-2009TWL3MX.
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